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Packings of monodisperse emulsions in flat microfluidic channels
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In the lateral confinement of a flat microfluidic channel, monodisperse emulsion droplets spontaneously
self-organize in a variety of topologically different packings. The explicit construction of mechanically
equilibrated arrangements of effectively two-dimensional congruent droplet shapes reveals the existence of
multiple mechanical equilibria depending on channel width W , droplet area Ad , and volume fraction φ of the
dispersed phase. The corresponding boundaries of local or global stability are summarized in a packing diagram
for congruent droplet shapes in terms of the dimensionless channel width w = W/

√
Ad and φ. In agreement

with experimental results, an increasingly strong hysteresis of the transition between single-row and two-row
packings is observed during changes of w above a threshold volume fraction of φ∗ � 0.813.
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I. INTRODUCTION

Microfluidic systems allow the production of monodisperse
emulsions with controlled droplet volume and volume fraction
at high rates [1,2]. Under proper conditions these emulsions
can be stable in the confinement of a microchannel on a time
scale of several hours to days [3]. The coalescence of neighbor-
ing droplets can be largely suppressed by suitable surfactant
molecules [3] or even by macroscopic particles that adsorb to
the liquid-liquid interface [4]. This astonishing stability against
coalescence allows one to employ, for example, individual
emulsion droplets as tiny mobile containers for living cells in
microbiological applications [5,6] or as chemical reactors on
the micrometer scale [7]. Manipulations of flowing droplets,
such as the merging of two adjacent droplets triggered by an
electric pulse [8] or active sorting into different channels [9],
open a large range of applications. The ability to control
the packing geometry of static emulsions in confinement is
relevant in microfluidic applications where the neighboring
relations of individual droplets are essential [10].

In this work we present a theoretical study on the appear-
ance and stability of regular droplet packings in flat rectangular
microfluidic channels. Because the diameter of the emulsion
droplets is typically on the order of the channel dimensions,
the emulsion droplets spontaneously arrange in a variety of
topologically different packings once the volume fraction of
the dispersed phase exceeds a certain value. In the absence
of external forces the entire arrangement process is driven by
interfacial energy. Changes in the two control parameters, i.e.,
volume fraction and channel width, induce transitions between
topologically different droplet packings.

A large impact of the volume fraction on the appearance and
stability of certain droplet and particle packings in confinement
has been reported in a number of microfluidic experiments
[11–15]. Transitions between single-row, two-row, and three-
row packings of monodisperse emulsion droplets in tapered
channels have been described in detail by Surenjav et al.
in Ref. [14]. In their experimental setup the droplets are
slowly compressed or decompressed while flowing down
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a microfluidic channel of linearly varying width. At low
volume fractions of the dispersed phase, the transition from
a single-row to a two-row structure and the inverse transition
occur at the same channel width. Above a certain volume
fraction, however, the transitions in the widening segment
occur at a larger channel width than the inverse transition,
i.e., an increasing hysteresis of the transitions is observed
that eventually reaches the strong hysteresis observed in
dry emulsions [14]. Using plugs of a fluorinated oil that is
immiscible to both the droplet and the continuous phases
allows one to compress a stack of droplets in a flat microfluidic
channel and to study packing transitions [15]. Besides transi-
tions between congruent droplet arrangements, a longitudinal
separation into packings with high and low packing fractions
is observed in a certain range of confinement and volume
fraction [15].

The hysteresis of transitions between different static and
flowing foam packings in flat microfluidic channels has been
investigated both experimentally [16,17] and in computer
simulations employing the viscous froth model [16,18]. Hys-
teretic transitions between ordered packings have also been
reported for monodisperse dry foams in tubes with cylindrical
[19] and rectangular [20] cross sections during compression
and decompression cycles. In recent experiments Raven and
Marmottant [17,21] considered wet foams flowing in rectan-
gular channels, where they found a hysteretic transition from
single- to two-row packings controlled by the gas pressure and
the flow rate of the continuous phase.

Motivated by the experiments described in Ref. [14], we
computed the packing geometry of mechanically equilibrated
droplet arrangements in flat and straight microchannels of a
rectangular cross section for a given droplet size and volume
fraction of the dispersed phase. Provided effects of viscous
dissipation are negligible, our results should also apply to
slowly flowing emulsions. Regarding monodisperse foams of
micrometer-sized bubbles instead of emulsions, the dispersed
gas phase can be safely treated as a virtually incompress-
ible fluid. If, in addition, the diffusion of gas molecules
between adjacent bubbles is sufficiently slow, it is justified to
consider the bubble volume as a proper control parameter.
Under these conditions the mechanical stability of a foam
and an emulsion for the same packing geometry should be
identical.
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This article is organized as follows. In Sec. II we will intro-
duce a description of effectively two-dimensional packings of
emulsion droplets in linear microchannels. The appearance
of certain classes of periodic arrangements of congruent
droplets in the channel is summarized in a packing diagram
in Sec. III. In Sec. IV we discuss the hysteretic transitions
between different packings of congruent droplets. A summary
and outlook are given in Sec. V. The explicit construction
of effectively two-dimensional droplet packings from purely
geometric considerations is explained in the Appendixes.

II. PHYSICAL MODEL

In a typical microfluidic setup the exchange of solvent
molecules between the dispersed phase and the continuous
phase is slow on experimentally relevant time scales. Hence
we will neglect coarsening of the emulsion droplets by
diffusion in the following considerations. In this situation each
mechanically stable droplet packing corresponds to a local
minimum of the interfacial energy for a given droplet volume
Vd and volume fraction of the dispersed phase φ.

By use of the Laplace law �P ≡ Pd − Pc = 2Mγ , we
can relate the local mean curvature M and interfacial tension
γ of the liquid-liquid interface to the difference between
the pressure Pd inside a droplet and the pressure Pc of the
continuous phase at a particular point of the interface. Spatial
variations of �P due to hydrostatic pressure contributions are
negligible since we assume the dimensions of the cross section
of the channels to be small compared to the capillary length
Lc = √

γ /g|�ρ|, where �ρ is the density difference between
the liquid phases and g is the acceleration of gravity. Moreover,
we assume a chemical equilibrium of surfactant molecules
and hence discard spatial variations of the interfacial tension.
Under these assumptions any interface between the dispersed
liquid and the continuous phase will be a surface of constant
mean curvature in mechanical equilibrium.

In this work we will consider packings of monodisperse
emulsion droplets confined to straight, flat channels of rect-
angular cross section and restrict our analysis to periodic
packings composed of congruent droplets. In other words,
the channel can be tiled by use of a single droplet shape only.
This assumption implies that each droplet will have the same
pressure Pd in mechanical equilibrium. Besides the droplet
volume Vd , each packing is characterized by the volume of
the continuous phase in a tile Vc. The volume fraction of the
dispersed phase φ can thus be expressed by φ = Vd/(Vd + Vc).

A. Stability

In certain ranges of the control parameter droplet volume Vd

and volume fraction of the dispersed phase φ, the geometrical
construction of congruent droplet packings allows for multiple
equilibrium configurations. The stability of these equilibria,
however, is not obvious and some of the solutions will
correspond to mechanically unstable packings.

In this work we will infer stability from the complete set
of equilibrium configurations for given values of the control
parameter. Any mechanically equilibrated droplet packing
represents either a local minimum of the interfacial energy
or a saddle point in the energy landscape under the constraint

of a fixed volume. In a complete set of mechanical equilibria,
the configuration with the lowest interfacial energy must be
mechanically stable, while the configuration with the highest
interfacial energy must correspond to an unstable saddle point.

In the present study we impose the constraints of constant
droplet volume and congruency of droplet shapes. Releasing
the system from one of these constraints or both can transform
a local minimum of the energy landscape into a saddle
point, i.e., the packing may become unstable. As we consider
packings of congruent droplets, there is always the possibility
that such a packing is unstable with respect to perturbations
that do not preserve the congruency of the tiles. Indeed, the
instability of certain congruent droplet packings with respect to
longitudinal variations of the packing fraction is observed both
in microfluidic experiments and in numerical minimizations of
the interfacial energy [15].

Information about the local stability of a droplet packing
with respect to arbitrary small perturbations can, in principle,
be obtained from a spectral analysis of the second variation
of the interfacial energy. Such a stability analysis has been
applied to predict the stability of liquid droplets in contact
with structured surfaces [22,23].

B. Effectively two-dimensional model

In flat channels, i.e., where the ratio of channel height
D to channel width W is small compared to unity, droplets
with volumes Vd � D3 assume pancakelike, effectively two-
dimensional shapes. This situation is sketched in Fig. 1(a).
On the one hand, the radius of curvature R of the free in-plane
droplet contour, i.e., those parts of the contour that are not in
contact with either the channel wall or another droplet, will be
much larger than the height of the channel. On the other hand,

(a)

(b)

FIG. 1. (Color online) (a) Three-dimensional illustration of a
flat, pancakelike droplet confined in a rectangular channel with an
invisible top plate. (b) Cross section through such a droplet. Here R

is the radius of the effective droplet contour and Rm = D/2 denotes
the radius of the meniscus.
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the out-of-plane contour of the meniscus can be approximated
by a segment of a cylindrical torus with radius Rm = D/2 � R

[see Fig. 1(b)]. This separation of length scales allows us to
write the mean curvature M of the liquid-liquid interface as
the sum

2M = C⊥ + ν C‖ + O

(
D

R2

)
, (1)

with the leading order of the out-of-plane curvature of the
liquid-liquid interface C⊥ = 2/D and the in-plane curvature of
the droplet contour C‖ = 1/R � C⊥. The numerical prefactor
ν is not identical to one, as one may naively expect, but assumes
the value of π/4 for perfectly nonwetting conditions, i.e., in
the case where the dispersed phase forms a contact angle
θ = π with the channel walls. The numerical prefactor will
be explained later in this section. Throughout this work we
will assume perfectly nonwetting conditions for the dispersed
phase on the channel walls, which is the usual case in
droplet-based microfluidics, where surfactants are used to
prevent the merging of droplets.

According to the law of Laplace and the mean curvature of
the liquid-liquid interface [Eq. (1)], we may write the Laplace
pressure of a droplet as the sum

�P = �P⊥ + �P‖ (2)

of a constant pressure offset �P⊥ = 2γ /D and a contribution

�P‖ = πγ

4R
+ O

(
γD

R2

)
, (3)

which depends solely on the radius of curvature R of the
contact line between the continuous and dispersed phases.
The pressure contribution �P‖ can be viewed as the two-
dimensional analog to the Laplace pressure in three dimen-
sions because it relates to the in-plane curvature of a two-
dimensional droplet. In contrast, the pressure �P⊥ depends
only on the vertical confinement.

The prefactor of π/4 of the in-plane curvature in Eq. (1)
can be rationalized from the limiting process mapping a three-
dimensional droplet packing to the purely two-dimensional
model. In the asymptotic limit D/W → 0 of an ideal two-
dimensional system, one may consider the area enclosed by
the droplet contour instead of its volume. Hence the reference
position of the in-plane contour of a three-dimensional droplet
must be chosen such that the area Ad enclosed by the contour
and the droplet volume Vd satisfy Ad = Vd/D + O(L0),
where L is the length of the droplet perimeter. This procedure
is similar to the construction of the Gibbs dividing surface
between a coexisting vapor and liquid phase of a single-
component fluid.

Figure 1(b) displays the position of the effective droplet
contour by the left vertical line. This line cuts the meniscus
such that the area of the dispersed phase on the left side equals
the area of continuous phase on the right side. Referring to
this effective in-plane contour, the interfacial energy E can be
written as the sum

E = 2γAd + τL + O(L0), (4)

where

τ = πγD

4
(5)

represents the interfacial energy of the meniscus per unit
length of the effective contour. For a circular droplet it can
be checked by an explicit calculation that the derivative of the
interfacial energy (4) with respect to the volume directly yields
the Laplace pressure (2) and hence a prefactor of ν = π/4 in
Eq. (1).

Due to the finite lateral extension of the meniscus, the
distance between the effective contours of two droplets in
mutual contact may not be smaller than a minimal separation
of Smin = (1 − π/4)D. In the asymptotic limit D/R → 0,
however, the effect of the finite separation between two
effective droplet contours becomes negligible. Together with
the observation that congruent droplets in a mechanically
equilibrated packing have the same pressure, this implies
the following set of construction rules for effectively two-
dimensional congruent packings: (i) The contour of a droplet
is straight at points where it touches one of its neighboring
droplets, (ii) the curved parts of the contour bounding the
droplet to the continuous phase have the same curvature, (iii)
segments of the contour in contact with the lateral channel
walls are described by straight lines (as long as the channel
walls are straight), and (iv) the contour is smooth at every point
(the normal to the contour is continuous).

Throughout the rest of this paper we will speak of effectively
two-dimensional droplets, meaning such droplets where the
vertical confinement of the microfluidic channel allows us to
factor out the contributions of the out-of plane curvature, as
above. As we are working exclusively in the asymptotic limit
of flat channels, we will from now on use the term area fraction
for φ instead of volume fraction and characterize flat droplets
by the effective area Ad ≡ Vd/D of the droplets. In a truly two-
dimensional system the term continuous phase is misleading
since the continuous phase is separated into disconnected
compartments by the droplet phase. As mentioned previously,
the continuous phase in a real three-dimensional system
communicates via thin plateau borders at the channel walls
and the pressure of the continuous phase becomes identical in
all compartments in mechanical equilibrium.

III. DROPLET PACKINGS

Employing elementary geometry, we are able to construct a
number of effectively two-dimensional packings of congru-
ent droplet shapes that satisfy the geometrical equilibrium
conditions given in Sec. II. Figure 2(a) displays possible
packings in a strip of constant width. Each packing geometry
is characterized by the topology of its contact network, which
is defined by mutual droplet contacts and contacts of droplets
with the sidewalls.

The appearance and stability of the droplet packings shown
in Fig. 2(a) at a given droplet size and area fraction is best
illustrated in the form of a packing diagram. Figure 2(b)
shows the packing diagram for congruent droplet packings
in flat channels in terms of the dimensionless channel width
w ≡ W/

√
Ad and area fraction of the dispersed phase φ.

Alternatively to the dimensionless channel width w, we will
employ the dimensionless droplet area ad ≡ Ad/W 2 = 1/w2

in our calculations. Dimensionless rescaled quantities will be
denoted by lowercase letters.
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FIG. 2. (Color online) (a) Different packings of monodisperse
effectively two-dimensional droplets in a straight channel. From left
to right: loose assembly (L), slugs (S), bamboo packing (B), zigzag
packing with two neighbors (Z), and staircase packing (SC) with
four neighbors. (b) Packing diagram of effectively two-dimensional
monodisperse emulsion droplets in a rectangular channel geometry.
The packing diagram is spanned by the following control parameters:
area fraction φ and dimensionless channel width w ≡ W/

√
Ad .

The colored lines represent continuous transitions between different
droplet shapes. A solid line becoming dashed means that from
this point on a further, third packing represents the global energy
minimum. The dotted black lines mark the area where multiple
solution branches exist. The circled points markedA, B, C, D, and E
serve only as markers referred to in the text.

In the packing diagram Fig. 2(b), each of the constructed
packings is mapped onto a corresponding region of the control
parameters w and φ, where this particular packing is found
to be a mechanically stable state or even represents the global
minimum of the interfacial energy. Solid lines in the diagram
indicate the sets of points where the global minimum changes
between two packing geometries. We will refer to these lines
as transition lines.

In principle, two types of transition lines can be dis-
tinguished. On the first type of transition line the global
minimum changes continuously between two topologically
distinct packing geometries and a continuous transformation
of the droplet shapes is observed. On the second type of
transition line, however, two droplet configurations with the
same minimal energy are found, which are separated by
an energy barrier. For the latter type, we find regions of
metastability for the particular packing, which represents the
global energy minimum on the opposite side of the transition
line.

Sets of points in the packing diagram [Fig. 2(b)] where local
energy minima corresponding to a certain packing geometry
cease to exist are indicated by dotted lines. Crossing a dotted
line leads to a discontinuous change in the droplet configura-
tion of this droplet packing. Hence we will refer to this type of
line as a boundary of mechanical stability. Besides transition
lines and boundaries of mechanical stability, the packing
diagram includes a third type of line: Dashed lines display the
sets of points where a metastable droplet packing transforms
continuously into another metastable packing geometry.

The explicit construction of packings of congruent droplets
allows us to compute all lines in the packing diagram [Fig. 2(b)]
analytically. In the remainder of this section we will present
and discuss the results of our calculations. Details of the
computation are provided in Appendix A.

At low area fractions φ and for small confinements w each
droplet is in contact with both channel walls and is separated
by equal amounts of the continuous phase [see also the sketch
in Fig. 2(a)]. In the following we will refer to these droplets
as slugs (abbreviated by S in the figure). As the area fraction
of the dispersed phase is increased at a constant confinement,
these slug-shaped droplets will eventually touch each other.
Hence the region of slugs in the packing diagram Fig. 2(b) is
bounded by two curves: If the area fraction satisfies φ � π/4,
the droplets first experience the lateral confinement of the
channel and will transform into slugs once w � 2/

√
π . In the

packing diagram Fig. 2(b) this transition is indicated by the
horizontal solid (green) line ending at point A. For fixed area
fractions φ � π/4, two neighboring slugs will first touch each
other as w is increased before losing contact with both channel
walls. In the particular configuration where the slug touches its
neighbors in just a single point, the continuous phase in a tile
occupies that area within the unit square around the contact
point that is not covered by the two half circles of the slugs (i.e.,
an inverse unit circle), so that the transition is characterized by
a dimensionless channel width

w = 2

√
1 − φ

(4 − π ) φ
, (6)

as indicated by the purple line at the bottom of Fig. 2(b),
starting from point A and moving to smaller channel widths.
When crossing this line toward larger channel widths w, two
neighboring droplets form a straight lamella with an orien-
tation perpendicular to the channel. Due to its characteristic
shape, resembling a stack of rounded rectangles, the latter
structure has been termed a bamboo structure and will be
abbreviated B.

When increasing the area fraction φ of a loose assembly
of droplets with a diameter slightly smaller than the channel
width, the droplets will arrange in a zigzaglike geometry [see
also the sketch marked Z in Fig. 2(a)]. In this packing each
droplet is in contact with two neighboring droplets and with
one side of the channel wall. The area fraction of dispersed
phase at this jamming transition corresponds to the densest
regular packing of nonoverlapping circular disks between two
parallel lines. However, we cannot rule out the existence of
mechanically stable droplet packings below this value of φ.

It is widely accepted (but not strictly proven) that packings
built out of triangular domains of hexagonally close-packed
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FIG. 3. (Color online) Ideal triangular domain packing of
monodisperse circular droplets. In this example the angle α

parametrizes packings between a three-row packing at π/2 and a
four-row packing at π/6. The dimensionless channel width w and
the area fraction φ are given by Eqs. (7) and (8), respectively. For the
case shown here, the number of perfect rows in the triangular domain
is n = 3.

circular disks with alternating orientation represent the densest
packing in a parallel strip [24,25] (see also Fig. 3). In Ref. [25]
Füredi gave a proof for a strip width in the range (2 +√

3)/
√

π � w � (2 + 2
√

3)/
√

π , i.e., for packings between
two and three rows of perfect hexagonal disk arrangements. In
strips with a width of 2/

√
π � w � (2 + √

3)/
√

π , circular
disks can be arranged into a zigzag packing where each disk
touches two neighboring disks and either one or the other
sidewall of the channel.

In the packing diagram shown in Fig. 2(b), triangular
domain packings of circular disks are found on the solid
(blue) line between points A and B and the solid (blue) line
starting from B toward smaller φ and larger w. These curves
are parametrized by

w = 2 + √
3(n − 1) + 2 cos α√

π
(7)

and

φ = πn(n + 1)

[2 (n − 1) + 4 sin α][2 + √
3(n − 1) + 2 cos α]

, (8)

where n is the number of rows in a triangular domain
and α ∈ [π/6,π/2] is a packing angle. For assemblies of
effectively dimensional droplets in a microchannel, this line
should correspond to a transition between a loose packing and
a compressed packing.

Note that Eqs. (8) and (7) yield identical values for (n,α =
π/6) and (n + 1,α = π/2) and hence define a continuous
curve in the space of the control parameter. Each kink in the
transition line corresponds to a perfect hexagonal disk packing
of n layers. Upon increasing the dimensionless channel width
w, the transition line bows to lower packing fractions φ

between two subsequent kinks.
Upon crossing the lowest bow of the transition line, i.e., the

part between pointsA andB, a loose disk assembly transforms
into a zigzag structure during an increase of the area fraction
φ. We will refer to this packing as the zigzag packing Z,
which can be regarded as a special case of a triangular domain
packing compressed beyond the jamming line. Similar to the
triangular domain packings, a zigzag packing is characterized

by the angle α between the channel wall and the lamella
separating two adjacent droplets [see Fig. 2(a)]. In the region
at higher area fractions enclosed by the second bow we expect
to find three-row structures. However, these structures do not
belong to the class of packings composed of congruent droplet
shapes.

In the asymptotic limit of a completely dry emulsion,
i.e., for an area fraction φ → 1, we find packings where
each droplet is in contact with four neighboring droplets.
Owing to the particular shape of the droplets, we will refer
to this structure as the staircase packing SC [see Fig. 2(a)].
Consequently, there must be a transition between the zigzag
packing with two neighbors and the staircase packing with
four neighbors at a certain value of the area fraction.

According to the equilibrium conditions for effectively
two-dimensional droplet packings in Sec. II, the lamella angle
of the staircase structure is fixed to α = π/6 in mechanical
equilibrium (see also Fig. 6 in Appendix A). This implies
that the dimensionless channel width of a packing SC cannot
become smaller than w = 3−1/4 � 0.7598 in the dry limit
φ → 1. For dimensionless channel widths w < 3−1/4 we find
the bamboo structure as the only mechanically stable droplet
configuration in the dry limit. This implies that we will observe
a transition from a zigzag structure to a bamboo structure
during an increase of the area fraction of the dispersed phase
in sufficiently narrow channels.

A similar symmetry-breaking transition has been described
for a dry foam in a similar geometry by Fortes et al. [26].
In the latter case a pair of effectively two-dimensional twin
bubbles in contact with two confining parallel straight walls
undergoes a buckling transition upon a decrease of the wall to
wall distance. Predicted by an analytical model and confirmed
by experiments, the lamella shared by the twin bubbles is
oriented parallel to the confining walls for sufficiently large
distances. Below a certain distance the lamella becomes tilted
with respect to the orientation of the confining walls. In
contrast to the transition between bamboo and zigzag packing
in our analysis, the buckling transition of the twin bubble is
always continuous.

The brown line in Fig. 2(b), starting atB towards higher area
fractions and channel widths, marks the parameters where the
contour length of a droplet in an SC packing that is in contact
with the channel wall becomes zero. On this line droplets touch
the sidewall only at a single point. This transition is similar to
that between packings of types Z and B. For the region above
this line, no congruent two-row packing can be constructed.

The explicit construction of equilibrium configurations
allows us to compute the transition line between packings
Z and B in the form of a parametric curve, which is displayed
by the red line in the packing diagram in Fig. 2(b), going from
A to D and continuing as a dashed line beyond D. On this
transition line we find configurations Z whose lamella angle
α has reached π/2 from below. These configurations can also
be regarded as a bamboo packing, where each droplet touches
both sidewalls at a single point.

For sufficiently small droplet area or, equivalently, a
large channel width, however, a transition of Z directly into
a staircase packing is observed. Along the corresponding
transition line we find configurations Z where the contour of
two next-nearest-neighbor droplets touches in a single point.
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The transition line can be expressed by a parametric curve,
which is displayed as the yellow line in Fig. 2(b), starting
at B.

The explicit construction of the packings Z, SC, and B
reveals that multiple equilibrium configurations exist in a
certain range of control parameters. In the present system
we find either one or three equilibrium configurations of
congruent droplet shapes for given values of the dimensionless
channel width w and area fraction φ for dry emulsions. The
two solutions with the lowest energies represent mechanically
stable configurations. The remaining configuration with the
highest interfacial energy corresponds to a saddle point in the
energy landscape and hence is mechanically unstable.

Crossing the boundaries of mechanical stability indicated
by the (black) dotted lines in Fig. 2(b), the unstable con-
figuration and one of the other two mechanically stable
configurations merge with the saddle point configuration and
disappear. The global minimum of the interfacial energy
changes between the two mechanically stable configurations
along the solid (black) line, which ends together with the two
dotted lines at a cusp with φ = φ∗ � 0.8130 and w = w∗ �
1.458 (point C). Calculations of the lines bounding the region
of mechanical stability of the metastable zigzag packing and
of the bifurcation point at the tip of the cusp are explained in
Appendix B.

In the immediate vicinity of the cusp between points C
and D we find a transition between two zigzag packings with
different packing angle α. Beyond point D, the (black) line
continues as a transition line between the remaining mechan-
ically stable zigzag packing and the bamboo packing until,
at even larger area fractions, this transition line crosses the
continuous transition line between the remaining mechanically
stable zigzag packing and the staircase packing at E . As
expected, the last part of the (black) transition line corresponds
to a transition between bamboo and zigzag packings.

IV. HYSTERESIS

The transitions and instabilities of droplet packings shown
in the packing diagram in Fig. 2(b) can be exemplified
in a series of plots of the dimensionless interfacial energy
e ≡ E/τW as a function of the dimensionless channel width
w for fixed values of the area fraction φ (see Fig. 4). By
construction of the effective droplet contour and because the
area Ad of a droplet is constant we may drop the first term of the
interfacial energy in Eq. (4). Owing to the explicit construction
of the droplet packings outlined in Appendix A, we are able to
express the dimensionless interfacial energy e of the droplets
and the dimensionless channel width w as functions of a
suitable parameter. This parameter may be the angle α of
the lamella with the channel walls for a zigzag packing or the
length LW of the droplet perimeter in contact with the sidewall
for the bamboo packing or the staircase packing. These explicit
parametrizations allow us to examine the discontinuous and
history-dependent transitions in the parameter region where
several stable states coexist.

At low values of φ � φ∗ � 0.8130 we find only a single
equilibrium configuration for a given channel width [see
Fig. 4(a)]. This configuration may be a bamboo packing at
low values of the dimensionless channel width w or a zigzag

packing at large values of w, corresponding to the red line in
Fig. 2(b).

For area fractions slightly above φ∗, a small hysteresis loop
appears in the range of the zigzag packing. Note that the branch
of the hysteresis loop with the highest energy corresponds
to a mechanically unstable configuration in contrast to the
remaining two branches. The values of the dimensionless
channel width w corresponding to the lower and upper limits
of the hysteresis loop are located on the lower and upper
branches, respectively, of the black dotted lines in the packing
diagram in Fig. 2(b). The point where the two branches of the
two remaining mechanically stable solutions cross defines the
transition line shown as the solid black line starting at C in
Fig. 2(b).

Increasing the area fraction further, we observe a direct
transition between packings B and Z when following the
lowest, globally stable branch [see also Fig. 4(c)]. At even
higher area fractions the transition occurs between B and SC,
in agreement with the limit of dry emulsions φ → 1, which
excludes the packing Z. At these points the black line starting at
C in Fig. 2(b) takes over as the transition line between globally
stable packings.

Interestingly, the point where the branches of the bamboo
packing and the zigzag packing join coincides with the lower
end point of the hysteresis loop for area fractions φ � 0.9356.
Similarly, the upper end point and the point where the branch of
the Z and SC packings join become identical for φ � 0.9960.
Hence, in this range of area fractions close to one the
zigzag packing appears only in the unstable branch of the
hysteresis loop. These area fractions correspond to the points
in the packing diagram in Fig. 2(b) where the dotted lines
indicating the limits of metastability merge with the dashed
transition lines, which indicate a continuous crossover between
metastable packings.

In order to visualize the energy landscape that gives rise to
the hysteresis loops depicted in Fig. 4, one needs to choose
a suitable additional control parameter. Provided that such a
control parameter exists, the energy landscape, or restricted
energy, is given by the value of the interfacial energy of the
interfacial configuration that minimizes the energy under the
constraint of the additional control parameter fixed to a certain
value. This implies that the restricted energy is, in the first
place, a function of this additional control parameter.

The method described above allows us to determine saddle
point or mountain pass configurations between two mechan-
ically stable droplet packings that appear as local minima
of the restricted energy. To resolve the energy landscape of
the discontinuous transition shown in Fig. 4 we employed
the freely available software package SURFACE EVOLVER [27]
to find energetically minimal droplet packings under the
constraint of a fixed distance of the droplet’s center of
mass to the centerline of the channel Yc.m.. Experimentally,
similar constraints could be enforced by an external field,
such as gravity, when the droplets have different densities.
The value of the interfacial energy in an energy minimum
under this constraint as a function of dimensionless distance
yc.m. ≡ Yc.m./W for given area fraction φ = 0.925 is shown in
Fig. 5 for a series of dimensionless channel widths w between
1.2 and 1.8, i.e., in the region of the hysteresis loop depicted
in Fig. 4(c). For the sake of visibility and comparability, we
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FIG. 4. (Color online) Hysteresis loop of the interfacial energy e = E/τ W of a droplet as a function of the dimensionless channel width
w = W/

√
Ad for area fractions (a) φ = 0.8, (b) φ = 0.875, (c) φ = 0.925, and (d) φ = 0.975. Here τ = πγ D/4 is the effective line tension

of the in-plane droplet contour, W is the width of the channel, Ad is the area of a droplet, and γ is the interfacial tension of the liquid-liquid
interface.

subtracted for each restricted energy curve individually the
value e0 at yc.m. = 0.

A comparison of Figs. 5 and 4 shows that the restricted
interfacial energy for a given value of the dimensionless chan-
nel width and area fraction exhibits a number of extrema that
matches the number of stable states seen in a corresponding
vertical cut through the hysteresis loop. In the area of the loop
the three coexisting states correspond to two minima and one
maximum of the restricted interfacial energy, while for the top
and bottom curves in Fig. 5, only one minimum can be found (a
bamboo packing with completely aligned droplets at yc.m. = 0
and a staircase packing with four neighbors, respectively).
Since the intermediary nonequilibrium configurations in Fig. 5
cannot be categorized in the same way as the equilibrium
configurations discussed so far, we chose to indicate only
the number of direct neighbors each droplet has by the line
color. When moving through the curves from top to bottom, it
can be seen how the global minimum changes place between
the two mechanically stable solutions and how the globally
stable zigzag packing later transforms into a staircase packing
with four neighbors, as also indicated in Fig. 4(c). The insets
show snapshots of such unstable states corresponding to the

parameter values indicated by the circles as obtained from our
numerical energy minimizations. Note that these states are not
mechanically stable once the additional constraint enforced
by buoyancy forces is lifted, so they will not be observed in
experiments with equally buoyant droplets.

V. CONCLUSION

Motivated by microfluidic experiments with monodis-
perse emulsions, we examined the appearance of periodic
droplet packings in flat linear channels of a rectangular
cross section. In this effectively two-dimensional limit the
geometry and stability of static droplet packings is governed
by the channel width normalized by the droplet size w and
the area fraction of the dispersed phase φ. We restricted
our considerations to packings of congruent droplets and
found four different packings: slugs S, a bamboo structure
B, a zigzag packing Z where each droplet has two direct
neighbors, and a staircase packing SC with four neighbors.
In agreement with the limit of dry, i.e., foamlike effectively
two-dimensional emulsions, the transition between single- and
double-row packings in a widening or narrowing channel
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c.m.

FIG. 5. (Color online) Energy landscapes of droplet packings
showing the evolution of stable states when changing the channel
width w. The control parameter on the abscissa is the lateral position
of the droplet’s center of mass yc.m.. Shown is the dimensionless re-
stricted interfacial energy e − e0 for different dimensionless channel
widths w at an area fraction of φ = 0.925 [thus corresponding to
Fig. 4(c)]. The insets show simulation snapshots of the nonequilib-
rium intermediate packings indicated by the black circles. The line
color encodes the number of neighbors a droplet in the corresponding
packing has.

becomes increasingly hysteretic as the area fraction of the
dispersed phase approaches one. The hysteresis loop shrinks
to single point at φ = φ∗ � 0.8130 and w = w∗ � 1.458
when decreasing φ. The point (φ∗,w∗) corresponds to a
bifurcation of multiple equilibria in the range of zigzag
packings.

The onset of hysteresis is qualitatively consistent with
works on wet foams reporting a strong increase of irreversible
bubble rearrangements during shear as the area fraction of the
continuous phase is decreased. The bifurcation of equilibrium
packings Z can be characterized by a caustic in the space of
control parameters. This caustic is located inside the bow of
the jamming line between a perfect one-row and a two-row
packing of circular disks. Hence it will be interesting to
study the jamming and compression of monodisperse droplet
packings between two-row and three-row structures. Because
the corresponding transition between dry hexagonal one-row
and two-row packings is apparently hysteretic, we expect to
observe at least one bifurcation of equilibrium configurations.
Unfortunately, the three-row packing and all higher packings
consist of at least two different congruent droplet shapes.
Hence the complete analytical treatment of this problem
is challenging and it may be necessary to use numerical
minimizations of the interfacial energy.

In this work we assumed congruent droplet packings in
equilibrium. It would be interesting to extend the present
analysis to noncongruent and multirow droplet packings.
Garstecki and Whitesides [28,29] already enumerated a num-
ber of minimal-energy tessellations of noncongruent multirow
packings in dry foams. Tessellations involving two different
tiles have also been reported in Ref. [30]. It is possible that
some of the structures investigated in that work are unstable
with respect to transversal or longitudinal rearrangements of

the droplets. In other words, the two-row packings either may
break the up-down symmetry or the distribution of droplets
may become heterogeneous along the channel. Calculations
of the stress as a function of the area fraction at fixed droplet
area indicate that instabilities of the latter type, characterized
by a negative compressibility, are found in a certain range of
the control parameter [15]. The results of experimental works
in comparison to the numerical computations are presented in
Ref. [15].
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APPENDIX A: GEOMETRICAL CONSTRUCTION

As mentioned in Sec. III, certain classes of droplet packings
can be constructed using elementary geometry only. In the case
of bamboo packings, zigzag packings, and staircase packings,
one can partition the channel into equal tiles where each tile
contains exactly one droplet (see Fig. 6). These droplet shapes
can be parametrized by the radius R of the curved parts of the
contour and the tilt angle α of the lamellae. The droplet area
ad and the area of the continuous phase of a tile ac can then be
expressed as functions of these parameters.

1. Zigzag packing Z

To be consistent with the assumption of only two neighbor-
ing droplets we have to impose the restriction

α ∈
[
π

6
,
π

2

]
, r ∈

[
0,

1

2(1 + cos α)

]
(A1)

to the tilt angle α of the straight lamella and the dimensionless
radius r ≡ R/W of the circular segments. The two tilted
lamellae and the part of the droplet contour in contact with the
lateral walls of the channel define a triangle. For the definition
of the droplet geometry see Fig. 6. The dimensionless height
h ≡ H/W of this fundamental triangle then reads

h = 1 − r

(
1 + 2 cos α − 1

cos α

)
, (A2)

so that the dimensionless area ad ≡ Ad/W 2 of the droplet
becomes

ad = h2 cot α − r2

[
cot2

(
α

2

)
tan α − π

]
. (A3)

The dimensionless area of the tile ac ≡ Ac/W 2 of the droplet
occupied by the continuous phase takes the form

ac = r2[4 sin α(1 + cos α) − π ]. (A4)

In order to obtain the interfacial energy of the droplet we
have to compute the total length of its contour. The boundary
of a single, effectively two-dimensional droplet comprises the
lamellae to both neighboring droplets, a single interface to a
channel wall, and the interface to the bulk of the continuous
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FIG. 6. (Color online) (a) Schematic of a bamboo packing
(B), (b) zigzag packing (Z) with two neighboring droplets, and
(c) staircase (SC) with four neighboring droplets. Here Lw is the
length of the effective droplet contour in contact with the sidewall,
W is the width of the channel, R is the radius of curvature of the
effective droplet contour, Ld is the length of the lamella of two
nearest-neighbor droplets, and Lh is the length of the lamella to the
next-nearest-neighbor droplet. The triangle defined by two adjacent
lamellae has a height H .

phase. We find

�d = 1 − 2r(1 + cos α)

sin α
(A5)

for the dimensionless length �d ≡ Ld/W of the interface
between both neighboring droplets,

�w = 2

[
h cot α − r cot

(
α

2

)]
(A6)

for the dimensionless length �w ≡ Lw/W of the interface in
contact with the lateral channel walls, and simply

�c = 2πr (A7)

for the length of the circular parts. Hence the dimensionless
interfacial energy e = E/τ W of a droplet in a zigzag packing
is given by

e = 2 �d + �w + �c, (A8)

with the effective line tension τ according to Eq. (5) in Sec. II.

To determine possible equilibrium configurations in terms
of the angle α and radius r at a given value of the area fraction
φ, we have to solve a quadratic equation

(1 − φ) ad − φ ac = 0 (A9)

in the radius r . It turns out that only one of the two roots of
Eq. (A9) corresponds to a physically meaningful configuration.
The explicit parametrization r(α,φ) of this solution allows us
to parametrize the interfacial energy and the channel width as
a function of the tilt angle α for given values of φ.

APPENDIX B: BIFURCATION

Instabilities of the droplet configuration can be detected
from the set of stationary configurations for given control
parameters, in this case, for fixed area fraction φ and
droplet area ad . At low area fractions φ and at droplet
areas close to the line where the droplets come into mutual
contact and in contact with the channel walls, we find only
one stationary configuration (characterized by α and r).
However, at a certain threshold area fraction one observes
a bifurcation into three stationary solutions, i.e., there are
suddenly three droplet configurations with the same Laplace
pressure and area fraction for different values of α and r .
It is reasonable to assume that these solutions correspond
to two local minima and one saddle point of the interfacial
energy.

The point of bifurcation and the boundaries of local stability
can be obtained from the Jacobian

J (α,r) =
(

∂rad (α,r) ∂αad (α,r)

∂rac(α,r) ∂αac(α,r)

)
(B1)

of the map between the order parameters (α,r) and the
control parameters (ad,ac). The Jacobian becomes singular
for |J (α,r)| = 0, which implicitly defines the function

rb(α) = sec2(α/2)[4 sin α + 2 sin(2α) − π ]

π [cos(2α) − 2 cos α] + 3 sin(2α) − 6 sin α
. (B2)

Mapping the solution rb(α) back onto the space of the control
parameters area fraction and droplet area yields a parametric
curve [ad (α),φ(α)] in the packing diagram in Fig. 2(b). In
the generic case, a point on the curve corresponds to values
of the control parameters where the number of stationary
configurations changes by 2, i.e., while approaching this line
a local minimum and a saddle point of the energy approach
and disappear on the line. At the cusp at φ∗ � 0.8130 and
a∗ � 0.4707, or dimensionless channel width w∗ = 1/

√
a∗ �

1.4576, one observes a bifurcation of a single local minimum
of the interfacial energy into a saddle point and two local
minima.
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