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Analytical model for three-dimensional Mercedes-Benz water molecules
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We developed a statistical model which describes the thermal and volumetric properties of water-like molecules.
A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule
interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-
bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a
two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat
capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure.
We found that the volumetric and thermal properties follow the same trends with temperature as in real water
and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum
in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature.
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I. INTRODUCTION

The structure and thermodynamics of water and aqueous
solutions are of great importance for chemistry and biol-
ogy. There is a long and rich history of modeling pure
water, including Röntgen’s two-density model [1], Pople’s
model of the bending of hydrogen bonds in a tetrahedral
lattice [2], lattice and cluster models [3–13], treatments of
water’s unusual density behavior using double-well spherically
symmetric potentials [14–17], treatments that begin with
water’s pair-correlation function or experimentally measured
moments of distribution functions in place of a molecular
potential [18–20]. In addition, there have been many computer
simulations [21–23] including those based on multipoint
classical force-field models such as simple point charge (SPC)
and transferable intermolecular potential (TIP) [24–28], or
polarizable versions of them [29–32], as well as quantum
mechanical treatments [33–35].

Despite significant work and progress in this area, the
properties of water are still not well understood. Water is
difficult to model because it forms hydrogen bonds, which can
be described by orientation-dependent interactions. These in-
teractions are coupled to each other rigidly and sterically (i.e.,
when a water molecule rotates, moving one hydrogen bonding
arm, it rigidly moves all the other hydrogen bonding arms).
This rigid internal orientational coupling of interactions leads
to complex angular effects that are multibody and nonlocal (a
water molecule connects with other waters through networks,
causing orientational correlations out to third and more distant
neighbors), and such effects have been notoriously hard to
treat. Water is often studied by computer simulations, but they
are time expensive. It is difficult to explore waters entropies
or heat capacities or effects of pressure, or water’s pressure-
temperature phase diagram using quantum-mechanical or
atomically detailed computer simulations [36–38] because of
the large amount of computational sampling required.

The aim of this work is to extend a statistical mechanical
model we developed for a two-dimensional (2D) Mercedes-
Benz (MB) model [39] to three dimensions (3D). A previous
version of the model dates back to the early 1970s [40–43].
Recently, 3D Ben-Naim model was reinvented by Bizjak
et al. [44,45] and Dias et al. [46,47] and studied using

computer simulations [44–47] and integral equation theory
[45]. According to 3D MB model, each water molecule
is a Lennard-Jones’ (LJ) sphere with four arms, oriented
tetrahedrally to mimic the formation of hydrogen bonds. Urbic
and Dill’s (UD) model is directly descendant from a treatment
of Truskett and Dill (TD), who developed a nearly analytical
version of the 2D MB model [48–50].

There exist also models which are extensions of the van
der Waals equation with two microscopic states: hydrogen-
bonded states (low-density water) and van der Waals states
(high-density water) like the model by Poole et al. [51].
There is another group of lattice models [3,52,53] where
water is presented as a lattice fluid in which bond formation
depends strongly on molecular orientations and local density.
These models are able to qualitatively reproduce the known
thermodynamic behavior of water including the behavior
of supercooled water and describe how the predictions of
lattice-gas models are relevant to understanding liquid and
amorphous solid water, but it is more difficult to use it for
description of solvation effects. This model of MB water can
be used to describe the effect of solvation as recently done for
the two-dimensional MB model [54].

The construction of this article is as follows: after the above-
given introduction, we show the extension of UD theory of
water to 3D in Sec. II. Theoretical and simulation results are
reported, compared, and discussed in Sec. III. The last section
highlights the main conclusions of this work.

II. THEORY

We consider a system of 3D MB model water molecules,
modeled as three-dimensional spheres. In the theory, we
suppose that the structure of the liquid state of 3D model
water is a perturbation from an underlying hexagonal (ice)
lattice. Each molecule is located nearest to one particular grid
point, and no two waters are assigned to the same point.
For the purpose of keeping track of the state of interaction
of all hydrogen bonding arms of each water molecule, we
use as a bookkeeping tool an underlying ice lattice (see
Fig. 1). We focus on a single water molecule on the grid
and the interaction of that water with its neighbor. Each
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Clockwise-like neighbourTest water

FIG. 1. Lattice of the model showing both the hexagon of the
ice-like structure and a pair interaction used for bookkeeping to avoid
triple counting. Presented is only one layer.

molecule can be in one of three possible orientational states
relative to its clockwise-like positioned neighbor on the lattice:
(i) a water can be hydrogen-bonded, (ii) it can be in van
der Waals contact, or (iii) it can have no interaction at all.
These states are graphically presented in Fig. 2. First we
compute the isothermal-isobaric statistical weights, �i , of the
states as a functions of temperature, pressure, and interaction
energies [39].

FIG. 2. Three model states: (1) hydrogen-bonded, (2) van der
Waals, and (3) nonbonded.

A. Hydrogen-bonded state

Here are the details how we represent the hydrogen-bonded
state and its Boltzmann factor. If the test water molecule points
one of its four hydrogen-bonding arms at an angle θ to within
π/3 of the center of its neighbor water, it forms a hydrogen
bond (see Fig. 2). This is equivalent to about one fourth of the
full solid angle. The interaction energy of the test water with
its neighbor is then

uHB (θ ) = −εHB − εLJ + ks (1 + cos θ )2 , 0 < θ < π/3,

(1)

εHB is an hydrogen-bond energy constant representing the
maximal strength of a hydrogen bond, εLJ is the Van der
Waals contact energy between neighboring waters, and ks is
the angular spring constant that describes the weakening of the
hydrogen bond with angle. We treat this type of hydrogen bond
as weak bond [39] as it does not cooperate with neighboring
hydrogen bonds. To compute the isothermal-isobaric partition
function, �HB, of this hydrogen-bonded state, we integrate this
Boltzmann factor over all the allowed Euler angles φ, θ , and
ψ and over all the allowed separations x, y, and z of the test
molecule relative to its clockwise neighbor,

�HB = c (T )
∫∫∫∫∫

dxdydzdφdψ

×
∫ π/3

0
sin θdθ exp [− (uHB + pvHB/2) /kBT ], (2)

where c(T ) is the 3D version of the kinetic energy contribution
to the partition function, kB is Boltzmann’s constant, T is
temperature, p is the pressure, and vHB is volume per molecule.
The multiple integral

∫∫∫
dxdydz represents the volume over

which the second molecule has translational freedom to form
a hydrogen bond with the first water and is equal to vHB

ef . The
double integral

∫∫
dφdψ sums the orientations over which the

test molecule has orientational freedom and is equal to 4π2.
The volume vHB of the hydrogen-bonded state is derived

similarly as for the 2D model [39]. For the perfect hexagon
crystal representing low-pressure ice, the volume of the solid
is

vs = 8
√

3r3
HB

9
. (3)

We estimate volume vHB as perturbation of this state as

xvvHB = vs, (4)

where xv = 1.12 is chosen empirically because density of
liquid state at room temperature is about 12% more dense
then ice.

Using these definitions and performing the integration in
Eq. (2) gives

�HB = 4π2c (T ) vHB
ef exp

(
εHB + εLJ − pvHB/2

kBT

)

×
√

kBT π

4ks

erf

(√
ks

4kBT

)
. (5)
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B. van der Waals state

In the vdW state, the test water molecule forms a contact
with its clockwise-like positioned water, but no hydrogen
bond. Energy of this state is

uLJ (θ ) = −εLJ,0 < θ < π/3. (6)

The isothermal-isobaric partition function �LJ of this state
is given by integrating over angles and positions of the test
particle relative to its clockwise neighbor,

�LJ = c (T )
∫∫∫∫∫

dxdydzdφdψ

×
∫ π/3

0
sin θdθ exp [− (uLJ + pvLJ/2) /(kBT )]. (7)

The volume vLJ of this state is approximated as a volume
of cubic close-packed crystal where the closest molecules at
distance σLJ21/6:

vLJ = σ 3
LJ. (8)

The integral
∫∫∫∫∫

dxdydz represents the translation volume
when second molecule forms van der Waals contact with first
and is equal to effective volume vLJ

ef . Integrating gives

�LJ = 2π2c (T ) vLJ
ef exp

(
εLJ − pvLJ/2

kBT

)
. (9)

C. Nonbonded state

In the last possible state, the test water molecule does not
interact with its neighbors so the energy is

uo (θ ) = 0. (10)

The isothermal-isobaric partition function for the nonin-
teracting state is obtained by integrating over translational
degrees of freedom:

�o = c (T )
∫∫∫∫∫

dxdydzdφdψ

×
∫ π/3

0
sin θdθ exp [−pvo/(2kBT )], (11)

where vo is the volume available to the test molecule in
this state. We compute vo using the van der Waals gas
approximation,

vo = kBT

p
+ vLJ. (12)

Integrating over all coordinates of this state gives

�o = 2π2c (T )
kBT

p
exp

(−pvo

2kBT

)
. (13)

D. Thermodynamic properties

Equations (5), (9), and (13) give the isobaric-isothermal
ensemble Boltzmann weights of the three possible states
of each water molecule. We assume the mean-field attrac-
tive energy [55] −Na/v among hexagons, where a is the

van der Waals dispersion parameter (0.02) [39,48,49] and v is
the average molar volume, which we get from Eq. (19) below.

Now the partition function for a full hexagon of 6 waters is
given as

Q1 = (�HB + �LJ + �o)6 , (14)

where the subscript 1 indicates a single hexagon. We treat
the hexagons here in the same way as in our 2D work [39].
The total partition function for each hexagon, by taking into
account also higher cooperativity in ice, is given by

Q1 = (�HB + �LJ + �o)6 − �6
HB + δ�6

s , (15)

where δ = exp (−βεc) is the Boltzmann factor for the coop-
erativity energy, εc, that applies only when 6 water molecules
all collect together into a full hexagonal cage. The terms on
the right-side of this expression simply replace the statistical
weight for each weakly-hydrogen-bonded full hexagonal cage
with the statistical weight for a cooperative strongly hydrogen-
bonded hexagonal cage. �s is the Boltzmann factor for a
cooperative hexagonal cage. It differs from �HB only in the
volume per molecule; vs instead of vHB. We use Eq. (15) for
the whole range of temperatures; it reduces to Eq. (14) in the
limit of high temperatures when all cage-like structuring of
water disappears.

Now we combine the Boltzmann factors for the individual
water molecules to get the partition function Q for the whole
system of N particles,

Q = Q
N/3
1 , (16)

where the factor N/3 accounts for all possible interaction sites
per water molecule and corrects for double counting of the
hydrogen bonds.

We compute the populations of the states i = 1 (HB), 2
(LJ), 3(o), and 4(s) using

fi = d ln Q1

d ln �6
i

. (17)

The chemical potential is given by

μ = −kBT

N
ln Q, (18)

and the molar volume

v = V

N
=

(
∂μ

∂p

)
T

=
∑

fivi . (19)

V is the total volume of the system. All the other thermody-
namic properties below are obtained as described previously
[48,49].

E. Solid phase

In order to compute the models solid-liquid transition we
must determine the low pressure (LP) crystalline phase. Our
choice is the diamond structure. This crystal structure is
analogous to ice-I crystalline phase that has been observed
in low-temperature Monte Carlo simulations of the 3D MB
model [46,47]. We treat the model ice via a cell theory
approach [48,49], assuming that the solids are incompressible.
We obtained analytical expressions for the chemical potential
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FIG. 3. (Color online) Temperature dependence of density at
p∗ = 0.20: Theory (line) vs Monte Carlo simulation of MB model
[46] (symbols). Notice also that density is plotted in the same units
as in Dias’s work [46].

μLP (T ,p) in the same way as in hydrogen-bonded state
[48,49]. The molar volume vLP is the same as for vs .

III. RESULTS AND DISCUSSION

In this section, we explore the predictions of the analytical
theory, for how the density, molar volume, heat capacity,
isothermal compressibility, and thermal expansion coefficient
depend on temperature and pressure. The analytical results
are compared with the Monte Carlo simulation results of 3D
Mercedes-Benz water by Dias et al. [46] (and in few cases also
with the experimental trends). Previous work has shown that
the Mercedes-Benz water qualitatively correctly reproduces
the anomalies of water [46].

For all the model calculations below, we used the follow-
ing parameters: εHB = 1, rHB = 1, vdW: εLJ = 0.05, σHB =
0.926 53 (unchanged from Dias’s 3D MB model [46]), ks =
78, and εc = 0.18. We present our results below in dimension-
less units, normalized to the strength of the optimal hydrogen
bond εHB and hydrogen-bond separation rHB (T ∗ = kBT /εHB,
uex∗ = uex/εHB, V ∗ = V/r3

HB, and p∗ = pr3
HB/εHB).

Figures 3 and 4 compare predictions of the present theory
for the density of water and the molar volume, V ∗/N , to
NPT Monte Carlo simulations [46] of the 3D MB model
with the same parameters. The calculations of the theory were
performed at a reduced pressure of p∗ = 0.20. The theory
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FIG. 4. (Color online) Temperature dependence of molar volume
coefficient; legend otherwise as for Fig. 3.
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FIG. 5. (Color online) Temperature dependence of thermal ex-
pansion coefficient; legend otherwise as for Fig. 3.

is in good general agreement with the simulations, including
the density maximum (minima in molar volume), although
the theory predicts a density maximum that is shifted (T ∗ =
0.143) relative to the simulations (T ∗ = 0.128). This may be
either due to approximations in the theory (notice that the
theory is modeled roughly on the MB model) or the theory
does not have exactly the same underlying Hamiltonian as
simulations. Theory also predict freezing of liquid water at
lower temperature (T ∗ = 0.088) than observed in simulation
(T ∗

f = 0.12). Data at lower temperatures present solid phase.
Notice also that, in Fig. 3, density is plotted in same units as
in Dias’s work [46].

Figures 5, 6, and 7 show dependence of the thermal
expansion coefficient α∗, the isothermal compressibility κ∗

T ,
and the heat capacity C∗

p, vs temperature. For these quantities
also, the theory is in qualitative agreement with the Monte
Carlo simulation results. The thermal expansion coefficient is
negative at low temperatures which is consistent with computer
simulations and with experiments for water. The Monte
Carlo simulations of MB water do not show experimentally
observed minimum in the isothermal compressibility versus
temperature. On the other hand the present theory predicts
minimum in κ∗

T (Fig. 6). This is consistent with scattering
experiments [56]. At low temperatures, our present model
shows a drop in C∗

p as the temperature is reduced.
Figure 8(a) shows the model populations of the strong

hydrogen-bonding state (fs), weak hydrogen-bonding state
(fHB), and the state of no hydrogen bonds (fLJ + f0) vs

0

1

2

3

4

 0.1  0.2

κ*

T*

FIG. 6. (Color online) Temperature dependence of isothermal
compressibility; legend otherwise as for Fig. 3.
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FIG. 7. (Color online) Temperature dependence of heat capacity
at constant pressure; legend otherwise as for Fig. 3.

temperature as obtained by this model. Figure 8(b) shows
corresponding experimental data for the populations of strong
and weak hydrogen bonds as measured from OH stretching
bands in ir spectroscopy by Luck [57]. Luck identifies three
spectroscopic states: strongly cooperative hydrogen-bonded,
weakly cooperative hydrogen-bonded, and nonbonded. We
regard these three states as corresponding to the three states in
our theory. Qualitatively, the trends are the same, but there
is not quantitative agreement. Strong hydrogen bonds are

 0
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FIG. 8. (Color online) (a) Temperature dependence of popula-
tions fi of the different type of hydrogen bonds, at constant pressure,
p∗ = 0.19. The population of strong hydrogen bonds (long dashed
line), weak hydrogen bonds (solid line), no hydrogen bonds (short
dashed line). (b) Experimental populations of OH states in liquid
water vs temperature Tr [48] along its saturation curve, from ir
spectroscopic data (adapted from Fig. 5 of Luck [57]).

FIG. 9. (Color online) Temperature dependence of molar volume
(a), heat capacity (b), isothermal compressibility (c), and thermal
expansion coefficient (d) at p∗ = 0.2: theory (solid line) and van der
Waals 3D gas (dashed line).

prevalent in cold water. Heating melts the strong HB structures
into structures that have a mixture of weak hydrogen bonds,
LJ interactions, and nonbonded structures at intermediate
temperatures. At higher temperatures, approaching the critical
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FIG. 10. (Color online) Temperature dependence of reduced
density at different values of pressure, p∗ = 0.2 solid line, p∗ = 0.16
long dashed line, p∗ = 0.12 dashed line, and p∗ = 0.08 dash-dotted
line.

point, the weak hydrogen bonds break to form nonbonded
gas-phase states.

Figure 9 compares the temperature dependence of the molar
volume, isothermal compressibility κ∗

T , the thermal expansion
coefficient α∗, and the heat capacity C∗

p from our water model
to a model that is intended to describe simpler liquids: the
van der Waals equation for a 3D gas. We can see that the
high-temperature limiting values of all calculated quantities
approach the values of the van der Waals gas and when the
temperature of water is above T ∗ = 0.20–0.30 the properties
of water are similar to properties of van der Waals gas.
Computer simulations were not done in this temperature range
so we cannot test this prediction with computer experiment.
We can also notice small maxima in heat capacity and in
compressibility in supercooled region. The dependence of the
compressibility vs T ∗ can be explained using Le Chateliers
principle. In very cold water, the liquid is dominated by strong
hydrogen-bond states and its compressibility is low. As the
supercooled liquid is heated, the compressibility increases
because applied pressure can now force waters from strong into
weak hydrogen-bond states with smaller volumes. The stable
liquid has a smaller compressibility than the supercooled liquid
because population of states with smaller volume is higher.
With increasing temperature the isothermal compressibility
is high because the waters are in open states with low
density.

Water expands upon freezing, �v > 0, and the enthalpy
change at freezing is negative, �h < 0. From the Clausius-
Clapeyron equation [dp/dT = �h/(T �v)] we get that the
coefficient dp/dT is negative, which means that the freezing
temperature is decreasing with increasing pressure. This effect
is demonstrated in Fig. 10, where the model dependence of
the density on temperature is shown for different values of
pressure. The freezing temperature is shifting to lower values
as pressure increases, confirming the result dp/dT < 0. In
our model we notice the same effect as seen in computer
simulations by Dias et al. [46].

The excess entropy per molecule, defined as the difference
between the entropies of the liquid and the ideal gas under
identical density and temperature conditions, was calculated
as function of density at constant temperatures and results

-12
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0  0.2  0.4  0.6  0.8 1

s e
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FIG. 11. (Color online) Density dependence of excess entropy at
different temperatures, T ∗ = 0.25 solid line, T ∗ = 0.20 long dashed
line, T ∗ = 0.15 dashed line, and T ∗ = 0.12 dash-dotted line.

were presented in Fig. 11 The excess entropy is often used
as a measure of the fluid’s structural order. Water’s excess
entropy shows nonmonotonic trends along isotherms at low
temperature, exhibiting a density range where compression
anomalously increases excess entropy [58–62]. This trend
is intimately related to water’s anomalous density trends
in diffusivity [58–62], shear viscosity [58,61], and thermal
conductivity [58]. The interval of densities within which the
excess entropy increases upon isothermal compression has
been used to define a structurally anomalous region within
previous studies [58–62]. For our model, at high temperatures
the excess entropy of the model is monotonic function of
density while at low temperatures we noticed nonmonotonic
trends. These trends are all at densities which correspond to
liquid densities of anomalous properties.

IV. CONCLUSIONS

We developed a simple three-dimensional model for the
thermal and volumetric properties of the 3D MB model of
water. The model assumes three states for each water-water
interaction: hydrogen bonded, or van der Waals bonded, or
nonbonded, and calculations are nearly analytical. The model’s
properties can be computed as functions of (T ,p,N ) in seconds
on a single CPU. It shows how Lennard-Jones attractions and
repulsions are balanced against hydrogen-bonding interactions
differently at different temperatures and pressures. The theory
predicts volumetric properties such as the temperature of
maximum density, the isothermal compressibility, the thermal
expansion coefficient, and water’s heat capacity in good
agreement with the underlying 3D Mercedes-Benz model,
which was previously studied by Dias et al. by NPT Monte
Carlo simulations.
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