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Generic glass formers exhibit at least two characteristic changes in their relaxation behavior, first to an
Arrhenius-type relaxation at some characteristic temperature and then at a lower characteristic temperature to a
super-Arrhenius (fragile) behavior. We address these transitions by studying the statistics of free energy barriers
for different systems at different temperatures and space dimensions. We present a clear evidence for changes in
the dynamical behavior at the transition to Arrhenius and then to a super-Arrhenius behavior. A simple model
is presented, based on the idea of competition between single-particle and cooperative dynamics. We argue that
Arrhenius behavior can take place as long as there is enough free volume for the completion of a simple T 1
relaxation process. Once free volume is absent one needs a cooperative mechanism to “collect” enough free
volume. We show that this model captures all the qualitative behavior observed in simulations throughout the
considered temperature range.
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I. INTRODUCTION

A full understanding of the complex dynamical scenarios
accompanying the glass transition requires a resolution of the
statistics of free energy barriers at any given temperature. Such
information is very hard to come by. Trying to measure such
free energy barriers using the energy landscape of a typical
glass former is a daunting procedure that has never been
achieved. In this paper we propose a method that provides
us with a decent approximation of the statistics of the free
energy barriers. We do this by measuring “quenched” rather
than “annealed” relaxation times. The usual procedure for
extracting a relaxation time from numerical simulations of any
glassy system is the “annealed” procedure. One takes many
realizations of a super-cooled liquid at a given temperature,
measures a typical relaxation function for each realization,
averages the relaxation functions over the ensemble, and
finally extracts a relaxation time τα(T ) from this average
relaxation function by, say, determining when the average
function reaches 1/e of its initial value [1]. The subscript α

designates the “main” slow relaxation mechanism in glassy
dynamics, and is the only one that is typically resolved
in numerical simulations. This procedure is automatically
performed in experiments where the macroscopic nature
of the relaxing systems provides self-averaging, resulting
in “smooth” relaxation functions that hardly fluctuate from
realization to realization. In this paper we propose that
significant simulational insight on glassy relaxation can be
gained by adopting a “quenched” procedure. In this procedure
a relaxation time τα is extracted from each and every realization
by determining when the appropriate relaxation function
reaches a value of 1/e; cf. Fig. 1, upper panel. Finally, an
average is taken over the ensemble to provide 〈τα〉(T ). A
typical such quenched relaxation time for a Lennard-Jones
binary glass is shown in the middle panel of Fig. 1. Here we
measured the self part of the intermediate scattering function
for each realization separately (upper panel); i.e., the function

Fk(t ; T ) ≡ 2

N

N/2∑
i=1

exp {ik · [r i(t) − r i(0)]} , (1)

where the index i runs over half the particles in the binary
mixture (those with longer interaction length; we assume the
mass of all the particles to be the same, m = 1). One observes
the usual dramatic slowing down, such that 〈τα〉(T ) grows
rapidly when T decreases, first in a pre-Arrhenius form (see
inset), then in an Arrhenius form, linear in 1/T , and later in a
faster, super-Arrhenius form, which is referred to as “fragile”
behavior in the glass community [2]. The lower panel of Fig. 1
shows a comparison of our quenched relaxation time and the
more usual annealed time. One sees that qualitatively the two
behave very similarly with an Arrhenius and then a fragile
regime. In this paper we will be interested predominantly in
the transitions to and from the Arrehenius regime, for which
the quenched procedure is particularly illuminating.

The advantage of the quenched over the annealed procedure
is that it allows a particularly transparent treatment of the
statistics of free energy barriers. Having an ensemble of τα

values for a given ensemble of super-cooled systems, we can
define a typical free energy scale by writing for each τα value
an equation

τα ≡ τ0 exp (F/T ), (2)

where we choose units such that Bolzmann’s constant equals
unity. Inverting Eq. (2), every value of τα yields a value of
F . The free energy has in principle a contribution from an
energy barrier E and an entropic contribution stemming from
a degeneracy g,

F = E − T ln g. (3)

Of course, this definition makes sense when the dynamics
involves escaping an energy barrier. The prefactor τ0 is by
definition the relaxation time inside the confined state at every
temperature T , and we assume that it is fixed for all the
realizations in the ensemble:

τ0 = C/
√

T . (4)

The dependence on 1/
√

T stems simply from the estimating
v, the typical particle velocity, from equipartition as v2 = T

and τ0 is then a typical length-scale (a cage magnitude) over
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FIG. 1. (Color online) Upper panel: the time dependence of
ten realizations of the unaveraged intermediate scattering function
Eq. (1), for a range of temperatures (decreasing from left to right).
By definition the relaxation time τα is the time at which the function
reaches the value of 1/e. Notice the increase in the dispersion in
τα when temperature is lowered. Middle panel: the quenched average
relaxation time 〈τ 〉 in a log-lin plot vs. 1/T , compared to an Arrhenius
temperature dependence. Inset: the pre-Arrhenius regime at high
temperatures. The simulation for this figure were done using the
binary Lennard-Jones model whose interparticle potential can be
found for example in [4] and in the Appendix to this paper. Lower
panel: a comparison of the quenched and the annealed relaxation
time, where the latter was shifted up for clearer comparison.

v. For our purpose the constant C is determined by requiring
that the plot of τα/τ0 → 1 as T → ∞ [see Fig. 1 (red cross)]
and is O(1). The potentials of all the models discussed below
and other relevant parameters are available in the Appendix.

II. THE ARRHENIUS REGIME

Our first observation is that in the Arrhenius regime the
distribution of free energies F is always Gaussian and is
always very sharply peaked. Since F in the Arrhenius regime is
temperature independent, we conclude that g = 1 and F = E.
As an example we show again the binary Lennard-Jones
system for which we have used 1000 realizations for each
value of T to generate the distributions of F shown in Fig. 2.
We conclude that in the Arrhenius regime to a very good
approximation

P (F ) = 1√
2πσ 2

e
−(F−〈F 〉)2

2σ2 , (5)
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FIG. 2. (Color online) Distribution functions P (F ; T ) in the
Arrhenius regime of the Lennard Jones system in dimension d = 2,
shown for a range of temperatures. Neither the peak nor the width of
the approximately Gaussian distribution depends on temperature in
this regime, meaning for this relaxation process g = 1.

with the peak value 〈F 〉 and the width σ unchanged throughout
the Arrhenius regime. In the present regime we denote 〈F 〉 ≡
Ea . It is noteworthy that the distributions are also very sharply
peaked; to see this, note that the quenched average can be now
computed from the Gaussian integral as

〈τα〉(T ) = τ0 exp

[
Ea

T
+ σ 2

T 2

]
. (6)

Alternatively,

ln
〈τα〉(T )

τ0
= Ea

T
+ σ 2

T 2
. (7)

For the data shown in Fig. 2, Ea = O(1) and σ ≈ 0.05.
Thus, for the Arrhenius range of temperatures T = O(1), the
contribution of the width σ 2 ≈ 2.5 × 10−3 is of the order of
0.1% in Eq. (6). Obviously, for larger systems we expect σ

to be even smaller, tending to zero for N → ∞. It appears
that all the relaxation events contributing to the Arrhenius
regime belong to a tight group of similar events with a very
well defined energy barrier Ea and a negligible dispersion.
In fact, we find that this conclusion is not particular either
to the Lennard-Jones system or to d = 2. In Fig. 3 we show
similar results for other glass formers with (A) purely repulsive
potential [3] at d = 2, (B) the Lennard-Jones system [4] at
d = 3, (C) the Kob-Andersen model [5] at d = 2, and (D) the
polydisperse model [6] at d = 2. The physical interpretation
of these observations is discussed below; cf. Sect. VIII.

III. THE PRE-ARRHENIUS REGIME

At high temperatures we observe (see for example Fig. 4)
that P (F ) does not have a fixed dispersion (it widens when
T increases) and its peak moves to lower free energy values.
This observation is generic for all the models studied here. The
physical interpretation of this observation is again discussed
in Sect. VIII.

IV. TRANSITION TO SUPER-ARRHENIUS

Obviously, one might expect that when T reaches a value
of T ≈ Const × Ea something interesting should happen. The
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FIG. 3. (Color online) Distributions P (F ; T ) for the purely
repulsive system (A), the Lennard-Jones model in d = 3 (B), the Kob-
Andersen model (C), and the polydisperse model (D) in the Arrhenius
regime. The distributions P (F ; T ) for different temperatures overlap
throughout the Arrhenius regime.

physical relaxation mechanism whose energy barrier is Ea

should run out of steam, and other mechanisms, if they exist,
should emerge. This phenomenon is beautifully seen in the
Lennard-Jones system; see Fig. 4. Indeed, at 1/T ≈ 1.5, the
Arrhenius process begins to disappear and we observe at first a
gradual increase in both 〈F 〉 (the peak position) and its width σ .
In the system for which N = 6400, we find that at 1/T ≈ 2.7
the high-temperature Gaussian peak disappears in favor of a
second Gaussian peak which appears to replace it. We will
denote by T ∗ the temperature at which both processes coexist
with equal probability. The Gaussian of the second process
marches to the right with increasing both of 〈F 〉 and σ . The
transition region is depicted in Fig. 4 and is shown in more
detail in Fig. 5. For the systems of the size studied in these
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FIG. 4. (Color online) Distributions P (F ; T ) for the Lennard-
Jones system at d = 2 with N = 6400 for the whole available
temperature range. The temperature decreases from left to right.
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FIG. 5. (Color online) The transition in relaxation mechanism
shown in Fig. 4 as seen by the replacement of one Gaussian
distribution P (F ) by another.

simulations, by the time that the second relaxation mechanism
takes over, the contribution of the variance σ to the quenched
average relaxation time Eq. (6) is no longer negligible. Thus,
for our example at T = 1/3 〈F 〉 ≈ 2 and σ ≈ 0.25 such that
σ 2/〈F 〉T ≈ 0.1. At lower temperature the dispersion effect
will contribute more and more to the relaxation time. Of course,
also here we expect σ to decrease to zero when N → ∞. It is
useful, however, to keep the σ dependence for the simulations
at hand.

We should note that Eq. (7) remains valid throughout the
temperature range. We can rewrite it, denoting xi ≡ 〈Fi〉/T

and introducing wi for the weighted sum of the two different
mechanisms in the form

ln
〈τα〉(T )

τ0
=

2∑
i=1

wi

[
xi + σ 2

i

〈Fi〉2
x2

i

]
. (8)

We test this formula for the data corresponding to the
distributions found in Fig. 4 and demonstrate the perfect
agreement in Fig. 6. Note that the relaxation time varies in
this range of temperatures by close to 5 orders of magnitude.
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FIG. 6. (Color online) A test of Eq. (7). Shown are data for the
binary Lennard-Jones model at d = 2 and at different densities.
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V. SCALING

In Ref. [7] it was shown that relaxation times of models of
the type discussed above exhibit density scaling. For different
densities ρ plots of ln〈τα〉/τ0 versus 1/T fall on different
curves [8,9]. Once plotted as a function of ερx/T with an
appropriate value of x the data collapses onto one curve.
Density scaling is easiest to justify when one uses a purely
repulsive potential of the form φ(r) ∼ εr−y , where ε sets the
energy scale of the interparticle potential and r is measured
in dimensionless units. Then the only relevant length scale
ξ in the system is determined by the density as ξ ∼ ρ−1/d ,
where ρ is the density in dimensionless units. Obviously, when
we plot ln〈τ 〉/τ0 versus 1/T (see upper panel of Fig. 7) we
present a dimensionless number in terms of a dimensional
quantity which is inappropriate. To correct this, we need to
nondimensionalize 1/T by multiplying it by an energy scale.
The only energy available is φ(r), and we write

φ(r) ∼ εξ−y ∼ ερy/d . (9)

Thus, by presenting ln〈τ 〉/τ0 versus ερy/d/T we should find
data collapse as discussed in Ref. [7]. It is well known that the
argument remains approximately valid also when the potential
is not a pure power law but with an exponent x that needs
to be found by collapsing the data [10]. In the second panel
of Fig. 7, we show the data collapse when plotted properly,
with the density varying in the range [0.80,1.00]. Additionally,
in these systems the interparticle potential possesses only one
energy scale, which is nothing but the depth of the interparticle
potential, denoted as ε. This energy scale must determine
the typical barrier height that needs to be surmounted in
the Arrhenius regime. Accordingly, we expect Ea to be
proportional to ε. This expectation is fully supported by
the data shown in Fig. 8 where for two models (binary
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FIG. 7. (Color online) Upper panel: Usual plots of the nondimen-
sional relaxation time in logarithmic scale vs. 1/T for five different
values of the density, ρ = 0.80,0.85,0.90,0.95,1.00. Lower panel:
The very same data collapsed by nondimensionalizing the abscissa
by the energy scale ερx .
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FIG. 8. (Color online) Demonstration of the linear dependence of
the mean Arrhenius energy Ea on the depth of the potential ε.

Lennard-Jones in 2 and 3 dimensions) we have changed ε

and measured Ea .
Our additional contribution to the discussion of density

scaling is in pointing out that it is obeyed separately by the
two contributions to Eq. (7). In the upper row of Fig. 9, we
show that 〈F 〉 exhibits a very nice data collapse when data for
different densities are replotted as required. In the lower row
we show the same for σ . We will use these scaling functions
below in providing a model for the observed glassy dynamics.

VI. SYSTEM SIZE DEPENDENCE OF T ∗

An obvious worry about our method of analysis is that the
dispersion σ depends on the system size, and, therefore, the
temperature T ∗ at which we observe the transition to fragility
may depend on the system size. This is, of course, correct.
Nevertheless, we discover that the value of T ∗ converges to a
value T ∗∗ in the thermodynamic limit. The data is shown for
the binary Lennard-Jones model in Fig. 10. From the data in
the lower panel one can conclude that for this model

T ∗ − T ∗∗ ∼ N−x, x ≈ 0.25. (10)
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FIG. 9. (Color online) Data collapse for the normalized energy
and dispersion for the same densities as described in the legend of
Fig. 7.
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We did not perform an exhaustive analysis of the exponents
of this law of convergence for the different models.

VII. COOPERATIVE MECHANISM

The purpose of this section is to establish one of the
main claims of this paper, i.e., that with the transition to
the super-Arrhenius behavior one observes a change from a
local to a cooperative relaxation mechanism. At temperatures
below T ∗, one expects a cooperative relaxation process to
play an important role; the proposition of this paper is that
this is mainly due to the disappearance of the free volume that
was available in the Arrhenius regime (see quantitative model
below), requiring now a cooperative motion of many particles
to “collect” enough free volume to allow a relaxation step.
Although such a picture is current among some practitioners
in the glass community, to the best of our knowledge it had
never been shown explicitly. We use in this section scaling
arguments to establish this picture convincingly.

Adding the system size dependence to our typical free
energy, we write now

F (N,T ) = E(T ) − T log[g(N,T )]. (11)

We expect E(T ) to be determined by the energy landscape
and not to depend strongly on the system size. Energy barriers
are mostly sensitive to local arrangements of particles that are
not system size dependent. On the other hand, log[g(N,T )] is
the entropic contribution to the free energy barrier. Our data
showed that in the Arrhenius regime the degeneracy factor
g was of the order of unity; here we will show that our data
strongly supports a cooperative process in the super-Arrhenius
regime, mainly due to the system size dependence of the
degeneracy factor.

The flip side of having a cooperative mechanism is that
there should exist a typical length ξ (T ), which measures the
degree of cooperativity and is increasing when the temperature
decreases. Consider then a system of N particles in the super-
Arrhenius regime, associated with a typical scale ξ (T ) and

contained in a cubic box of size L at some temperature T . As
long as the system is small, i.e., L � ξ (T ), the whole system
needs to cooperate in order to relax. Accordingly we expect
the degeneracy factor to grow extensively like g(N,T ) ∼ N .
When the system is large enough, i.e., when L � ξ (T ), we
expect to find g(N,T ) ∼ ξd , not changing with the system
size. In other words,

g(N,T ) ∼
{(

L
a

)d
, for L � ξ (T )(

ξ (T )
a

)d
, for L � ξ (T ),

(12)

where a is typical interparticle distance. Accordingly, the free
energy should assume the form of a scaling function of L/ξ (T )
as

F (N,T ) = E(T ) − T log

[
A

(
ξ (T )

a

)d

f

(
L

ξ (T )

)]
, (13)

where A is a temperature independent proportionality factor.
The scaling function f (x) has the following asymptotic
dependence

f (x) =
{
xd for x � 1,

1 for x � 1.
(14)

Considering the small system limit, we conclude that there
the free energy barrier should exhibit a logarithmic dependence
on the system size. This expectation is supported by the data
shown in Fig. 11. In the upper panel we show the system size
dependence of the free energy value where the distribution
function P (F,T ) has a second peak, for different temperatures.
With increasing system size these values tend to saturate to an
asymptotic value. Note that the dependence on the system size
seems to be decreasing with increasing temperature, indicating
the existence of a cooperative length scale. We cannot go to
high temperatures in this study because at higher temperature
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FIG. 11. (Color online) Upper panel: The position of the second
peak in P (F,T ) is plotted as a function of system size for different
temperatures in the range [2.52,3.00]. Lower panel: Scaling plot (see
text for details) to highlight the logarithmic dependence on system
size.
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the extraction of the second peak position becomes difficult as
its height goes down drastically, merging with the Arrhenius
peak. We focus on data where the position of the second
peak can be estimated accurately. To show the logarithmic
dependence on the system size, we collapsed the data together
by rescaling the free energy axis by ξ δ with δ  1.2 and the x

axis by ξ (T )d . For simplicity we fitted here a guess function
for ξ (T ) in the form ξ (T ) ∼ 1/T 1.8 [11]. In the lower panel of
Fig. 11, one can see the convincing logarithmic dependence of
the free energy on the system size for different temperatures.

VIII. INTERPRETATION AND DISCUSSION

The data shown above indicate two changes in the relaxation
mechanism between the pre-Arrhenius and the Arrhenius
regime and then between the Arrhenius and the fragile regime.
We propose that the pre-Arrhenius regime is a fluid regime in
which a well-defined cage is only beginning to form around
every particle. It is relatively easy to break this ill-formed cage,
and there are many ways to do it. Accordingly, the free energy
needed is made of a low value of E and a finite value of g such
that when T is increasing the Gaussian peak that we observe
marches to the left and becomes broader.

In the Arrhenius regime a well-defined cage has formed
around each particle, and this cage is a more or less regular
cluster of particles aggregating around each center particle.
We expect a roughly constant energy E to suffice to break this
kind of cage and the width of the distribution of F should
be relatively narrow as discussed below. Toward the end of
the Arrhenius regime a second and maybe third layer of next-
nearest neighbors begins to form around a center particle, and,
therefore, it becomes more and more difficult for the single-
particle relaxation to take place. The energy barrier increases,
but because of the fluidity of the second and third layer the
width of the distribution also starts to increase.

Eventually a new, cooperative mechanism must be favored
for dynamical relaxation. Note that the apparent mean energy
of activation 〈F 〉 increases when the temperature decreases
below the Arrhenius regime. This must mean that the single
particle relaxation mechanism that is operative at the Arrhenius
regime is no longer available at lower temperatures, since if it
were available it would have been selected. In the temperature
range where both mechanisms coexists we indeed find the
associated 〈F 〉 and σ to be similar. We thus offer a model of
the observed phenomenology on the following basis:

(i) In the Arrhenius regime, the relaxation process is an
elementary event like a T1 process that is characterized by a
relatively sharp free energy cost F1,

F1 ≡ Ea − T ln g1, (15)

where g1 is the number of available inequivalent T 1 processes.
This energy cost Ea is of the order of breaking through a local
cage and the process involves only a few particles. Due to the
amorphous nature of the super-cooled liquid, Ea is a stochastic
variable but the dispersion around Ea is relatively small. We
denoted the variance in the distribution of Ea as σ 2 and noted
that in this regime σ/Ea � 1.

(ii) The fact that F1 does not change with the temperature in
the Arrhenius regime indicates that g1 is of the order of unity.

(iii) The precise reason for the blocking of this elementary
relaxation channel when temperature is lowered is not known.
We will propose, however, that this blocking is due to the
disappearance of available free volume per particle vf (T ,P )
[12]. In other words, denoting by vm the minimal average
volume that every particle occupies, there must be additional
free volume vf for the T1 process to occur.

Of course, the average volume per particle, which is the
inverse of the density, v(T ,P ), is determined by the equation
of state, which varies from one material to the other. We will
define Tf as the temperature where the free volume disappears,
and then v(Tf ,P ) = vm. For the purposes of the present model
we estimate the average volume per particle from the first-order
Taylor expansion:

v(T ,P ) ≈ v(Tf ,P ) +
(

∂v

∂T

)
P

(T − Tf ), (16)

where the partial derivative is computed at T = Tf . Accord-
ingly, since v(Tf ,P ) = vm,

vf (T ,P ) ≈
(

∂v

∂T

)
P

(T − Tf ), provided v > vm, (17)

vf (T ,P ) ≈ 0, otherwise. (18)

The probability of having a local free volume ṽf is
estimated from maximum entropy considerations as

P (ṽf ) = 1

vf

exp −(ṽf /vf ). (19)

Consequently, the probability that ṽf > vm, which is the
probability that a T 1 process could occur, is

P (ṽf > vm) =
∫ ∞

vm

P (ṽf )dṽf = e−vm/vf . (20)

Finally, we write vf = v − vm = αvm(T − Tf ), where α is the
isobaric coefficient of thermal expansion at T = Tf ,

α = 1

vm

(
∂v

∂T

)
P

(T = Tf ). (21)

With this we can write

P (ṽf > vm) = exp [−cTf /(T − Tf )], (22)

where the dimensionless constant c = 1/αTf . Note that we can
immediately estimate the probability of seeing the cooperative
mechanism (which we will refer to as the T2 process) as
simply 1 − exp [−cTf /(T − Tf )]. Therefore, we can estimate
T ∗ where the two processes are equiprobable from

exp [−cTf /(T ∗ − Tf )] ≈ 1/2, (23)

and, therefore, T ∗ ≈ (1 + c/ ln 2)Tf .
(iv) In the fragile regime we propose that Eq. (15) retains

its form, but now with a temperature dependent E2(T ) and a
sizable degeneracy g2(T ). Our picture is that of a relaxation
process that involves more and more cooperative motions of a
larger and larger number of particles. This obviously results in
an increasing energy barrier E2(T ), which is indeed higher
than Ea but selected because the T1 process is no longer
available or it requires cooperation from the surroundings to be
realized. Also, an increase in the number of particles involved
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must increase g2 simply due to the number of ways that these
particles can be chosen. Thus, we write in the fragile regime

F2(T ) ≡ E2(T ) − T ln g2(T ). (24)

We now consider the emergence of the T2 process as
a consequence of the disappearing of the T1 process as is
presented, for example, in Fig. 4. We write

P (F,T ) = W1(F,T ) + W2(F,T )

Z(T )
, (25)

Z(T ) =
∫

[W1(F,T ) + W2(F,T )]dF. (26)

Here W1 and W2 are the weights of the two relaxation channels,
respectively. In the Arrhenius regime, W1 is composed of three
factors; remembering that g1 ≈ 1, we write in that regime

W1(F,T ) = e[−cTf /(T −Tf )] 1√
2πσ 2

e
−(F−Ea )2

2σ2 e−F/T . (27)

The first factor is the probability to have a T1 process [Eq. (22)].
The second factor is the probability to select a free energy
barrier of magnitude F . The third factor is the probability
to overcome that particular barrier. In the larger temperature
regime that includes the pre- and post-Arrhenius regime, we
generalize Eq. (27) to read

W1(F,T ) = e[−cTf /(T −Tf )] 1√
2πσ 2

1 (T )
e

−[F−〈F1〉(T )]2

2σ2
1 (T ) e−F/T ,

(28)

where σ 2
1 (T ) ≈ σ 2 + K(T − TArr)2. This fit is supported by

the scaling function shown in Fig. 9 in the lower left panel,
and TArr is the temperature of the minimum of scaling function.

Similarly,

W2(F,T ) = {1 − e[−cTf /(T −Tf )]}√
2πσ 2

2 (T )
e

−[F−〈F2〉(T )]2

2σ2
2 (T ) e−F/T . (29)

In Fig. 12 we present the prediction of Eq. (25) as a function
of temperature. We chose the various parameters to agree with
the functions shown in Fig. 9, with c = 0.6 and T ∗ = 0.55.
The model indeed reproduces very well the main observations
discussed above. We see the pre-Arrhenius behavior and its
transition to Arrhenius behavior where expected. We also
observe the rapid decline of the Arrehnius Gaussian with
the concurrent increase of the fragile Gaussian, which is
marching to the right with increasing dispersion. We should
stress that this simple model is not meant to represent the
full complexity of the observed processes, especially at low
temperatures where the cooperative dynamics reigns supreme;
the point of this simple model is to stress the fundamental
observation of this paper, i.e., that a compact and well-defined
relaxation mechanism appears to operate in the Arrhenius
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FIG. 12. (Color online) The model prediction for the development
of the statistics of F throughout the temperature range, from pre- to
post-Arrhenius behavior. The parameters were chosen to fit the the
data of the Lennard-Jones system in 2D, and accordingly the results
are in excellent agreement with the numerical results shown in Fig. 4.
For much larger system sizes, we expect the dispersion σ to tend to
zero, but this affects neither our model nor the conclusions.

regime, whereas this simple mechanism is blocked once
temperature reduces, giving rise to another mechanism that is
presumably cooperative and much more involved. For all that
we know, one may encounter additional relaxation processes
at still lower temperatures, which are currently not available
to numerical simulations.
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APPENDIX : TECHNICAL DETAILS OF THE
VARIOUS MODELS

The repulsive model discussed above has the binary
potential

U (rij ) =
{

ε
[( σij

rij

)α − ( σij

rij

)β + a0
]
, rij � rc(i,j )

0, rij > rc(i,j ).
(A1)

Here, ε is the energy scale and σij = 1.0,1.2, or 1.4 for small-
small, small-large, or large-large interactions, respectively. For
the sake of numerical speed, the potential is cut-off smoothly
at a distance, denoted as rc, which is calculated by solving

∂U/∂rij |rij =rc
= 0, which translates to rc = (α/β)

1
α−β σij . The

parameter a0 is chosen to guarantee the condition U (rc) = 0.
Above we use α = 8 and β = 6, resulting in rc = √

8/6σij and
a0 = 0.10546875. This model was run with density ρ = 0.8
and N = 6400 in two dimensions.

All the other models use the binary potential

φ
(

rij

λij

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4ε

[(
λij

rij

)12
−

(
λij

rij

)6
]

,
rij

λij
� rmin

λ

ε

[
a

(
λij

rij

)12
− b

(
λij

rij

)6
+

∑3

�=0
c2�

(
rij

λij

)2�
]

, rmin
λ

<
rij

λij
< rco

λ

0,
rij

λij
� rco

λ
.

(A2)
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Here, rmin/λij is the length where the potential attains its
minimum, and rco/λij is the cut-off length for which the
potential vanishes (we used the value 1.8 for this cutoff
throughout the paper). The coefficients a,b, and c2� are chosen
such that the repulsive and attractive parts of the potential are
continuous with two derivatives at the potential minimum and
the potential goes to zero continuously at rco/λij with two
continuous derivatives as well. For the Lennard-Jones model
in two and three dimensions the interaction length-scale λij

between any two particles i and j is λij = 1.0λ, λij = 1.18λ,
and λij = 1.4λ for two “small” particles, one “large” and one
“small” particle, and two “large” particles, respectively. The
unit of length λ is set to be the interaction length scale of
two small particles, ε is the unit of energy, and kB = 1. In

two dimensions, N = 6400 and ρ = 0.8. in three dimensions,
N = 8000 and ρ = 0.70.

For the Kob-Andersen model, we take 20% large particles
and 80% small particles; the interaction length-scale λij

between any two particles i and j is λij = 0.88λ, λij = 0.8λ,
and λij = 1.λ for two “small” particles, one “large” and one
“small” particle, and two “large” particles, respectively. The
energy scale for the small-small interaction is 0.5, for the
small-large 1.5, and for the large-large 1. In this model,
ρ = 1.35 and N = 6400.

For the polydispersed model, we picked the length
scales from a Gaussian distribution with unit mean
and variance of 0.001. The density is 1.05 and
N = 6400.
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