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Flow-induced agitations create a granular fluid: Effective viscosity and fluctuations
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We fluidize a granular medium with localized stirring in a split-bottom shear cell. We probe the mechanical
response of quiescent regions far from the main flow by observing the vertical motion of cylindrical probes
rising, sinking, and floating in the grains. First, we find that the probe motion suggests that the granular material
behaves in a liquid-like manner: high-density probes sink and low-density probes float at the depth given by
Archimedes’ law. Second, we observe that the drag force on moving probes scales linearly with their velocity,
which allows us to define an effective viscosity for the system. This effective viscosity is inversely proportional
to the rotation rate of the disk which drives the split bottom flow. Moreover, the apparent viscosity depends on
radius and mass of the probe: despite the linear dependence of the drag forces on sinking speed of the probe, the
granular medium is not simply Newtonian, but exhibits a more complex rheology. The decrease of viscosity with
filling height of the cell, combined with the poor correlation between local strain rate and viscosity, suggests that
the fluid-like character of the material is set by agitations generated in the stirred region: the relation between
applied stress and observed strain rate in one location depends on the strain rate in another location. We probe
the nature of the granular fluctuations that we believe mediates these nonlocal interactions by characterizing the
small and random up and down motion that the probe experiences. These Gaussian fluctuations exhibit a mix of
diffusive and subdiffusive behavior at short times and saturate at a value of roughly 1/10th of a grain diameter
longer times, consistent with the picture of a random walker in a potential well. The product of crossover time
and effective viscosity is constant, evidencing a direct link between fluctuations and viscosity.
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I. INTRODUCTION

What governs the flow of granular media? At the grain level,
interactions are mediated by collisions and contacts [1]. While
rapid flows where collisions dominate can be described by
advanced kinetic theories [2], and the understanding of flows
where both contacts and collisions are important has recently
advanced tremendously [3,4], it remains difficult to describe
slow flows where enduring contacts dominate the interactions.

Aspects of such slow grain flows can be captured by a
frictional rheology in which the friction laws acting at the grain
scale are translated to effective friction laws for the stresses
acting at a coarse-grained level [5–7]. In such a Mohr-Coulomb
picture, granular media remain jammed when the ratio of shear
τ to normal stresses P is below a critical value given by an
effective friction coefficient μ, while slowly flowing grains
exhibit stresses close to the yielding criterion: τ/P � μ.

This framework is, however, not complete. The combina-
tion of rate independence and a sharp yielding criterium leads
to a description which predicts the localization of flows in shear
bands of vanishing width and a corresponding sharp separation
between stationary zones and flowing zones [5]. However, in
experiments shear bands are found to be of finite width and the
boundary between flowing and stationary zones is not sharp,
with creep flow occurring even far away from the main shear
band [8–13]. The first key question is therefore: What is the
nature of the nearly stationary zones far away from the main
flow? A second key question is motivated by the observation
that, for slow flows, the flow rate is independent of the stresses.
But if the flow rate is not determined by the stresses, what
then is the physical mechanism that sets the flow rate of slow
granular flows [3,5,7]?

In the experiments described here, we address these
questions by locally stirring glass beads in a split-bottom shear

cell while probing the mechanical response of the essentially
quiescent regions near the surface, away from the shear band.
Details of the setup can be found in Sec. II A.

In the absence of stirring, the grains exhibit the usual
physical properties of a static sand pile, and the beads will
support an object of moderate mass placed on the surface, an
observation which indicates that, collectively, the beads exhibit
a yield stress. However, once the disk in the bottom of the
container starts rotating, an intruding object will immediately
begin to sink into the beads. An object which is denser than the
mixture of beads and air in the container will continue to sink
until it is completely submerged. Meanwhile, a low-density
object placed in the beads while the disk is rotating will rise
or sink until it floats at a certain equilibrium depth.

These behaviors are surprisingly liquid-like, which moti-
vates us to treat the granular medium as a fluid and posit
questions about the macroscopic properties of the system.
Does the granular medium exhibit a yield stress? What
parameters set the sinking speed of the probe? What physical
mechanism causes the probes to sink and float?

First, we will establish that the equilibrium depth of
a low-density object rising in the grains is equal to the
equilibrium depth of that same object sinking in the grains.
This demonstrates that our granular liquid does not exhibit
a yield stress: if there were a finite flow threshold, sinking
probes would get stuck at a different depth than rising probes.
Moreover, we find that the equilibrium depth of the probe can
be predicted from the effective density of the granular medium
and the dimensions of the probe: objects floating in the grains
obey Archimedes’ rule.

Second, we have found that the trajectory of floating probes
as they sink to their equilibrium depths is exponential in time.
Since the sum of the gravitational and buoyant forces is linear
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in the deviation from the equilibrium position, the exponential
relaxation strongly suggests that the drag forces on a moving
probe are linear in velocity, just as for viscous drag. From
the gravitational force, buoyant force, and vertical motion of
a sinking (or rising) object, we thus define and extract an
effective viscosity. This viscosity is inversely proportional to
the disk rotation rate. Unlike a Newtonian liquid, the viscosity
also depends on radius (R) and mass (M) of the probe: although
we are limited to studying probes with a small range of radii
and mass, our observations suggest that the viscosity scales
inversely with (M/R2)2. We also observe that the viscosity
increases when the shear cell is filled to larger heights and
depends weakly on the vertical position of the probe.

Third, we enquire if the local flow rate under the probe sets
the effective viscosity. Even though the residual flow in the
grains is small, it is not zero. Does this local, residual flow set
the effective viscosity, or is the effective viscosity determined
by agitations driven by flow further away? Using a rheometer,
we have measured the local flow rate along the central axis
of the rotating disk for several different filling heights and
compare this rate to the local viscosity as determined from
sinking probe experiments. We find that the local strain rate
and viscosity are very poorly correlated: the flow rate can
decrease over a factor of 1000 while the viscosity changes by
less than a factor of three.

We believe that fluctuations in the granular medium mediate
the interactions between a flowing zone in one location,
and the effective viscosity experienced in another location.
We have probed these fluctuations by characterizing the
random fluctuations in the probe position. We find that these
fluctuations are Gaussian, and that their root mean square
exhibits a mix of diffusive and subdiffusive behavior at short
times and saturates at a value of roughly 1/10th of a grain
diameter for times longer than a crossover time, consistent
with the picture of a random walker in a potential well. The
product of crossover time and effective viscosity is constant.

We conclude that the relation between applied stress and
observed strain rate in one location depends on the strain
rate in another location [14,15]. Moreover, despite the linear
relationship between the drag force and the sinking speed of the
probe, the granular medium is not simply Newtonian. Finally,
our data strongly suggest a direct link between fluctuations
and (effective) viscosity of the granular medium. All these are
crucial ingredients for the development of better models of
slow granular flows [15–17].

II. AGITATION OF GRAINS THROUGH FLOW

We induce shear flow in a container of glass beads by
rotating a disk in the bottom of the vessel, a split bottom
setup. The fluid-like characteristics of the beads can then
be probed by observing the motion of a low-density object
sinking (or rising) in the grains. Here we discuss our setup and
experimental procedure and main phenomenology.

A. Experimental setup and procedure

In this experiment, a split bottom cell (Fig. 1) is filled
with 1 mm glass beads to a depth H ranging from 45 to
80 mm. The sidewalls are roughened by teeth of length 2 mm
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FIG. 1. (Color online) The spinning disk (radius RD = 60 mm)
revolves in the bottom of a cylindrical container (radius RC = 80 mm)
which has been filled to a height H with 1 mm glass beads. The
distance between the spinning disk and the bottom of the probe is
denoted by z. The hollow cylindrical probe has mass M and radius
R. A photo of the experimental setup is on the right.

and height 2.5 mm, which are machined into the walls of the
container. Because of these teeth the radius of the container
varies between RC = 80 and 82.5 mm.1 The bottom disk has
a radius of RD = 60 mm and is roughened by hemispherical
dimples with a diameter of 3 mm. The disk is driven at a rate
�, either with a stepper motor attached to a belt or directly
by a stepper motor; the precise driving mechanism has only
a negligible effect on the behavior of the system, and we
conclude that there are no spurious vibrations introduced when
the motor drives the disk directly. The humidity of the system
is controlled by placing the apparatus in a small plastic tent
and allowing dry air escaping from the air bearing (Fig. 1) to
flow over the grains. The humidity is maintained at 7%–9% at
room temperature. This setup produces granular shear flows
which have already been described in detail [11,12,18–22].

In order to investigate the rheological properties of the
system we observe the motion of a probe moving vertically
in the grains. The probe consists of a hollow closed cylinder
attached to a shaft which passes through an air bearing and
into a DC Fastar FS1K LVDT sensor (Fig. 1). The air bearing
fixes the horizontal position of the probe while allowing the
cylinder to rotate and to move freely in the grains in the vertical
direction. Cylinders immersed in the beads have radii ranging
from 7 to 30 mm, and the mass of the probe (m) can be varied by
adding additional weights to the cylinder. The position of the
probe is measured by the LVDT sensor, which has a resolution
of 0.002 mm and a range of 51 mm with a linearity of ±0.15%.
Electronic noise in the signal is reduced by sampling at a rate
of 250 Hz and then averaging over 10 points.

The filling height H (Fig. 1) is not measured directly
because the volume changes as the grains compact and dilate;

1Both the main flow and our immersion experiments are far away
from the sidewalls; RC is sufficiently large so that its precise value
does not influence the flow.
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packing fraction is not a constant in a granular medium.
Instead, we control the total mass of the grains in the
container, even though we report the filling height H . A filling
height of H = 60 mm measured prior to shearing the system
corresponds to 2.4 kg of grains, and each 5 mm increment in
the filling height requires the addition of 200 g of grains.

Given that the average radius of the shear cell is 81.5 mm
we estimate a packing density ρ ≈ 1.92 g/cm3. Since grains
pack less densely near sidewalls [23], we can also obtain the
density of the medium by measuring the volume of the grains
placed in beakers of increasing radius and extrapolating to
infinite radius. This yields an independent estimate the density
of well-compacted grains to be 1.92 ± 0.05 g/cm3. Of course,
when the beads are sheared they dilate, and the filling height
of the sheared beads, H (0), is typically 1 to 2 mm larger
than the static filling height. When this dilation is taken into
account, the typical densities encountered in our experiment
are 1.86 ± 0.1 g/cm3.

Protocol—In order to minimize memory effects the grains
are stirred with a rod prior to beginning a measurement. The
surface of the granular medium is leveled by smoothing it with
a flat plate while spinning the disk at a rate of 0.5 rps for 20 s.
Exploring other initial procedures yields no evidence that the
initialization process influences the long-time dynamics of the
probe: the random run-to-run variation in the probe motion
is larger than variation observed for different preparation
methods.

At the start of a sinking probe experiment, the probe is held
at a position just above the surface of the grains (1–2 mm) and
then released when the disk at the bottom of the container
begins spinning. Prior to beginning an experiment with a
rising probe the probe is submerged in the beads; details of
the submersion procedure do not systematically influence the
long-time dynamics of the probe.

B. Phenomenology

In our experiment, shear flow is generated in a container
of glass beads by rotating a disk in the bottom of the vessel
(Fig. 1). In the absence of shear, objects placed on the surface
of the granular medium will become stuck after sinking a short
distance (only a few mm for probes with a large mass and small
area). In other words, the undriven granular system exhibits a
yield stress.

However, the behavior of the grains changes dramatically
when the beads are sheared by the rotating disk: a heavy object
placed at the surface will immediately begin sinking and will
continue sinking until it is submerged. Figure 2(a) shows a
dramatic example, where a heavy steel ball sinks in the grains
over a time scale of tens of seconds. Meanwhile, low-density
objects either sink or rise until they are floating in the grains
(Fig. 2). In the remainder of this paper, we will examine how
the vertical motion of the probe z(t) depends on the rotation
speed of the disk (�), filling height of grains in the container
(H ), probe mass (M), and radius (R).

Note that for most of our experimental conditions, the
amount of surface flow that we detect in absence of a probe
is very small: at H = 60 mm, the residual flow at the surface
is more than three orders of magnitude slower than the disk
rotation rate [12,21]. For the sample probe trajectory shown in

 0 s

 5 s

10 s

FIG. 2. (Color online) Examples of probe motion for filling height
H = 60 mm and disk rotation speed � = 0.1 rps. Left: Snapshots of a
steel ball (diameter 25 mm, mass 64 g), as it sinks in the grains. When
the disk is not rotating, the ball remains resting at the surface, as shown
in the top panel. Right: Trajectories of probes moving in the fluidized
grains. The orange line going straight down indicates the sinking of
a high-density probe (M = 48 g, R = 9 mm). A second, low-density
probe (M = 40 g, R = 20 mm) floats in the grains. This probe sinks
if initially placed above the equilibrium depth (red triangles) and rises
if placed below the equilibrium depth (blue squares).

Fig. 2(a) the residual flow at the surface is approximately one
rotation per 3 h. We will discuss the role of local flow rate in
more detail in Sec. IV C.

III. ARCHIMEDES’ LAW IN A GRANULAR FLUID

As shown in Fig. 2(b), low-density probes sink or rise to
a well-defined equilibrium depth zeq. The probe position as a
function of time for several rising and sinking experiments at
H = 60 and 50 mm is plotted in Figs. 3(a) and 3(c). These
trajectories illustrate that probes of a given mass reach the
same equilibrium depth in sinking and rising experiments for
a wide range of parameters, and that when the mass of the
probe is increased, the probe descends to a lower equilibrium
position.

Examining a brief segment of the probe trajectory reveals
that z(t) exhibits tiny, Gaussian fluctuations around the mean
position zeq [Fig. 3(b)]. Variations in the value of zeq achieved
in different experimental runs are small and of the order of
0.2 mm, one-fifth of grain diameter.

That the equilibrium position does not depend on whether
the probe is initially below or above zeq suggests that our
granular system does not exhibit a yield stress; if there were
a finite flow threshold, sinking probes would get stuck at a
shallower depth than rising probes. This observation, together
with the the observation that heavier probes have a deeper
equilibrium depth [Fig. 3(c)], motivates describing the probe
behavior using Archimedes’ law, in which the equilibrium
depth is predicted by the balancing the buoyant force and the
gravitational force.

Let us now propose that a cylindrical probe floats at an
equilibrium depth, z = zeq. For an infinite container, and in
the absence of any granular and dilatancy effects, Archimedes’
law reads

−Mg + πR2ρg[H (0) − zeq] = 0, (1)
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FIG. 3. (Color online) Floating probes behave according to
Archimedes’ law. All experiments are conducted with a probe of
radius R = 20 mm and at a disk rotation speed of � = 0.1 rps.
(a) Examples of probes of sinking and rising to their equilibrium
depth. Here H = 60 mm and the probe mass is 57 g. (b) Probability
densities of the probe position near equilibrium (the last 15% of each
data set) for three observations of a sinking probe (red, light gray)
and three observations of the same probe as it rises in the grains (blue,
dark gray); no systematic deviation between the probe positions of
rising and sinking probes can be observed (M = 57 g, zeq ≈ 36 mm).
(c) Sinking and rising probes for H = 50 mm; note the difference
in time scale in comparison to panel (a). (d) The equilibrium depth
as a function of probe mass for H = 60 (upper data set, intercept
56.89 mm, slope −0.358 mm/g) and H = 50 (lower data set,
intercept 47.93 mm, slope −0.366 mm/g). The green data points
at M ≈ 20 g (triangles) are obtained by imaging the position of a
very light probe with a camera.

where ρ denotes the effective density of the granular medium,
and H (0) is the filling height of the container prior to the
introduction of the probe [note that the medium dilates during
shear, so that H (0) is typically 1 mm larger than the initial
filling height H ]. The change in the filling height due to dilation
of the beads can be estimated by dropping a probe on to the
surface of the granular system and measuring the height at
which the probe is no longer falling.

There are several corrections that we need to take into
account. First, since the container has a finite radius R,
immersion of a probe will displace grains and raise the “fluid”
level. We have therefore calculated the height of the beads in
the container, H (z), as a function of the depth reached by the
probe z. We assume that the beads are not dilated or compacted
when the probe is immersed so that the total volume of the
beads is conserved:

R2
C[H (z) − H (0)] = R2[H (z) − z]. (2)

Solving for H (z) in terms of H (0) and z and replacing H (0)
in Eq. (1) with H (z) yields

−Mg + πR2ρg
R2

C

R2
C − R2

[H (0) − zeq] = 0. (3)

There are two additional corrections to the equilibrium
depth, which stem from the fact that grains pack less
efficiently close to boundaries. This observation suggests that
the effective radius of the probe R̃ may be somewhat larger than
the real value: R < R̃ < R + Rgrain. Similarly, grains pack less
densely against the bottom of the probe than in the bulk, so
the measured equilibrium depth is δH ≈ one grain diameter
higher than expected.

When these finite size corrections into account, the equilib-
rium position, zeq is given by

zeq = H0 − δH − M

πR2κρ
. (4)

Here all finite size corrections are combined in the effective
parameters δH and R̃, while κ = 1 + (R̃/RC)2 describes the
change in H (z) as the probe sinks and displaces beads. The
value of δH is approximately 1 mm, while for a probe
of R = 20 mm, 1 + (R/RC)2 ≈ 1.06, and 1 < (R̃/R)2 <

1.05. The value of κ should therefore lie between 1.06
and 1.11.

The measured equilibrium position is calculated by fitting
the observed probe position as a function of time to a sum of
exponentials, as described in Sec. VI. In Fig. 3(d) we plot the
equilibrium depths of rising and sinking probes as function
of probe mass for both H = 50 and 60 mm. The green data
points are obtained for very light probes, which, to reduce the
mass of the probe are not attached to an inductor rod. The
equilibrium position of the probe is therefore obtained (with
less accuracy) by taking photos at intervals as the probe sinks
into the grains.

As illustrated in Fig. 3(d), the equilibrium depths can be
described by Eq. (4). The slope of both fits is given by
(πR2κρ)−1 and is consistent with the density of the grains and
our previous estimate of κ . The fit for the H = 60 mm data
yields κρ = 2.05 ± 0.05 g/cm3, while the fit for H = 50 mm
data yields κρ = 2.04 ± 0.02 g/cm3. From our estimate of the
density (1.86 ± 0.1 g/cm3), it follows that κ ≈ 1.1 ± 0.05,
which lies within the expected range. The finite size correction
δH is on the order of a grain diameter: δH = 2.1 mm for
H = 50 mm and δH = 3.1 mm for H = 60 mm.

We conclude that Archimedes’ law describes the equi-
librium depths of our probes accurately, provided that the
dimensions of the container and finite size effects are properly
taken into account. Note that Archimedes’ law has also been
observed in a granular system in which the lateral boundaries
are vibrated [24], but this driving appears far more vigorous
than in our system. Also note that similarity between the
equilibrium depth for sinking and rising probes, as well as
their good agreement with Archimedes’ law, implies that
segregation effects are not important in our experiment; this
is consistent with the fact that our experiments take place far
from the flowing zone.
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IV. VISCOUS DRAG IN A GRANULAR FLUID

Now that we have established the underlying mechanisms
and the forces acting on stationary probes, we turn our attention
to the probe dynamics: the motion of probes when they are
sinking or rising. We will first establish that the approach of
probes toward their equilibrium depth is exponential, which
allows us to define an effective viscosity η. We will then
measure how η varies with filling height H , disk rotation
speed, �, probe depth z, mass M , and radius r . Moreover,
we will explore the effect of placing the probe off center. Our
main conclusion is that, although the drag forces on moving
probes scale approximately linearly with probe velocity, the
drag forces depend strongly on the pressure exerted by the
probe and the filling height; there is not a simple, single
effective viscosity in our fluid.

A. Equation of motion

As Fig. 3(c) suggests, a probe approaches its equilibrium
depth exponentially in time. To make this more precise, we
plot the log of z–zeq versus time (Fig. 4). The linear nature
of this relationship demonstrates the exponential character of
the probe motion for both sinking and rising probes. Because
the sum of the gravitational force and the buoyant force on
the probe is proportional to z–zeq, the exponential approach
to equilibrium implies that the probe experiences a drag force
proportional to its velocity: viscous drag.

The observations of both Archimedes’ law and of expo-
nential trajectories of probes as they approach equilibrium
suggests that three forces act on the probe: gravity (Mg),
buoyancy [πR2ρg R2

R2−r2 (H − zeq)], and a dissipative force
analagous to viscous drag, 2ηR dz

dt
. Although Eq. (4) takes the

corrections to the effective radius and variation of the packing
density near the probe into account, these corrections are small,
and we will exclude them from our subsequent analysis.

If we assume that inertial effects can be ignored so that
the motion of the probe is overdamped, it is possible to
extend Eq. (3) to describe the motion of the probe away from
equilibrium:

−Mg + πR2ρg
R2

C

R2
C − R2

[H (0) − z(t)] − 2ηR
dz

dt
= 0. (5)

FIG. 4. (Color online) Log of z − zeq as a function of time. The
approximately linear behavior is suggestive of viscous drag. (a) H =
60 mm. (b) H = 50 mm. The two red (light gray) curves denotes
experiments in which the probe sinks and in both panels lie above the
two blue (dark gray) curves, which are taken from experiments for
which the probe rises.

1. Determining viscosities

Using the position of the probe as a function of time
[z(t)] we can determine the viscosity as a function of the
parameters M , R, �, H , and z [Eq. (6)]. In particular this
allows us to determine whether the viscosity varies with the
probe depth z; there is no a priori reason for the effective
viscosity to be constant throughout the entire system. Although
we previously observed that z(t)–zeq is exponential (Fig. 4),
it is important to stress that the main implication of the
approximately exponential form of this relaxation is that it
rules out, for example, a power law relationship between the
drag force and probe motion; in leading order, the drag force
is linear in the probe speed. In fact, we do observe spatial
gradients in η, although the variations are rarely larger than
a factor of two over the entire trajectory of the probe and
are much smaller than the variations in local strain rate (see
Sec. IV C).

To calculate the probe velocity, dz/dt , we numerically
differentiate z(t) over a time interval δ:

v(t) = [x(t + δ/2] − x[t − δ/2)]/δ. (6)

Time scales for the motion of the probes vary by several orders
of magnitude when M , R, H , or � is changed. The total
duration of each run is long enough to observe the probe until
it is nearly submerged or until it is well equilibrated. The time
interval δ is also adjusted to minimize noise: δ is proportional
to the total duration of the data set.

The filling height of the sheared beads prior to the
introduction of a probe [H (0)] is typically 1 to 2 mm larger than
the static filling height. As described previously (Sec. II A) this
dilation can be measured by observing the position at which a
light falling probe slows dramatically, the point at which the
probe contacts the grains. For heavy probes the point at which
the probe contacts the grains is harder to discern, so H (0) is
simply set to the static filling height H plus 1 mm.

Extracting reliable values of the viscosity close to the
equilibrium depth of floating probes is complicated by two
factors. First, fluctuations dominate the motion of the probe
in this region: close to zeq, both v(t) and z(t)–zeq go to 0,
and so the error in the viscosity, which is proportional to
[z(t) − zeq]/v(t), diverges. We therefore ignore the calculated
viscosities within 1 mm of the equilibrium depth. Second,
extracting reliable values of the viscosity close to equilibrium
is possible only if the bead density and filling height are such
that the buoyant force and gravitational force are equal and
opposite at equilibrium. To minimize this problem, we use the
fitted value for zeq [Eq. (8)] to calculate a best estimate for the
density. For probes too heavy to float in the grains this problem
does not arise, and the measured density of 1.92 ± 0.05 g/cm3

is used.

2. Sinking vs rising

Close inspection of Fig. 3(c) suggests that the probe appears
to rise more quickly than it sinks at H = 60 mm. This is also
apparent in the plots of ln[z(t)–zeq] in Fig. 4(a). Note that
near the equilibrium depth, ln[z(t)–zeq] is very sensitive to the
value of zeq. Surprisingly, the difference between sinking and
rising probes appears to be less pronounced for H = 50 mm
[Fig. 4(b)].
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FIG. 5. (Color online) Viscosity as a function of probe position
for filling height H = 60 mm (left) and H = 50 mm (right) for � =
0.1 rps. The probe has a radius = 20 mm and mass 40 g (red).

To investigate the difference between the behavior of
rising and sinking probes, we plot the viscosity (η(z)) as a
function of probe depth for H = 50 and 60 mm (Fig. 5). For
sinking probes which are light enough to float, we find that
the viscosity is constant and independent of the probe depth.
In contrast, the viscosities obtained for rising probes are not
constant: the system is less viscous when the probe is deeper.
However, the viscosity increases as the probe rises, achieving
the viscosity experienced by the sinking probe when the probe
reaches the equilibrium depth.

Because the probe is never completely submerged in the
grains, the processes of sinking and rising are asymmetric: a
sinking probe compresses the grains below it, while a rising
probe moves upward and allows the grains beneath to dilate.
Because loosely packed grains rearrange more easily than
densely packed grains, the motion of sinking probe is impaired
as the beads underneath the probe compact, while the motion
of a rising probe is effected more easily as the beads under the
probe dilate. In the remainder of this paper we will examine
the motion of sinking probes.

B. How the viscosity depends on �, H , z, M, and R

We have seen that the drag forces on moving probes scale
linearly with the probe speed, allowing us to define an effective
viscosity for the granular liquid. In this section we describe
the results of a series of experiments where we use the probe
trajectory z(t) to determine the effective viscosity η(z) for a
wide range of the control parameters M , R, H , and �. Unlike
ordinary Newtonian fluids, where the viscosity is independent
of the diameter and the mass of the sinking object, we find that
the effective viscosity of our granular system depends on M

and R.
The relationships between the viscosity and the control

parameters are summarized here and and discussed in detail in
the following sections. First, we find evidence that the humidity
and surface properties of the beads contribute to run-to-run
variation in the probe trajectories but do not have a significant
effect on the viscosity. Second, we find that the viscosity scales
as �−1 over several orders of magnitude (Sec. IV B1). We
also find that the viscosity of the granular liquid depends
on the filling height H : increasing the amount of beads in
the container strongly increases the viscosity of the beads.
In addition, we observe that the viscosity varies weakly with

FIG. 6. (Color online) Probe velocity v measured between 10 and
15 mm below the surface, as a function of disk rotation rate. Red stars:
H = 60 mm, M = 77 g, R = 9 mm; blue diamonds: H = 50 mm,
M = 46 g, R = 9 mm; purple squares: H = 60 mm, M = 48 g,
R = 9 mm; green crosses: H = 60 mm, M = 86 g, R = 9 mm;
orange triangles: H = 60 mm, M = 46 g, R = 9 mm with a probe
immersed at a radius of 15 mm away from the center; light blue plus
signs: H = 70, M = 145 g R = 15 mm. The black line denotes a
linear relation.

the vertical position of the probe z, and that this variation is
dependent on the filling height (Sec. IV B2). In Sec. IV B3 we
investigate how the viscosity depends on the mass (M) and
radius (R) of the probe. While it is not possible to vary the
probe mass and radius over several decades, our observations
are consistent with a scaling law: η ∼ R4M−2.

1. Viscosity scales inversely with the disk rotation rate

The observation that there is no probe motion when the disk
is stationary invites questions about how the viscosity changes
as the disk rotation rate is decreased. Is there a transition from
liquid-like behavior to solid-like behavior at a small, but finite,
disk rotation rate?

We have investigated this question by measuring the probe
velocity for probes of different mass and diameter at different
disk rotation speeds. We focus here on the speed of these probes
in a small z interval (15 > H − z > 10 mm). As Fig. 6 shows,
the probe velocity is proportional to � over a wide range of
driving rates, irrespective of filling height H , probe dimension
r , and mass m; even when the probe is moved off-center this
linear scaling persists.

Because the probe velocity is proportional to the disk
rotation speed [Eq. (5)] we conclude that the viscosity is
inversely proportional to � for a broad range of disk rotation
rates: 1/� selects the time scale for the probe motion. Another
way to think of this is that the displacement of a sinking probe
depends only on the total strain applied, not on the strain rate;
a probe will sink the same distance in one revolution of the
disk, no matter how quickly the disk is moving.

2. How the viscosity depends on H and z

One striking observation is that the adding grains to
the container significantly increases the viscosity at a given
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FIG. 7. (Color online) Rescaled viscosity for different filling
heights. (a) [η(z)/η(40)], H = 70 mm (top). (b) [η(z)/η(55)], H =
60 mm (middle). (c) [η(z)/η(45)], H = 50 mm (bottom).

distance from the disk; increasing H by one centimeter
increases the viscosity by an order of magnitude.

Meanwhile, the viscosity varies weakly with the depth: in
Fig. 7 we plot η(z)/η(H − 5) for filling heights of H = 50,
60, and 70 mm. For H = 50 mm the viscosity is larger when
the probe is closer to the rotating disk than at the surface,
while for H = 70 mm the viscosity is larger when the probe
is closer to the surface than near the rotating disk. Meanwhile,
the viscosity is fairly constant for all depths reached by the
probe at a filling height of H = 60 mm.

Note that the heaviest probes experience the greatest
viscosity increase as they sink in a system with H = 50 mm.
This might indicate that the heavy probes are compressing the
grains in the region directly above the spinning disk, making
it more difficult for the grains beneath the probe to evacuate
and allow the probe to sink. Conversely, at H = 70 mm, the

viscosity for light and heavy probes is slightly greater at the
surface than deeper in the material. Note that at H = 70 mm,
a probe with a length of 4 cm cannot probe deeper than
z = 30 mm, well above the dome of beads corotating with
the disk. At H = 70 mm a probe nears the shear band as
it sinks: if the shear band generates the fluctuations which
cause the grains to fluidize, then a probe might be expected
to observe a lower viscosity closer to the shear band than
at the surface. Testing these hypotheses requires information
about how individual particles move; a measurement might be
accomplished with a 3D scanner.

Because the way that the viscosity changes as a function
of depth for H = 60 and 70 mm is the same for all probe
masses and radii, we can express the viscosity as the product
of separable functions which depend on the experimental
parameters: η = (1/�)F (H,z)G(M,R). For H = 60 mm F

is essentially a constant for all z, while for 70 mm it varies
only over a factor of two. Because the viscosity increases more
for heavy probes than for light probes as they sink from the
surface at H = 50 mm we cannot express the viscosity as a
product of separable functions. Since the probe is well within
the shear band when it is nearly submerged at H = 50 mm, we
will focus our subsequent analysis on the behavior of probes
at larger filling heights.

3. How the viscosity depends on M and R

In this section we explore how the effective viscosity
varies with the mass and radius of the probe for H = 60 and
70 mm. We find that the viscosity decreases strongly with M

and increases strongly with R. During experiments in which
examine how the viscosity is affected by M and R we select
disk rotation rates, �, so that the probes do not not require
onerous amounts of time to sink. Because the viscosity is
known to scale as 1/� (Sec. IV B1), we can compare runs at
different rotation speeds by examining the product �η.

Examples of the viscosity η(z) for a range of masses are
given in Fig. 8(a) (H = 60 mm) and Fig. 8(d) (H = 50 mm).
Since η does not vary strongly with z for H = 60 mm, we can
plot the rescaled viscosities �η(z = H − 20 mm) as a function
of M for different probe radii [Fig. 8(b) and 8(e)]. Although
there clearly is substantial scatter in the data, and the range of
M is limited, the relationship between the viscosity and the
probe mass is consistent with a simple scaling law: �η ∼ M−2.

It is difficult to measure how the viscosity depends on the
probe radius because the probes must be smaller than the
container and large enough to float. Measurements for probes
with 9 < R < 30 mm suggest that the relationship between
the viscosity and probe radius is consistent with a power law
where the viscosity is proportional to R4 [Fig. 8(b) and 8(e)].

Since the viscosity is roughly proportional to M−2 and
R4, the viscosity experienced by sinking probe appears to
scale inversely with the square of the pressure exerted by the
probe: for H = 60 mm, η ≈ 1.9 × 103 ± 7 × 102 Pa g2/mm4

�−1M−2R4, while for H = 70 mm, η = 1.2 × 104 ± 3 ×
103 Pa g2/mm4 �−1M−2R4 [Fig. 8(c) and 8(f)].

Using the motion of sinking probes, we have measured the
viscosity of a granular system excited by shear. We find that
the viscosity increases as the filling height of the grains in
the container is increased. The viscosity of a sinking probe is
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FIG. 8. (Color online) Scaling of the viscosity with M and R. (a–c) H = 60 mm. (a) η(z) for a range of probe masses for R = 20 mm. (b)
Rescaled viscosity �η(z = H − 20) as a function of mass for several probe radii (from bottom to top: red: R = 7 mm; orange: R = 9 mm;
yellow: R = 10 mm; green: R = 15 mm; cyan: R = 20 mm; blue: R = 25 mm). In panels (b), (c), (e), and (f) the dashed line is a guide to
the eye and has slope −2. (c) The rescaled viscosity �η(z = H − 20)R−4 scales as (1.9 × 103 ± 7 × 102) Pa g2/mm4 M2. (d–f) H = 70 mm.
(d) η(z) for a range of probe masses for R = 25 mm. (e) Rescaled viscosity �η(z = H − 20) as a function of mass for two values of R

[highest dataset (green) R = 15 mm; lowest dataset (orange) R = 9 mm]. (f) The rescaled viscosity �η(z = H − 20 mm)R−4 scales in as
1.2 × 104 ± 3 × 103 Pa g2/mm4 M2.

constant for H = 60 mm and decreases slightly as the probe
sinks in a system with H = 70 mm. The viscosity experienced
by a sinking object can be related to the mass and radius of
the object and the rotation rate of the disk with a simple power
law: η ∝ �−1R4M−2.

C. Does the local flow rate set the viscosity?

Even though the flow at the surface is very slow, it is not
zero [6,11,12]. It is therefore natural to ask whether the probe
motion is determined by the local flow near the probe: either
the local strain rate or the flow rate past the probe. We can
probe this question by comparing the r and z dependencies of
the local flow and strain rates to the spatial variation of the
effective viscosity.

We first focus on the case of probes immersed in the center
(R = 0) of the system, thus focusing on the variation with z

and H . For dome-like shear bands, the strain in the region
above the center of the disk is torsional [12], and so the strain
rate varies as (∂zω|R=0). In Fig. 9 we compare the viscosities
and local strain rates.

Local strain rates—We have measured the precession rate
ωp(z) := ω(z)|R=0/� by inserting a vane in the center of the
grain flow and observing the rotation of the probe with an

Anton Paar DSR 100 rheometer. The vanes consist of four
rectangular blades of height 10 mm and radius 5 mm mounted
on a smooth rod. By removing the blades from this rod we have
established that the torques exerted on the rod are two orders
of magnitude smaller than those exerted on the vane: in very
good approximation the measured rotation of the vane follows
the flow near the vane and is insensitive to the rest of the rod
which is submerged in the grains. We also find that varying
the dimensions of the vane produces no systematic changes in
the measured precession rates.

The resulting vane precession rates, ωp(z), are shown in
Fig. 9(a) for H = 50,60, and 70 mm and are in reasonable
qualitative agreement with earlier magnetic resonance imaging
measurements and simulations [12]. Because our measure-
ments of the precession rates are made over a larger range,
we can establish that ωp(z) approaches the surface precession
rate, ωp(z = H ), more quickly than an exponential but more
slowly than a Gaussian, and our results are fitted well by an
expression of the form

ωp(z) − ωp(z = H ) = ωp(z = 0) exp[−(z/ξ )1.5], (7)

where ωp(z = 0) captures slip near the bottom disk, and the
characteristic length scale ξ is of order 10 mm.
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FIG. 9. (Color online) (a) ωp as a function of the height above the spinning disk for H =50 mm (top curve, orange), H =60 mm (middle
curve, red), and H =70 mm (bottom curve, blue). Curves are of the form ωp(z) − ωp(z = H ) ∼ exp(−(z/ξ )1.5), with ξ = 9.5,11.5, and 13 mm,
respectively. Note that the plateaus of ωp(z) for z → H correspond to the precession rates measured, by video imaging, at the free surface [21].
(b) The corresponding variation of the strain rate ∂zωp with z for H =50,60, and 70 mm (top to bottom curve). (c) Viscosity as a function
of probe position for a probe with M =59 g, D=30 mm, and H =50,60, and 70 mm (lower orange curve, middle red curve, and upper blue
curve, respectively).

In Fig. 9(b) we show the corresponding values of the strain
rates, (∂zω|R=0). Data obtained by numerically differentiating
the measured ω are shown as individual data points, and the
curves follow from directly differentiating the fit Eq. (7). The
two estimates for the strain rate are in excellent agreement and
show that the local strain rate varies over several decades as a
function of z.

In Fig. 9(c) we show three examples of the local viscosities
for a single probe (M = 59 g, R = 15 mm), and for filling
heights of 50, 60, and 70 mm, respectively. Clearly the local
strain rate and η(z) correlate very poorly: the local strain rate
changes over four decades for H = 70 mm, while η(z) changes
over less than half a decade. This suggests that the liquid-like
behavior of a granular system fluidized by shear is not caused
by local flow near a sinking object.

1. Moving the probe from the center of the setup

We have also explored the effect of moving the probe away
from the center of the setup. Away from the center, the material
continues to behave as a viscous fluid and demonstrates no
yield stress; however, the effective viscosity increases away
from the center of the cell. This is illustrated in Fig. 6 where
we compare the velocity of a sinking probe of radius 9 mm
in the center of the system (purple squares) to the velocity
of an identical sinking probe displaced 15 mm from the
center (orange triangles); the sinking speed of the latter probe
decreases by about a factor of four.

This observation suggests that the local flow past the probe
is not the cause of the fluid-like behavior, since the local flow
speed increases with the radial distance r , but the viscosity
observed by a sinking object decreases with r .

In conclusion we find that neither the local strain rate
nor the local rate of flow past the probe are good predictors
for the observed effective viscosity. This strongly suggests a
nonlocal source of fluidization, in which the strain rate in one
location (in the shear band) governs the effective viscosity of
the granular materials far from the shear band.

V. FLUCTUATIONS

In the previous section we showed that the local flow and
strain rates do not correlate well with the local viscosity.
We therefore propose that fluctuations are responsible for
causing the liquid-like behavior of the grains. In the following
section we probe grain motion by observing fluctuations in the
trajectories z(t) of floating probes. Except for probes that are
precisely at their equilibrium depth, there is a need to separate
the slow motion of the probe from the random fluctuations.
To do so, we first subtract off the decay envelope which stems
from the viscous sinking process [Fig. 10(a)]. In addition,
we filter out a small characteristic oscillation due to a tiny
misalignment of the spinning disk. A resulting typical time
trace for �z is shown in Fig. 10(a).

FIG. 10. (Color online) Fluctuations. (a) The fluctuations are
given by the difference between probe position and fit. (b) Distribution
of displacements, �z(�t), for a range of time intervals as indicated
in the legend: the larger the time interval, the wider the PDF. The
data are for a probe (R = 25 mm, M = 30 g) floating in grains
with height H = 55 mm and driven at � = 0.1 rps. The data set is
11.6 h in duration and sampled at 50 Hz. The bin size of the PDFs is
6.7 × 10−4 mm. (c) The PDFs are rescaled by their width and height,
and the resulting distributions are all Gaussian with the exception of
the data for �t � 300 s where the distributions are slightly narrower.

061309-9



KIRI NICHOL AND MARTIN VAN HECKE PHYSICAL REVIEW E 85, 061309 (2012)

FIG. 11. (Color online) Time evolution of the mean square
displacements 〈�z2〉 for M = 30 g, R = 25 mm, and � = 0.1 rps for
filling heights ranging from H = 35 to 70 mm as indicated. The main
panel shows that the crossover time to the plateau rescales with the
effective viscosity. For increasing H , the curves at early times shift
to the left. Inset: Raw data; for increasing H the curves shift to the
right. The dashed line indicates a diffusive mean square displacement
curve.

We have explored the probability distribution functions of
the random displacements �z in detail, and for all time inter-
vals that we can probe, and for all experimental parameters,
we have found that these distributions are essentially Gaussian,
with the exception of very large time intervals, where the tails
of the distributions are slightly underpopulated [Figs. 10(b)
and 10(c)]. In the remainder we therefore focus on the time
evolution of the mean square displacements 〈�z(�t)2〉.

Effect of the filling height—The mean square displacement
curves for systems with different filling heights are compared
in Fig. 11. For low filling heights (H = 35,40 mm) the
evolution of the mean squared displacements is nearly diffusive
at short times, while subdiffusive behavior emerges for larger
filling heights. The presence of diffusive behavior at low filling
heights appears to be related to the fact the system with
H < 45 mm has a significant amount of flow at the surface;
for low filling heights the shear bands extend to the surface.

On long time scales the mean squared displacements
saturate. This plateau can be expected because the probe
is “walking” in a potential well given by the gravitational
force and the buoyant force on the probe. The mean squared
displacements in this plateau are of order 10−2 mm2, consistent
with the size of the square of the largest fluctuations in z(t) in
Fig. 10.

We have now shown that both the effective viscosity as
well as the mean square displacements strongly vary with
the filling height H . In Fig. 11 the time axis of the MSD
curves are rescaled by the viscosities determined from the
corresponding sinking probe trajectories, and we find that the
crossover regions overlap. This suggests that the characteristic
time scales of the viscosity and fluctuations are deeply related.

Effect of the driving rate—The effective viscosity scales
trivially with the driving rate �: what about the fluctuations?

FIG. 12. (Color online) Mean square displacement for � =
0.9,0.1,0.01, and 0.001 rps. (a) H = 50 mm, R = 25 mm, M =
56 g (in the inset, curves shift to the right with increasing �).
(b) H = 55 mm, R = 25 mm, M = 56 g (in the inset, curves shift
to the right with increasing �). (c) H = 60 mm, R = 25 mm,
M = 36 g (in the inset, curves shift to the right with increasing �).
(d) H = 70 mm, R = 25 mm, M = 36 g (in the inset, curves appear
to shift downward with increasing �).

When we rescaled the time axis for the MSD curves by the disk
rotation speed (Fig. 12) the curves at lower filling heights (H <

=60) overlap at all time scales, although some deviations from
this scaling can be seen for larger filling heights and early
times; even when the rescaling is not perfect, the crossover to
the plateau regime is well captured for all filling heights. This
suggests that it is the time scale at which the plateau appears
which is important in setting the viscosity.

Effect of the probe mass—Predictions about the effect of
the probe mass and diameter can be made by considering the
Ornstein-Uhlenbeck theorem, which models the behavior of a
random walker in a potential well [25]. Even though the probe
motion here is not Brownian, the mean square displacement
curves exhibit a plateau, and so we may ask whether the
characteristics of this plateau are consistent with the scalings
predicted by the Ornstein-Uhlenbeck theorem.

The potential well occupied by the floating probe has the
form U = −1/2ρgR2π (z − zeq)2, where zeq is the equilibrium
depth predicted by Archimedes’ law. The width of the potential
well is therefore determined entirely by the probe radius:
varying the mass of the probe changes zeq and simply shifts
the potential up and down. Since the effective elastic constant,
k = πρgR2, is independent of the probe mass, the saturated
value of the MSD in the plateau should also be independent of
the probe mass.

At H = 60 mm (Fig. 13) the starting points of the plateaus
are not distinguishable from each other, and at H = 50 there
is no systematic dependence of the turn-off position on the
probe mass. Since the mean square displacement curves are
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FIG. 13. (Color online) Left panel: 〈(�z)2〉 for H = 60 mm, R =
25 mm, and M = 30 g, M = 56 g, and M = 120 g overlap. Right
panel: 〈(�z)2〉 for H = 50 mm, R = 25 mm, and M = 36 g, M =
56 g, and M = 116 g overlap.

not significantly changed by tuning the mass of the probe,
the fluctuations experienced by the probe do not appear to be
affected by the mass of the probe.

Probe depth—Examining the MSD curves and PDFs for a
single probe that is either sinking or rising (Fig. 14) allows
us to probe how the fluctuations are affected by both the
probe motion and the probe position. Even though a small
shift in the fluctuation strength [similar in magnitude to the
vertical variation in the local viscosity; see Fig. 9(c)] can be
seen for H = 70 mm, the overall effect of the probe position
on the fluctuations is weak. This weak dependence of the

FIG. 14. (Color online) Top left: Raw probe position [zraw(t)] for a
sinking probe and rising probe experiment. H = 70 mm, M = 85 g,
R = 25 mm, � = 0.1 rps. Lower left: Probe position after a fit to
the sinking (or rising) motion, zfit(t), is subtracted: zraw(t) − zfit(t).
Top right: The mean square displacement curves for different probe
depths; the color (shade of gray) corresponds to the segment of the
raw data in the upper left panel, and curves lie lower for increasing
values of z. Lower right: PDFs for each segment of the data set
(�t = 100 s); PDFs are narrower for increasing values of z.

FIG. 15. (Color online) Left panel: 〈�z2〉 for beads of different
diameters db (Top: db = 4 mm, middle: db = 2 mm, bottom: db =
1 mm). H = 60 mm, R = 25 mm, M = 56 g, � = 0.1 rps. Right
panel: The plateau position is proportional to the volume of a single
bead. The observed equilibrium depths for our probe where z ≈ 46,
z ≈ 45, and z =≈ 49 mm for the db = 1, 2, and 4 mm beads. We
estimate zeq at 46 ± 1 mm, and taking error bars of order ±db, we
conclude that all data are consistent with Archimedes’ law.

fluctuations on z is further evidence that the local flow does
not set the fluctuations. It also supports the idea that the
fluctuations set the viscosity, which have a similar weak z

dependence. In addition, we find that for H = 60 mm (data
not shown) the magnitude of the fluctuations is similar for
all probe depths. This observation is concomitant with the
z-independent viscosity observed for H = 60 mm [Fig. 9(c)].

Role of bead size—As Fig. 15 illustrates, the particle size
sets the value of the MSD in the plateau. For the limited range
of bead diameters that we can probe, we find that the magnitude
of the MSD fluctuations scales with the particle volume, or
equivalently, with the particle mass. This is similar to what
would be expected from the Ornstein-Uhlenbeck theorem, if
we assume that the effective temperature is proportional to the
mass of a single particle.

VI. CONCLUSION

In this paper we have characterized both the overall motion
and fluctuations of probes immersed in a granular system
excited by shear: a system which has many of the properties
of a liquid.

By comparing the equilibrium depth of a low-density object
rising in the grains to the equilibrium depth of that same object
sinking in the grains we have demonstrated that our granular
liquid does not exhibit a yield stress. We have also observed
that the equilibrium depth can be predicted by Archimedes’
law.

In addition to examining the equilibrium behavior of the
floating probe, we have found that a moving probe experiences
viscous drag, in the sense that probe speed and drag forces
are proportional. We note that in recent experiments, Reddy
et al. [26] have probed drag forces in granular Couette systems.
These experiments do not find a linear dependence between
drag force and probe motion; we have no explanation for this
difference to our system.

We have determined the viscosity of our granular liquid
by measuring the vertical position of a sinking object as a
function of time. We find that the viscosity of the liquid is
inversely proportional to the disk rotation rate. We have also
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observed that increasing the filling height of the beads in the
container increases the viscosity.

We have observed two unliquid-like behaviours in our
granular system. First, the viscosity of a real liquid is
independent of the diameter and the mass of the sinking object,
but here we find that the viscosity of our granular system varies
with the mass and diameter of the probe. Our observations
suggest that the way the viscosity depends on the probe mass
and radius can be described by a power law: η ∝ r4m−2. The
viscosity therefore appears to be proportional to the pressure
exerted by the probe. Second, the viscosity experienced by a
rising probe is slightly smaller than the viscosity experienced
by a sinking probe. We note that it may be the case that
the grains have more difficulty rearranging when they are
compressed by a sinking probe than when they dilate under a
rising probe.

By comparing the local variations in local flow rate and
viscosity we have demonstrated that the viscosity is not simply
set by the local flow rate, which suggests a nonlocal rheology in
the sense that there cannot be a local relation between stress and
strain rate that governs the rheology. Rather, we believe that
fluctuations mediate interactions between spatially separated
regions.

We have probed these fluctuations by probing the fluctua-
tions in probes that are floating or sinking into the medium. In
all cases these fluctuations were found to Gaussian, so we have
focused on the mean squared displacements as function of time
interval. We extract several features from these. First, after a
short time interval of nearly diffusive behavior, the motion
of the probe is subdiffusive and becomes more subdiffusive
as the filling height increases. Interestingly, the presence of
Gaussian PDFs and subdiffusive behavior is characteristic of
neither a glass [27–33] nor a simple liquid! Second, the value of
mean square displacements saturates at long time scales. The
appearance of this plateau is concomitant with the behavior
of a simple random walker in a potential well described by
the Ornstein-Uhlenbeck theorem. We find that the plateau
values of the mean square displacement curves scale with the
probe radius but are independent of the probe mass, suggesting
that the potential well traversed by the probe is given by the
buoyant and gravitational forces. Third, we have found that
the time scales at which the plateaus begin are proportional
to the viscosity of the system. This behavior is apparent
both in the case where the viscosity is varied by changing
the disk rotation speed and in the case where the viscosity
is varied by changing the filling height. That time scale of
the viscosity and the time scale of the fluctuations are the
same suggests that fluctuations determine the viscosity of the
system.

We have also examined how the fluctuations change
with probe position: we have studied both the equilibrium
behavior of probes with different masses and the motion
of sinking probes away from the equilibrium position. Our
results suggest that the magnitude of the fluctuations does
not vary significantly throughout the system and does not
vary much when the probe is away from the equilibrium
position.

The picture that is emerging is that slow granular flows
are governed by principles very different from the simple
Mohr-Coulomb picture. The essence is that the local strain rate

is governed not only by the local stress, but also by the local
amount of agitations. These agitations are generated in flowing
regions in the system and spread far through the granular
medium. These two simple ingredients capture most of our
findings and provide key ingredients for the development of
better models of slow granular flows [15–17].
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APPENDIX: FITTING THE PROBE POSITION AS A
FUNCTION OF TIME

Although the solution to Eq. (3) is an exponential, plotting
the velocity as a function of time suggests (Fig. 16) that the
probe initially sinks more quickly than expected. This can be
modeled by introducing a second exponential into the fit. This
fit is useful for extracting the equilibrium depth, zeq:

z(t) = a1e
−k1t + a2e

−k2t + zeq. (A1)

FIG. 16. (Color online) The fit to two exponentials (lower two
panels) captures the early time behavior better than the fit to one
exponential (upper panels). The raw data and the fits are displayed
in the left-hand panels, and the residuals are plotted in the right-hand
panels (H = 65 mm, � = 0.1, M = 36 g, R = 25 mm).
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