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Wetting transition in the two-dimensional Blume-Capel model: A Monte Carlo study
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The wetting transition of the Blume-Capel model is studied by a finite-size scaling analysis of L × M lattices
where competing boundary fields ±H1 act on the first or last row of the L rows in the strip, respectively. We
show that using the appropriate anisotropic version of finite-size scaling, critical wetting in d = 2 is equivalent
to a “bulk” critical phenomenon with exponents α = −1, β = 0, and γ = 3. These concepts are also verified
for the Ising model. For the Blume-Capel model, it is found that the field strength H1c(T ) where critical wetting
occurs goes to zero when the bulk second-order transition is approached, while H1c(T ) stays nonzero in the
region where in the bulk a first-order transition from the ordered phase, with nonzero spontaneous magnetization,
to the disordered phase occurs. Interfaces between coexisting phases then show interfacial enrichment of a layer
of the disordered phase which exhibits in the second-order case a finite thickness only. A tentative discussion of
the scaling behavior of the wetting phase diagram near the tricritical point is also given.
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I. INTRODUCTION

Understanding interfacial phenomena at boundaries [1–4]
such as free surfaces of solids, walls confining fluids, etc.,
is a topic of very high interest in current condensed matter
research. It is driven by important applications, e.g., in
microfluidics or nanofluidics, design of smart nanomaterials
[5–8], etc, but it is also of fundamental interest as a problem of
statistical mechanics. We will only focus on the latter aspect
here, and hence we shall not deal with wetting properties
[9–17] of specific materials but rather will consider wetting in
the framework of a simple lattice model with nearest-neighbor
interactions and short-range forces due to the walls.

In this spirit, a large amount of work has been devoted
to the study of simple Ising models with boundary fields;
see, e.g., [18] for a review and [19–40] for some pertinent
original work. Spin reversal symmetry of this generic model
implies that phase coexistence between the ordered phases
with positive and negative spontaneous magnetization occurs
at zero bulk field (H = 0) in the thermodynamic limit in the
bulk; the same still holds true when one considers a thin film of
a finite thickness L with surfaces at which boundary fields H1,
HL act, provided one considers the antisymmetric situation
H1 = −HL, avoiding “capillary condensation” [18,20,22],
i.e., a shift of bulk coexistence to nonzero value of the bulk field
due to boundary effects. The latter phenomenon is interesting
in its own right (see, e.g., [41]), and it can also be studied
in Ising models choosing boundary fields H1 = HL (see,
e.g., [42–44]), but this problem will not be addressed here.

In principle, the study of a wetting transition, where the
boundary induces the formation of a macroscopically thick
film of the phase that it prefers, coexisting with the other
phase separated by an interface at a macroscopic distance
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from the boundary, requires us to consider the limit L → ∞.
For any finite L in the antisymmetric thin film geometry, or
thin strip geometry, when one considers d = 2 dimensions
rather than d = 3, one does not find a wetting transition
but rather the “interface localization-delocalization transition”
[18,27–33,37–39]: for temperatures above Tc(L,H1) but below
the transition temperature Tcb of the bulk Ising model, the
interface between the coexisting phases is “delocalized,” freely
fluctuating in the center of the film (or strip, respectively).
Here, by “center” we mean the plane (or line) (L + 1)/2 if
we label the layers (rows) of the Ising lattice parallel to the
boundaries from n = 1 to n = L. However, for T < Tc(L,H1),
the interface is tightly bound, and hence “localized,” near one
of the two boundaries. One predicts, however, that for large
L the transition temperature Tc(L,H1) converges rapidly to
the wetting transition temperature Tw(H1) of the semi-infinite
system [29,30], and this prediction is consistent with the
numerical simulations [27,28,31–33,38,39].

One aspect of wetting in the Ising model that received a
great deal of attention is the behavior near bulk criticality. One
can show that for a second-order wetting transition, the inverse
function H1c(T ) of Tw(H1) behaves as [21]

H1c(T ) ∝ (Tcb − T )�1 , (1)

where �1 is the critical exponent that controls the scaling
behavior with the surface field H1 near bulk criticality [45–47].
While �1 in d = 3 is only known approximately from
numerical work, in d = 2 Abraham’s exact solution for the
Ising model [19] implies �1 = 1

2 . Note that on the square
lattice with exchange constant J between nearest neighbors,
the wetting transition occurs for H1c given as the solution of

exp(2J/kBT )[cosh(2J/kBT ) − cosh(2H1c/kBT )]

= sinh(2J/kBT ), (2)

and the bulk critical point occurs at exp(2J/kBTcb) = √
2 + 1

[48].
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An intriguing area of study is, of course, to examine how
the wetting behavior gets modified if the bulk phase transition
changes its character. For example, a simple extension of the
Ising model is the Blume-Capel model [49,50], where each
lattice site (i) can be in one of three states, Si = +1, 0, and −1,
and the Hamiltonian becomes

H = −J
∑
〈i,j〉

SiSj + D
∑

i

S2
i , (3)

where the “crystal field” D controls the density of “vacancies,”
i.e., sites with Si = 0.

When D → −∞, vacancies are excluded, and the model
reduces to the standard two-state Ising model, but when
D/J is of order unity, one has a nontrivial bulk phase
diagram with a tricritical point [51] at D = Dt . For the square
lattice, this tricritical point occurs at Dt/J =̃ 1.965(5) and
kBTt/J =̃ 0.609 (5). For D > Dt , the transition at Tc(D) is
first order: two phases with opposite nonzero magnetization
and the disordered phase (with zero magnetization) coexist.

From the universality principle, we expect that Eq. (1) with
�1 = 1

2 would also hold in the second-order region of the
Blume-Capel model for D < Dt , but to our knowledge this
assumption has not yet been tested. Providing evidence for this
assumption is one of the goals of the present paper. Right at
the tricritical point, however, the behavior should be different:
instead of Eq. (1), we now expect

H1c(Dt,T ) ∝ (Tt − T )�1t , (4)

where the exponent �1t in d = 3 is expected to be �1t =
1/4 [52], the prediction due to Landau mean-field theory,
which is expected to hold in d = 3, apart from logarithmic
corrections [51]. While in d = 2 the tricritical exponents in
the bulk are not those of mean-field theory [51], for the Ising
model universality class to which the tricritical point of the
Blume-Capel model belongs [51], they are exactly known
from conformal invariance [53–55]. For example, in standard
notation of critical exponents [56,57], αt = 8/9, βt = 1/24,
γt = 37/36, νt = 5/9, etc. To our knowledge, �1t for this
problem is not yet known, however.

When one considers the wetting transition for the part of the
transition line Tcb(D) that is first order (D > Dt ), the wetting
transition H1c(T ) ends at this line at a nonzero value of the
surface field,

H ∗
1c(D) = H1c(D,T = Tcb(D)). (5)

We expect that another power law will exist when D

approaches Dt from below,

H ∗
1c(D) ∝ (D − Dt )

ζ , (6)

but again we are not aware of predictions relating to this critical
exponent ζ . The evaluation of ζ from numerical work is a
very challenging task, because it requires us to locate both
the tricritical point and the wetting transitions with very high
accuracy.

Finally, a very interesting aspect relates to the character of
the interface between the coexisting phases with positive and
negative magnetization, when one approaches the bulk phase
transition: then interfacial adsorption of the third phase (the
disordered phase) at the interface can occur [58–60]. If we

denote the coexisting bulk phases as A and B, approaching
the bulk transition line in the second-order region, one expects
an interfacial wetting transition A|B → A|DO|B, where DO

stands symbolically for an intruding layer of the disordered
phase having predominantly states where Si = 0 dominates
at the interface. To quantify this effect, one considers the net
adsorption defined by

Wo(T ) = N−1
M∑
i=1

[〈δ0,Si
〉1|−1 − 〈δ0,Si

〉1|1], (7)

where N is the total number of lattice sites, M is the number
of lattice sites per row parallel to the walls, δα,β is the
Kronecker symbol, and 〈· · ·〉1|−1 is a statistical average in
the presence of an interface (A = 1, B = −1), while 〈· · ·〉1|1
is the corresponding average for an equivalent system but
without interfaces. Since δ0,Si

= 1 − S2
i , one can conclude

also that W0(T ) = (∂σAB/∂D), where σAB is the interfacial
tension for the considered interface. Since for D < Dt the
bulk phase transition of the Blume-Capel model falls in the
Ising universality class, we know that σAB ∝ [1 − T/Tcb(D)]μ

with μ = (d − 1)ν = 1 for the Blume-Capel model. Writing
t = 1 − T/Tcb(D), we find

W0(T ) =
(

∂σAB

∂t

)(
∂t

∂D

)
∝ tμ−1 = const; (8)

thus if we define a divergence of interfacial adsorption via

W0(T ) ∝ t−ω, (9)

we find ω = 0 for D < Dt , i.e., in the Ising-like regime
there should be no critical divergence of the net adsorption.
However, right at the tricritical point, the behavior should
be different: from ν = 5/9 as quoted above, we conclude
W0(T ) ∝ t−ω with ω = 4/9 for D = Dt . This result is consis-
tent with Monte Carlo results of Selke et al. [59].

For Dt = 1.965 < D � 2, the transition of the Blume-
Capel model is believed to be first order, and the emerging
interfaces A|DO and DO|B remain sharp as T → Tc(D).
Reducing the problem to interfaces in the solid-on-solid model,
one can argue that Eq. (9) also holds in the first-order region,
but ω = 1/3 [12]. These considerations have been checked
by early Monte Carlo work [58–60] for interfaces between
coexisting bulk phases, but to our knowledge no study in
the context of wetting at external boundaries has as yet been
performed.

In the present work, we wish to help close this gap by
studying wetting behavior for the two-dimensional Blume-
Capel model in the case of thin films for which surface fields at
the boundaries act, as described in Sec. II. However, in order to
do so, we have found it necessary to reconsider the simulation
methodology for the study of critical wetting. In fact, by
applying Monte Carlo simulations, we shall necessarily study
finite systems, namely strips of width L (in the y direction)
and length M (in the x direction, where a periodic boundary
condition acts). As a consequence, finite-size effects matter,
and hence in the next section we will also present the
background on the proper finite-size scaling analysis of such
simulation “data,” for the case of critical wetting in d = 2
dimensions, taking into account that one deals there with
an anisotropic critical phenomenon of a special character: if
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we consider the magnetization m of the strip as the “order
parameter” of the transition, its critical exponent β = 0. This
fact does not seem to have received much attention in the
previous Monte Carlo studies of critical wetting in d = 2
[28,38]. This revised methodology for the study of critical
wetting, which is outlined in Sec. II, is another important
result of our work.

Section III presents our Monte Carlo results, which are
then analyzed according to these concepts, and the wetting
transitions are discussed for a variety of choices of D; D < Dt ,
D = Dt , and D > Dt will be considered. Section III also
discusses our result on interfacial adsorption. Section IV
summarizes our conclusions.

II. THEORETICAL BACKGROUND AND DETAILS
ON SIMULATION METHODS

A. The model

We consider the Hamiltonian of the three-state Blume-
Capel model [49,50] where each lattice site i carries a spin
Si that can take on the values Si = ±1,0 at a square lattice
in an L × M geometry. Periodic boundary conditions act in
the x direction (where the lattice is M rows long) while
free boundary conditions are used in the y direction, where
boundary fields H1, HL act on the first and the last row. Thus
the Hamiltonian is

H = −J
∑
〈i,j〉

SiSj + D
∑

i

S2
i − H

∑
i

Si

−H1

∑
i∈ row1

Si − HL

∑
i∈ rowL

Si. (10)

Here J is the exchange constant between spins at nearest-
neighbor sites, which we take to be homogeneous throughout
the system. Thus, we disregard the possibility to take the
exchange Js in the boundary rows different from the ex-
change J in the interior of the system, which is frequently
considered in studies of wetting phenomena in the Ising model
[18,25,26,31–33,39]. The bulk field H acts on all lattice sites,
while the “surface fields” [45–47] only act on the spins in the
first (1) and last (L) row, where the free boundary conditions
apply.

We also focus on the particular antisymmetric situation
H1 = −HL < 0 and consider the thermodynamic limit (L →
∞, M → ∞) before we consider the limit H → 0+. Then,
the system undergoes two phase transitions: at the temperature
Tcb(D) the phase transition occurs from the disordered “para-
magnetic” phase to the ordered “ferromagnetic” phase, where
we have used the terminology of the Ising model. Taking the
lattice spacing as our unit of length, the total number of spins
is just the product of the linear dimensions of the system,
N = LM . In fact, when we define the magnetization m per
lattice site as

m = 1

N

N∑
i=1

Si, (11)

its thermal expectation value 〈m〉T for temperatures T <

Tcb(D) will be nonzero and positive in the considered
limit. However, a second phase transition occurs at a lower

temperature Tw(H1) for small enough absolute values |H1| of
the surface field: Note that the surface field H1 is oppositely
oriented to the positive bulk field H , but H → 0+ while H1

stays finite. Thus, near Tcb(D) the surface field stabilizes a
macroscopically thick layer of negative magnetization near
the lower boundary, where H1 < 0 acts, separated by an
interface from the bulk, where the magnetization is positive. At
Tw(H1), a transition occurs where this interface gets localized
near the lower boundary: in the extreme case, the domain
with negative magnetization disappears completely. In the
Ising model, which results from Eq. (10) as the limiting case
D → −∞, this wetting transition is second order throughout
the regime 0 < |H1| < J .

B. Critical wetting in d = 2 dimensions: A brief review

For the semi-infinite system described above, the wetting
transition is a singularity of the surface excess free energy
f (1)

s (T ; H,H1), defined from standard decomposition of the
total free energy into the bulk term and boundary terms, for
L → ∞, M → ∞,

F (T ,H,H1,HL,L,M)/(LM)=fb(T ,H ) + 1

L
f (1)

s (T ,H,H1)

+ 1

L
f (L)

s (T ,H,HL). (12)

The singular part of this boundary free energy, also called
“wall tension” or “wall excess free energy” [1,2,9–14,18],
near Tw(H1) is expected to satisfy a scaling behavior
[12,21,57,61,62] where t = 1 − T/Tw(H1) → 0,

f (1)
s,sing/kBT = |t |2−αs F̃s(H |t |−�s ). (13)

F̃s is a scaling function that we do not specify here. This is
analogous to standard scaling in the bulk near Tcb [56], where
τ = 1 − T/Tcb → 0,

fb,sing/kBT = |τ |2−αF̃b(H |τ |−�). (14)

In Eq. (14), α is the specific-heat exponent, and the
“gap exponent” � is related to the standard exponents β

of the spontaneous magnetization (〈m〉T ∝ τβ) and γ of
the susceptibility [χ = (∂〈m〉/∂H )T ] ∝ |τ |−γ via the scaling
relation � = γ + β [56]. Thus αs , �s are analogous exponents
characterizing the singular behavior of the critical wetting
transition in d = 2 dimensions.

As always when one considers a critical phenomenon,
a diverging correlation length exists. Since wetting can be
viewed as an “interface unbinding” transition [9–18] when
approached from below, it is natural to study the correlation
function C(x) describing the correlation of fluctuations of
the height of the contour �(x) separating the domain with
negative magnetization near the lower boundary from the
region with positive magnetization in the bulk. Defining δ�(x)
as δ�(x) = �(x) − 〈�〉, this yields

G(x) = 〈δ�(0)δ�(x)〉T , (15)

noting translational invariance in the x direction. By 〈· · ·〉T we
denote an average in the canonical ensemble at temperature T ;
in the following, the subscript T will be omitted. Near critical
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wetting in d = 2, G(x) takes the scaling form [61]

G(x) = x−(1+η‖)g(x/ξ‖), (16)

writing analogously to the decay of bulk correlations near
criticality, G(r) = r−(d−2+η)g(r/ξb), with η, η‖ being appro-
priate exponents describing the variation of these correlations
at large distances right at bulk criticality or critical wetting,
where ξb (or ξ‖) is infinite. For ξ‖, a scaling relation analogous
to Eq. (13) holds,

ξ‖ = t−ν‖ ξ̃‖(Ht−�s ); (17)

again this ansatz is inspired by the corresponding bulk
behavior,

ξb = τ−ν ξ̃b(H |τ |−�), (18)

and again ξ̃‖, ξ̃b are scaling functions that we do not specify
here.

We disregard here the problem that in general a nonlocal
theory [63–66] is required [40], since it does not change the
following conclusions. Capillary wave theory implies that
η‖ = 0, so there is no second independent critical exponent
as in the bulk. For a more detailed reasoning to explain
why for the case of critical wetting with short-range forces
the exponent η‖ is zero in all dimensions, and hence there
is a single independent critical exponent, we refer to the
literature [12]. Remember that using hyperscaling relations
dν = 2 − α = γ + 2β and the scaling law γ = ν(2 − η), one
can express all static critical exponents just in terms of only
two independent exponents ν and η in the bulk [56]. For
critical wetting, in d = 2, there is only one independent critical
exponent, namely [11]

ν‖ = 2, (19)

and the hyperscaling relation for interfacial phenomena in
d = 2 dimensions ν‖ = 2 − αs [12] then implies αs = 0. From
Eq. (16) we then conclude that on a length scale x, the
interface exhibits (at t = 0) a mean-square displacement also
proportional to x, while for t > 0 one concludes that on the
length scale ξ‖ the mean-square displacement in the y direction
is also proportional to ξ‖, while for x � ξ‖ the correlation
G(x) → 0. This leads to the conclusion that the correlation
length ξ⊥ describing the fluctuations of the interface in the y

direction scales as

ξ 2
⊥ ∝ ξ‖, ξ⊥ ∝ t−ν⊥(for H = 0), ν⊥ = 1. (20)

Noting from Eq. (13) that surface excess magnetization ms

and surface excess susceptibility χs follow from derivatives
with respect to the field

ms = −∂f (1)
s (T ,H,H1)/∂H |T ,H1 , (21)

χs = −[
∂2f (1)

s (T ,H,H1)/∂H 2
]
T ,H1

, (22)

we conclude that these quantities have the singularities

ms ∝ t2−αs−�s , ms ∝ tβs , (23)

and

χs ∝ t2−αs−2�s , χs ∝ t−γs . (24)

Using then the consideration that this excess susceptibility
is just caused by displacements of the interface between the

domain of negative magnetization at the boundary and the
bulk, one can use Eq. (16) to deduce a further scaling relation
between �s, ν‖, and η‖, namely [12]

�s = (ν‖/2)[(d − 1) + 2 − η‖] = 3 (d = 2). (25)

Also the excess magnetization ms is obviously simply
related to 〈�〉, and we have, in d = 2,

ms ∝ 〈�〉 ∝ t−1 ∝ ξ⊥. (26)

Thus, near critical wetting in d = 2, the typical mean
distance of the interface from the wall and the typical
excursions of this interface from its mean are of the same
order, ν⊥ = −βs = 1.

C. Finite-size scaling: Wetting versus bulk transitions

All of the above relations referred to the case in which
we considered the limits M → ∞ and L → ∞ first, and
then the limits H → 0, t → 0 near the wetting transition.
While such an approach is natural in the context of analytic
theories [10–12], it it not sufficient to understand simulations
in which we wish to take these limits in reverse order. When L

is kept large but finite, it is clear that for temperatures above the
wetting transition and H = 0, there is no physical distinction
between the domain with negative magnetization in the lower
half of the system and the domain with positive magnetization
in the upper half: Previously, for the semi-infinite case, the
positive magnetization in the bulk was singled out by taking
the limit H → 0+ first, and then the positive boundary field
HL for L → ∞ was irrelevant, while for L finite it is critical
to maintain the symmetry of the situation with respect to
the sign of the magnetization for H = 0. As a consequence,
we conclude that for the present situation, there is no bulk
magnetization to consider, rather it is the total magnetization
of the system or, strictly speaking, its absolute value that
undergoes a transition from zero to a nonzero value when we
cross the wetting transition temperature, and we extrapolate
simulation results toward L → ∞.

As a consequence of this consideration, we propose a
scaling assumption for the distribution function PL,M (m) of the
total magnetization in this finite geometry as follows [67,68]:

PL,M (m) = ξ
β/ν‖
‖ P̃ (Lν‖/ν⊥/M,M/ξ‖,mξ

β/ν‖
‖ ). (27)

Note that this expression generalizes the standard expression
for finite-size scaling in isotropic systems that have linear
dimension L in all spatial directions [69], as appropriate for
phase transitions in the bulk,

PL(m) = ξ
β/ν

b P̃b

(
L/ξb,mξ

β/ν

b

)
, (28)

to systems with anisotropic linear dimensions L,M and
anisotropic correlation length exponents ν‖, ν⊥. While for
isotropic critical phenomena an anisotropic system shape
would lead to a dependence simply on the “aspect ratio” L/M

of the system, the fact that M scales with ξ‖ and L scales with
ξ⊥ can be used to demonstrate [67,68] that the L dependence
enters via “the generalized aspect ratio” Lν‖/νT /M in the
scaling function, Eq. (27). With ν‖ = 2, ν⊥ = 1, we simply
have an argument L2/M , which needs to be kept constant
when the variation with M is studied. Such generalizations of
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finite-size scaling to anisotropic criticality have been discussed
earlier for the Kasteleyn transition [70,71], which also exhibits
ν‖ = 2ν⊥, and hence the same generalized aspect ratio L2/M

applies. The prefactor ξ
β/ν‖
‖ in Eq. (27), and likewise the

prefactor ξ
β/ν

b in Eq. (28), ensures that the probability PL,M (m)
can be properly normalized,

∫ +1

−1
PL,M (m)dm = 1. (29)

Taking now suitable moments of PL,M (m), analogous to the
procedure at isotropic phase transitions in the bulk [69,72], we
obtain

〈|m|〉 =
∫ +1

−1
dm|m|PL,M (m)

= ξ
−β/ν‖
‖ m̃(Lν‖/ν⊥/M,M/ξ‖), (30)

〈m2k〉 = ξ
−2kβ/ν‖
‖ m̃2k(Lν‖/ν⊥/M,M/ξ‖), k = 1,2, . . . (31)

In particular, from Eqs. (30) and (31) we derive the standard
behavior for the “susceptibility.” We denote it by χ ′ since
〈|m|〉2 rather than 〈m〉2 is subtracted; see Ref. [72] for a
discussion. So, one has

kBT χ ′ = LM(〈m2〉 − 〈|m|〉2) (32)

and hence

kBT χ ′ = LMξ
−2β/ν‖
‖ χ̃ (Lν‖/ν⊥/M,M/ξ‖) (33)

with the scaling function χ̃ ≡ m̃2 − (m̃)2, omitting all argu-
ments for simplicity.

Now the key task is to identify the “order parameter
exponent” β in the context of this description of a critical
wetting transition. For this purpose, we note that the singular
behavior of χ ′ can only be due to the singular behavior of
χs ∝ t−4, Eq. (24), where we used the results αs = 0, �s = 3.
A key point to note is that χ ′ was normalized per spin, relating
to the total volume LM , while χs in Eq. (24) is taken relative
to boundary sites, so it is only normalized by M . Hence we
conclude that at Tw, we have, using L2/M = c in Eq. (33) to
eliminate L,

kBT χ ′ ∝ √
cM3/2−2β/ν‖ , (34)

irrespective of how the finite constant c is chosen. Writing then

kBT χ ′|Tw
= kBT χs/L = kBT χsM

−1/2c−1/2 (35)

and using a finite-size scaling relation for χs ,

χs = t−4χ̃ (M/ξ‖) ∝ ξ 2
‖ χ̃ (M/ξ‖) ∝ M2, T = Tw, (36)

and hence we find

kBT χ ′|Tw
∝ M3/2(∝ L3). (37)

Comparison of Eqs. (34) and (37) yields a central result of
this section, namely

β = 0, (38)

FIG. 1. Schematic description of the system geometry and its
state slightly below the wetting transition temperature Tw(H1) such
that both ξ‖ and ξ⊥ are much larger than the lattice spacing. Coarse-
graining the local magnetization on a length scale intermediate
between the lattice spacing and ξ⊥, one is left with one coarse-
grained contour (the interface) separating the domain with positive
magnetization, which was assumed to be the majority domain in the
figure, without loss of generality, so the interface is still bound to the
lower wall, from the domain with negative magnetization. The sign
of the magnetization of the domains is indicated by double arrows.
Note that ξ‖ ∝ ξ 2

⊥, and the mean distance of the interface from the
nearest boundary is also of the same order as ξ⊥. The choice of linear
dimensions L,M and of the periodic boundary conditions in the x

direction (p.b.c.) is indicated.

and Eq. (37) can also be interpreted in terms of the standard
finite-size scaling result,

kBT χ ′|Tw
∝ Mγ/ν‖ , γ = 3. (39)

Second-order transitions with an exponent β = 0 are rather
unusual; for another recent example, see Jaubert et al. [73].
In the present case, we can also understand it from the fact
that 〈|m|〉 must tend to mb in the thermodynamic limit in the

0.5 1 1.5
k

B
T/J

0

1

2

D
/J

(ord)

(dis)

FIG. 2. (Color online) Monte Carlo estimates for the locations
of the phase boundary of the two-dimensional Blume-Capel model,
in the plane of variables kBT /J (abscissa) and D/J (ordinate). Full
squares denote first-order transitions, the full diamond denotes the
tricritical point (kBTt/J ≈ 0.609, Dt/J ≈ 1.965), and full circles
denote second-order transitions. Broken straight lines connecting
these points are guides to the eye only. The ordered ferromagnetic
phase (ord) occurs below the line and the disordered phase (dis)
occurs above it, as indicated. Note that the standard two-dimensional
Ising model results in the limit where D/J tends to minus infinity, so
its transition is beyond the scale of the diagram.
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partially wet phase, where the interface is bound to one of the
walls up to the transition point, while in the wet phase for the
considered limit 〈|m|〉 = 0. It is interesting to note that these
critical exponents also satisfy the usual scaling relation with
the gap exponent �s introduced in Eq. (13),

γ + β = �s = 3, (40)

as well as the hyperscaling relation for anisotropic bulk critical
phenomena in d = 2 dimensions,

ν‖ + ν⊥ = 2β + γ = 3. (41)

One should not confuse the exponent β of the total magne-
tization, resulting in the limit L → ∞, M → ∞, L2/M = c,
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FIG. 3. (Color online) Plots of the average absolute value of the
magnetization 〈|m|〉 (a), the magnetization square (b), and the cumu-
lant (c) vs temperature, for the choice D/J = −∞, H1/J = 0.70,
thus all data shown refer to the standard two-dimensional Ising model.
The vertical lines indicate the exactly known [19] location of the
wetting transition temperature. Curves connecting points are drawn
as guides to the eye (also in Figs. 4 and 5).

with the exponent βs of the surface excess magnetization ms

defined in Eq. (23): while 〈m〉 → 0 as t → 0, ms diverges as
t → 0. Actually, we have the standard scaling relations [47]

βs = β − ν⊥, γs = γ + ν⊥, αs = α + ν⊥ (42)

with α = −1, as is easily checked by noting that γ + 2β =
2 − α = 3.

A short manipulation of Eq. (33) shows that it can be
rewritten as

kBT χ ′ = Lγ/ν⊥ ˜̃χ (Lν‖/ν⊥/M,L/ξ⊥), (43)

where ˜̃χ is another scaling function. For a fixed generalized
aspect ratio Lν‖/νT /M(=c), this function has a maximum at
the same value Xmax of the argument X ≡ L/ξ⊥. This implies
that the height of the maximum scales as kBT χ

′
max = Lγ/ν⊥

(=L3 in the present case), see also Eq. (37), and its position
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FIG. 4. (Color online) Same as Fig. 3, but for D/J = 0.0,
H1/J = 0.55. From the intersection points, one can conclude
kBTw(H1)/J = 1.393 ± 0.004, where the error bar merely reflects
the scattering of the intersection points of the measured observables.
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Tmax scales as

T/Tmax − 1 ∝ L−1/ν⊥ (=L−1). (44)

Incidentally, this extrapolation has already tentatively been
used in an early work [27] without detailed justification.

The interpretation of the wetting transition in analogy
to bulk critical phenomena, considering a particular way of
taking the thermodynamic limit [cf. Fig. 1], is reminiscent
of studies of filling transitions in double wedge [74,75] or
bipyramid [76,77] geometries; however, there the critical
exponents are different. A useful consequence of Eq. (38) is
that both 〈|m|〉 and 〈m2k〉 right at the critical wetting transition
become completely independent of linear dimensions, but still
depend on the constant c = L2/M , the generalized aspect
ratio. Plotting 〈|m|〉 versus temperature for different choices
of M at constant c, critical wetting should show up via a
unique intersection point. The fact that for wetting transitions
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FIG. 5. (Color online) Same as Fig. 3, but for D/J = 1.75,
H1/J = 0.85. From the intersection points, one can conclude
kBTw(H1)/J = 0.538 ± 0.004, where the error bar merely reflects
the scattering of the intersection points of the measured observables.

in d = 2 for the choice M/L2 = const a unique intersection
point of 〈|m|〉 versus T curves occurs has only been noted
previously [78] in a study where long-range boundary fields
were applied, where ν‖ = ∞ holds [78], and hence the critical
behavior is rather anomalous. Figure 1 shows a schematic
sketch where the typical excursion ξ⊥ of the interface is still
smaller than L by a factor of about 2.5, and similarly ξ‖ is
smaller than M . The absolute value 〈|m|〉 of the magnetization
then is still of the same order as the bulk magnetization mb

that one encounters inside of the domains. The distribution of
m then is distinctly bimodal, and 〈m〉 = 0, since the interface
is bound to the upper wall with the same probability as the
lower wall. However, when T approaches Tw, the attractive
force between the wall and the interface is compensated by the
entropic repulsion, the excursions of the interface extend over
the whole width L, and a correlation then appears over a lateral
length M ∝ L2. This interface configuration at Tw(H1) then is
self-similar, irrespective of how large L is chosen, as expected
for critical phenomena. Thus, the result β = 0 must not be
confused with a first-order wetting transition, where one would
have a discontinuous change from a bound to an unbound state
of the interface, rather than this continuous unbinding.

Of course, it is of interest to ask how the behavior changes
when one does not take the thermodynamic limit in this
particular way where the generalized aspect ratio L2/M is
fixed, but rather chooses one of the linear dimensions large
but finite, and varying only the magnitude of the other linear
dimension. Thus, if L is kept fixed and one considers the
limit M → ∞, the system becomes quasi-one-dimensional.

FIG. 6. (Color online) Snapshot pictures of the spin configuration
of the Blume-Capel model at D/J = 1.5 and H1/J = 0.7 for
(L,M) = (18,288) at three temperatures: kBT /J = 0.445 (left),
0.481 (middle), and 0.518 (right). The sites where Si = −1 are shown
in black, the sites where Si = 0 are shown in gray (red), while sites
with Si = +1 are left blank. Note that the case kBT /J = 0.481 is
close to the wetting transition.
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While mean-field theory would predict a sharp interface
localization-delocalization transition in this limit [30], one
expects that thermal fluctuations cause a rounding of this
transition since the system is equivalent to a one-dimensional
Ising system [30], and this expectation has in fact been verified
numerically [79]. If instead we keep M finite and increase L,
the growth of ξ‖ would be limited by the magnitude of M ,
and hence also ξ⊥ as well as the distance of the interface from
one of the walls in the bound state would be limited by a
value proportional to

√
M , irrespective of L, while in the wet

state its equilibrium position is at L/2. As a consequence, data
taken in such a way would appear as if the wetting transition
were weakly of first order, which it is not. Thus, we conclude
that only the finite-size scaling analysis at constant generalized
aspect ratio L2/M = const is the most useful choice.

D. Comments on the simulation parameters

In most of the numerical work, we have chosen a particular
value of this generalized aspect ratio, namely

L2/M = c = 9/8. (45)

Of course, the value of the constant c in principle is arbitrary,
and the results on the location of Tw(H1) and the critical expo-
nents should not depend on this choice. Our motivation for this
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FIG. 7. (Color online) (a) Extrapolation of the peak position
kBTmax/J vs 1/L [see Eq. (44)] for the case D/J = −∞,H1/J =
0.7. The full square indicates the exactly known [19] location of the
wetting transition temperature, and the dashed line has been drawn
in order to guide the eye. Note that L2/M = 9/8 [Eq. (45)] is chosen
throughout. (b) Linear-linear plot of kBT χmax vs L3 for the same
choice as used in (a) to demonstrate the power law kBT χmax ∝ L3 or
(M3/2); see Eq. (37).

choice was simply that it yields solutions for L and M which
are both integer, as it must be on the lattice, and rather small:
(L,M) = (6,32); (12,128); (18,288); (24,512); (30,800); and
(36,1152). However, the effect of considering other choices
of c will be discussed below.

Monte Carlo simulations were then performed using the
standard METROPOLIS algorithm; see, e.g., [72] for a review.
Typical runs are performed over a length of 107 Monte Carlo
steps per lattice site (MCS), disregarding the first 2 × 106 MCS
to allow the system to reach equilibrium. Note that for systems
far below bulk criticality exposed to boundary fields, cluster
algorithms do not present any advantage [44].

In addition, part of the bulk phase diagram of the Blume-
Capel model has been calculated by applying again standard
Monte Carlo methods [72] but using finite-size scaling for
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FIG. 8. (Color online) Scaling plot of 〈|m|〉T (a), 〈m2〉 (b), and U

(c) vs t
√

M for the same case D/J = −∞, H1/J = 0.7, and various
choices of L (for L2/M = 9/8) as indicated in the figure. The vertical
line is a reminder that in this case the transition point t = 0 is known
exactly.
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L × L lattices with periodic boundary conditions in both x and
y directions; see Fig. 2. For earlier studies, see, e.g., [80,81].

III. MONTE CARLO RESULTS
ON THE WETTING BEHAVIOR

Motivated by the analysis of Sec. II, we have analyzed the
first two moments 〈|m|〉, 〈m2〉 and the cumulant [69,72]

U (T ) = 1 − 〈m4〉/[3〈m2〉2] (46)

of the magnetization distribution and plot them versus tem-
perature T for a few typical values of D/J , as shown in
Figs. 3–5. As expected, rather well-defined intersection points
in all three quantities 〈|m|〉, 〈m2〉, and U (T ) can be found
at the same estimate kBTw(H1)/J within reasonably small
errors. As always [69,72], the statistical accuracy is better
for 〈|m|〉 and 〈m2〉 than for the cumulant. For standard phase
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FIG. 9. (Color online) Same as Fig. 8 but for the case D/J =
1.75, H1/J = 0.85. The transition point t = 0 was determined in
Fig. 5.

transitions in the bulk [72], 〈|m|〉 and 〈m2〉 would not exhibit
“universal,” size-independent, intersection points, of course.
So, the behavior seen in Figs. 3–5 is clear evidence for the
scaling description of Sec. II. In addition, the direct observation
of configuration snapshots, see, e.g., Fig. 6, is compatible with
the qualitative picture that was developed (Fig. 1). Note that
in the wet phase, the average position of the interface is in the
middle of the L × M strip, in between the rows y = L/2 and
y = 1 + L/2, for L even as chosen here; but due to capillary
waves on the scale M in the x direction, the interface makes
excursions of order

√
M in the y direction, which are of the

order of L/2, for our choice of geometry Eq. (45).
On the other hand, in the case shown for D = −∞, i.e., the

Ising limit of the Blume-Capel model [Fig. 3], the location
of the wetting transition is exactly known [18], Eq. (2),
and highlighted by a vertical straight line. Evidently, the
intersection of the curves in Fig. 3 occurs at a temperature
compatible with this prediction.

We do expect that the critical wetting transition of the
Blume-Capel model falls in the same universality class as
that for the Ising model. Thus, for the same choice of the
generalized aspect ratio c, Eq. (45), we expect the same
ordinate values of the intersection points of 〈|m|〉, 〈m2〉,
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FIG. 10. (Color online) (a) Plots of PL,M (m) vs m as obtained for
various choices of L and M , as indicated, but keeping L2/M = 9/8
[Eq. (45)] and for the case D = −∞. Data obtained for H1/J =
0.70 and the exactly known [19] location of the wetting transition
temperature, namely kBTw(H1)/J � 1.6111. (b) As in (a) but for
the case D/J = 1.50 and H1/J = 0.70. The best data collapse of
the data is obtained for kBTw(H1)/J = 0.792, in agreement with the
intersection points of the quantities 〈|m|〉T , 〈m2〉T , and U (T ), which
are not shown here for the sake of space.
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and U (T ), respectively. Within our accuracy, the data are
compatible with this expectation.

Figure 7 displays an analysis of the scaling of the peak
heights and peak locations of the susceptibility kBT χ ′,
cf. Eqs. (37) and (44), respectively. Also, Figs. 8 and 9 present
some examples for the “data collapse” on master curves when
〈|m|〉, 〈m2〉, and U are plotted as a function of t

√
M as a

test of Eq. (30), 〈|m|〉 = m̃(L2/M , Mt2ξ̂−1
‖ ), where we used

the asymptotic power law for ξ‖, ξ‖ = ξ̂‖t−ν‖ = ξ̂‖t−2. One
sees that a fair amount of data collapse does in fact occur,
although deviations due to both statistical errors and systematic
effects are present, when M and/or ξ‖ are not large enough or
when data too far away from Tw(H1) are included. Of course
Figs. 7–9 are only examples, but they are representative of the
general pattern of behavior. In any case, we do conclude that
by using finite-size scaling analyses such as those presented
here, one can locate wetting transitions for two-dimensional
lattice models, such as the Blume-Capel model on the square
lattice, with reasonable accuracy.

In view of the well-defined intersection points and the data
collapse in all three quantities 〈|m|〉, 〈m2〉, and U (T ) studied so
far (Figs. 3–5, 8 and 9, respectively), it is worthwhile to analyze
the scaling behavior of the distribution function PL,M (m)
of the total magnetization given by Eq. (27). In fact, since
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FIG. 11. (Color online) (a) Plots of PL,M (m) vs m as obtained for
L = 30 and various choices of M in order to scan a wide range of the
generalized aspect ratio c = L2/M , as indicated. Data obtained for
D/J = −∞, H1/J = 0.70, and the exactly known [19] location of
the wetting transition temperature, namely kBTw(H1)/J � 1.6111.
(b) Intersection points of the quantities 〈|m|〉, 〈m2〉, and U (T ) vs the
sample-generalized aspect ratio c = L2/M as obtained for the same
parameters as in (a). The dashed lines showing a linear extrapolation
to c = 0 have been drawn for the sake of comparison.

one has β = 0, the prefactor and the third scaling argument
are constants. Also, just at kBTw(H1)/J (i.e., t = 0) the
second scaling argument vanishes due to the divergence of the
correlation length ξ‖, so that the distribution function depends
on the generalized aspect ratio c = Lν‖/ν⊥/M , Eq. (45), of the
sample only. Figures 10(a) and 10(b) show plots of PL,M (m)
versus m as obtained by keeping c = 9/8 and for the cases
D/J = −∞ and 1.50, respectively. It might be expected that
the curves of the probability distribution would be independent
of D, except for normalization corrections due to the different
density of vacancies. Since we found that the shape of the
probability distribution depends sensitively on T , it could be
that the qualitative differences between the curves shown in
Figs. 10(a) and 10(b) would be due to the uncertainties in the
location of kBTw(H1)/J for the case D/J = 1.50.

On the other hand, by keeping the temperature, the crystal
field, and the surface magnetic field just at the wetting
transition point, we have measured the dependence of PL,M (m)
on the generalized aspect ratio, for the Ising model, as shown
in Fig. 11(a). In that figure, we choose L = 30 while M

is varied. We recall the nontrivial shapes of the probability
distributions that exhibit a single peak around m = 0 for
rather elongated samples (i.e., c � 0.75), which monotonically
crosses over to a bimodal distribution in the limit of more
“cubic” samples (i.e., c � 1.80). Also, the generalized aspect
ratio selected for our detailed Monte Carlo simulations
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FIG. 12. (Color online) (a) Plot of H1c(T )/J , the inverse function
of kBTw(H1)/J , vs temperature for a range of values of D/J ,
as indicated in the figure. (b) Plot of H1c(T )/J vs [kBTcb(D)/
J − kBT /J ]1/2 for a range of value D/J to show that the exponent
�1 = 1/2, irrespective of D/J , in the region of the second-order
transition. In both cases (a) and (b), the full line corresponds to the
exact solution for the case D/J = −∞ given by Eq. (2) [19].
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FIG. 13. (Color online) Plot of H1c(T )/J vs D/J for the
tricritical temperature (kBT /J = 0.609) and three temperatures in
the region of kBT /J where the transition in the bulk clearly is first
order, kBT /J = 0.3045, 0.406, and 0.500, respectively, as indicated.
Also, two sets of data corresponding to the range of kBT /J where the
transition in the bulk clearly is second order, kBT /J = 0.8000 and
1.00, respectively, are shown as indicated. Note that dashed-straight
lines connecting the points are drawn as a guide to the eye only.

(c = 9/8), which can roughly be located within the crossover
regime, exhibits not only the central peak but also the onset of
growth of lateral shoulders close to m � ±0.60. By using the
distributions already shown in Fig. 11(a), we can also measure
the dependence of the crossing points on the generalized aspect
ratio of the sample [Fig. 11(b)]. From this plot it follows that
the suitable range of c in order to obtain a reliable intersection
point for both 〈|m|〉 and U (T ) in Monte Carlo simulations
is rather narrow, say 0.75 � c � 2, and slightly broader for
the case of 〈m2〉. In order to be able to locate intersections
with reasonable accuracy, it is advisable that the cumulant
intersection is neither close to zero nor close to its maximum
value (2/3). It is also reassuring to see that for no shape,
the distribution at the wetting transition resembles the shape
expected for a first-order wetting transition, which would be
three δ functions at zero and positive and negative spontaneous
magnetization in the thermodynamic limit, and a distribution
with three peaks of approximately Gaussian shape in a large
but finite system.

The location of the wetting transitions as a function of
two parameters, H1/J and D/J , by determining well-defined
intersection points still requires extensive computations and
hence is a challenging task; see Figs. 12 and 13. Since H1c(J ) at
kBTt/J = 0.609 decreases only rather slowly with increasing
D when one approaches Dt , it is obviously very difficult to
estimate the exponent �1t [Eq. (4)] numerically. In mean-
field theory, which is supposed to be exact for d � 4, we
know that �1 = 1/2 and �1t = 1/4 [47,52,82], while in d = 3
dimensions, numerical estimates yielded [26] �1 ≈ 0.45, and
we know that in d = 2, �1 = 1/2 again. So, we see that the
exponent �1 never deviates much from its mean-field value,
if at all. If we speculate that the same observation is true for
�1t , we would expect that the data in Fig. 13 for T = Tt vary
as (1 − D/Dt )1/4, which is not unreasonable.

We also see that in the region where the transition in the
bulk is first order, the wetting transition lines H1c(D) indeed
end at nonzero values H ∗

1c(D) at the bulk transition line, and
these values decrease as one approaches the tricritical point,

FIG. 14. Schematic description of the wetting behavior of the
two-dimensional Blume-Capel model in the space of variables H1,
D, and T . Complete wetting occurs above the surface of the critical
wetting transition, which ends at H1 = 0 when the bulk transition is
continuous, and at the line H ∗

1c(T ) in the region beyond the tricritical
point (Dt,Tt ), where the transition in the bulk is of first order.

qualitatively compatible with Eq. (6). Thus, we can sketch the
global wetting behavior as shown schematically in Fig. 14;
however, it would be premature to attempt to estimate the
exponent ς : our data are clearly too limited for this purpose,
and we have not tried to extend our study, since we feel
the incomplete knowledge of the precise location of the bulk
tricritical point [80,81] would hamper such a study.

As a final problem, we consider the enrichment of vacancies
at the interface between oppositely magnetized domains in the
Blume-Capel model. This problem was considered earlier by
Selke et al. [58–60] for the case of free unbound interfaces,
while here we consider the extension where the interfaces
are confined between competing walls and may undergo a
wetting (interface unbinding) transition. Figure 15 shows plots
of the profiles of the vacancy density (a) and the magnetization
(b) for a situation of incomplete wetting. One observes a
clear enrichment of the vacancies in the interfacial region.
The more the interface unbinds from the wall, the more the
peak of the vacancy concentration moves away from the wall
[Figs. 15(a) and 15(b)]. Note that for the low temperature
shown, the magnetization in the bulk tends to 〈m〉 = −1, i.e.,
the vacancy concentration inside the bulk is very small.

Close to the wetting transition, the interface gets detached
from the wall, and then the interface is located in the middle
of the strip, at z = (L + 1)/2 on average. However, since
the interface fluctuates strongly around its average position,
a straightforward measurement of the vacancy concentration
profile would yield an almost horizontal flat curve across
the strip. So, we have defined a local coarse-graining of
the interface, taking segments of length �x = 8 in the x

direction, and determining the local center of mass z = �̃(x)
of the interface in each segment. We compute the vacancy
distribution in each segment separately, relative to the center
in each segment, and superpose the distributions from the
individual segments such that their centers coincide. In this
way, one obtains vacancy profiles with a clear peak in the center
of the strip in the wet phase [Fig. 15(c)]. Finally, when one
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FIG. 15. (Color online) Vacancy concentration profiles (a,c,d)
and the magnetization profiles (b) plotted as a function of the distance
from the wall on which the positive surface field acts, in the case
in which the majority of the thin strip is in a state of negative
magnetization in cases (a) and (b). Data refer to the lattice with
linear dimensions (L,M) = (24,288) and the reduced temperature
kBT /J = 0.406, surface field |H1|/J = 0.91, and several choices of
the parameter D/J , as indicated.

reaches the phase boundary of the bulk, the disordered phase
takes over in the film, and the vacancy concentration becomes
(almost) unity in the system, except near the boundaries,
where the surface fields still stabilize layers of up-spins and
down-spins, respectively [Fig. 15(d)]. Note, of course, that the
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FIG. 16. (Color online) Total concentration of vacancies in the
system (a) and its fluctuation (b) plotted vs D/J for kBT /J = 0.406
and several choices of the surface field h = |H1|/J , as indicated.
Part (b) includes also the fluctuation of the magnetization m for
comparison. The linear dimensions of the system were again chosen
as (L,M) = (24,288).
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FIG. 17. (Color online) Typical snapshot pictures of the spin con-
figurations obtained for kBT /J = 0.406, |H1|/J = 0.91, and three
values of D/J : D/J = 1.80 (left panel, refers to an incompletely
wet state), 1.90 (medium panel, wet phase), and 2.02 (right panel,
disordered phase beyond the first-order transition of the bulk). Sites
i with Si = 1 are shown by black dots, sites i with Si = 0 are shown
as gray (red) dots, sites i with Si = −1 are left blank.

details of the curves in Figs. 15(c) and 15(d) do depend on this
coarse-graining length �x distinctly.

This ambiguity that results depend on the coarse-graining
is avoided when one simply computes the average fraction
of vacancies in the system [Fig. 16]. While for |H1| chosen
such that the system is in the incompletely wet state up to the
transition in the bulk one sees also a clear jump in the vacancy
concentration from a small value to almost unity when this
transition in the bulk occurs, a much more rounded behavior is
found when wetting at the boundaries occurs. The difference
between incompletely wet states and completely wet states is
even more pronounced when one studies the magnetization
fluctuation: for wet states, this fluctuation is very large for
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FIG. 18. (Color online) Log-log plot of the excess density
of the vacancies versus (Dcoex − D)/J at kBT /J = 0.406 (where
Dcoex/J = 1.996) and different values of the surface field h = H1/J .
Broken lines show the theoretical slopes 1/3 (expected in the first-
order region far off from the tricritical point) and 4/9 (expected
at the tricritical point); see also Eq. (9). Chosen lattice size was
(L,M) = (201,400).
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almost all values of D until the transition in the bulk is reached
[Fig. 16(b)]. This behavior is corroborated by an examination
of snapshot pictures [Fig. 17].

Finally, Fig. 18 shows an attempt to study the divergence of
the interfacial adsorption, which we expect when we approach
the bulk transition in the wet phase in the region where a first-
order transition occurs. However, it is seen that the effective
slope of these data changes slightly when the transition is
approached, and also depends on |H1|/J . As a consequence,
we must conclude that the asymptotic region where a universal
exponent could be estimated has not been reached. In view of
the strong and slow fluctuations of the interface, it is not clear
how to cope with this problem.

IV. CONCLUSIONS

In this paper, we have presented a Monte Carlo study of the
wetting behavior of the two-dimensional Blume-Capel model,
mapping out the surface critical field H1w(T ,D) where critical
wetting occurs for a broad range of parameters T and D,
both in the region where the transition of the Blume-Capel
model in the bulk is of second order [cf. Fig. 12] and where
it is of first order [cf. Fig. 13]. We suggest that H1c(T ,D)
behaves as H1c(T ,D) ∝ [Tcb(D) − T ]1/2 for all D < Dt and
H1c[T → Tcb(D)] = H ∗

1c(D) for D > Dt , and we propose a
qualitative phase diagram in the parameter space of the three
variables surface field (H1), temperature (T ), and “crystal
field” (D), as sketched in Fig. 14. Thus, we present evidence for
the universality of the surface critical exponent �1 along the
critical line of the Blume-Capel model. However, the precise
crossover behavior in the immediate vicinity of the tricritical
point (Dt,Tcb(Dt )) could not yet been studied: first of all, the
location of this point needs to be more accurately determined,
and also more powerful numerical methods (rather than the
straightforward Monte Carlo simulation method just using the
METROPOLIS algorithm) would be required.

For the task that we did achieve, we encountered the
necessity to reconsider the finite-size scaling approach to the
study of wetting transitions; see Sec. II. We propose that by
using a procedure in which the linear dimensions L,M of the
L × M strip are varied such that the generalized aspect ratio
c = L2/M is kept constant, cf. Eq. (45), it is possible to analyze
the data in full analogy to the study of a bulk phase transition,
where one uses antisymmetric surface fields (H1 = −HL).

Then, the total magnetization m in the system simply acts
like an order parameter, but the appropriate critical exponent
is β = 0. Using the exactly known results for the Ising model
in the square lattice, which is the limit of the Blume-Capel
model for D → ∞, as a test case, our finite-size scaling
approach is verified nicely. Note that H1c(T ,D → ∞), and the
critical exponents ν‖ = 2, ν⊥ = 1, �s = 3, αs = 0, βs = −1,
and γs = 4 for critical wetting are known. Then, we propose
the corresponding exponents when one treats the transition not
as a surface free-energy singularity of the semi-infinite system
in the limit where the bulk field H tends to zero, but as a
bulk singularity of the L × M system for H → 0 in the limit
L → ∞, L2/M = c = const. These exponents are α = −1,
β = 0, and γ = 3. We have shown that these exponents satisfy
all expected scaling relations and we have verified them from
our simulations. Use of this formulation of finite-size scaling
for critical wetting in d = 2 dimensions is a convenient and
useful tool; it would be interesting to study the extension of
this method to d = 3 dimensions where ν⊥ = 0 (logarithmic
growth), and this extreme shape anisotropy that our method
then requires makes the task obviously very much harder.

Since the Blume-Capel model differs from the Ising model
by the presence of vacancies as a third component, it is
interesting to ask to what extent vacancies get enriched at the
interfaces in this situation of interfaces confined by walls. We
found that the situation is fully analogous to interfaces between
coexisting phases in the bulk: in the second-order region,
the interfacial adsorption is finite, while in the first-order
region the predicted divergence of interfacial adsorption is
found.

Of course, there are many cases in which by changing a
parameter, the order of a phase transition in the bulk changes
from second to first order, and one can ask how wetting
phenomena are affected. We hope that the present work will
stimulate further theoretical and experimental studies along
such lines.
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