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We study the transport of granular matter through a staircaselike array of K vertically vibrated compartments.
Given a constant inflow rate Q < Qcr(K) into the top compartment, a continuous particle flow establishes
itself along the entire length of the system. However, as soon as Q grows beyond the critical value Qcr(K) the
particles form a cluster and the flow comes to a halt. Interestingly, this clustering is preceded by a subcritical
warning signal: for Q values just below Qcr(K) the density profile along the conveyor belt spontaneously
develops a pattern in which the compartments are alternatingly densely and sparsely populated. In a previous
paper [Kanellopoulos and van der Weele, Int. J. Bifurcation Chaos 21, 2305 (2011)] this pattern was shown to
be the result of a period-doubling bifurcation. The present paper aims at unravelling the physical mechanism
that lies at the basis of the pattern formation. To this end we study the continuum version of the same system,
replacing the compartment number k = 1, . . . ,K by a continuous variable x. The dynamics of the system is now
described (instead of by K coupled ordinary differential equations) by a single partial differential equation of
the Fokker-Planck type, with a drift and a diffusive term that both depend on the density. The drift term turns
out to be responsible for the subcritical density oscillations, thereby paving the way for the eventual clustering
which sets in when the diffusion coefficient becomes negative. The observed sequence of events in the granular
transport system is thus explained as an interplay between drift and (anti)diffusion.
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I. INTRODUCTION

The flow of granular materials is a subject that has attracted
a great deal of interest during the past decade, both from
a practical and from a fundamental point of view. Particle
flows are encountered in countless instances ranging from
the smooth sand stream in an hourglass to devastating rock
avalanches in mountainous regions [1–6]. In industry and
agriculture, granular materials are so ubiquitous that it has
been estimated that no less than 10% of the global energy
budget is spent on the transport and handling of them [7,8].
From the fundamental side, granular flows are among the
most readily accessible examples of multiparticle systems
far from equilibrium, ideally suited for studying collective
dynamical effects and spontaneous pattern formation [9–12].
For this reason, the results of the present study are not
only relevant for granular materials but also have bearing on
related multiparticle flows such as vehicle traffic on highways,
pedestrian crowds rushing toward emergency exits, or ant
trails [13–15].

Here we study the flow of granular material though the
transport system depicted in Fig. 1. It consists of an array
of connected compartments k = 1, . . . ,K , vibrated vertically,
with particles being inserted into the first compartment and
exiting from the last. The flow inside the system is modelled by
flux functions: the number of particles that leave compartment
k per unit time in the downstream direction is given by a
flux function FR(nk), and in the upstream direction by a
smaller function FL(nk). These flux functions depend on nk(t),
the normalized number of particles in the compartment, in a
nonmonotonic way: starting out from zero particles per second
at nk = 0, the flux does not grow indefinitely but attains a
maximum at some intermediate value of nk , and beyond this
value decreases again. This is a consequence of the fact that the
particles do not collide elastically. They lose a small portion

of their kinetic energy in every collision, so they collectively
make each other less mobile, an effect which is especially
strong when there are many particles in the compartment.

Indeed, this dissipation of energy is one of the most
characteristic features of a granular gas and the one that makes
it fundamentally different from any ordinary molecular gas. It
is the reason why the granular particles tend to cluster together,
forming patterns of dense and dilute regions, whereas the
molecules in a normal gas do exactly the opposite and occupy
the space available to them in a uniform fashion. When the
particle density in one of the compartments exceeds a certain
critical threshold value (depending on the shaking strength,
the steepness of the staircase, and other factors to be discussed
below) the clustering becomes irreversible and the particle
flow is not able to get past this compartment anymore.

In the present paper we will work with the following
approximate flux functions, illustrated in Fig. 2 [16–20]:

FR,L(nk) = An2
ke

−BR,Ln2
k . (1)

The indices R and L denote the flow toward the right and left,
respectively, and nk(t) represents the (normalized) number of
particles in the kth compartment.

The above form of the flux function was first derived by
Eggers [16] (see also [21–23]), treating the particles inside the
compartment as a dissipative gas under various simplifying
assumptions. For instance, the particles are assumed to
obey the ideal-gas law (relating the particle density in the
compartment to the pressure and granular temperature) and to
lose energy only in the collisions between themselves, but not
in those with the walls of the compartment. It is to be regarded
as a minimal model, capturing the essence of the matter
rather than aiming at a precise quantitative agreement. The
simplifying assumptions can in principle all be refined, but in
that case the analytical approximation Eq. (1) will be replaced
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FIG. 1. (Color online) Model conveyor belt consisting of K

compartments, vertically vibrated to make the granular particles
mobile. Material from the kth compartment is able to flow into either
of its neighboring compartments: The flow to box k − 1 is prescribed
by a flux function FL(nk) and that to box k + 1 by a somewhat
larger flux function FR(nk). The adjustable inflow rate into the top
compartment is denoted by Fin. Under standard operating conditions
the outflow rate from the last compartment, FR(nK ), will be equal to
the inflow rate Fin. The inset shows an experimental realization of the
system.

by a much more cumbersome numerical expression. In the
present work we will stick to Eggers’ form of the flux function.

The number density nk(t) is taken to be a continuous
quantity, which is a reasonable approximation as long as there
are sufficiently many particles in each compartment. The total
number of particles in the system is generally not conserved,
since there is an inflow of particles in the first compartment
and an outflow from the last one. Only under steady operating
conditions (when the outflow equals the inflow) will the total
number of particles be constant.

FIG. 2. (Color online) The flux functions FR(nk) (with BR = 0.1)
and FL(nk) (with BL = 0.2) used in the text. The barrier to the right
is twice as low as that to the left, hence the particle flux toward the
right is considerably larger.

The prefactor A determines the absolute scale of the
flow rate and, having dimensions s−1, may be used to
nondimensionalize the time variable. That is, one may work
with the nondimensional time variable τ = At .

The dimensionless parameter BR,L is proportional
to Refs. [21,22]

BR,L ∝ ghR,L

(af )2
(1 − η2)2, (2)

where g = 9.81 m/s2 is the gravitational acceleration, hR,L is
the height of the barrier toward the neighboring compartments
at the right and the left, respectively, a and f are the amplitude
and frequency of the sinusoidal driving signal, and η is
the effective coefficient of restitution of the particle-particle
collisions. A typical value of η, measured experimentally for
spherical glass particles of 2 mm diameter, is 0.95, meaning
that (1 − η2)2 ≈ 0.01. For perfectly elastic collisions the value
of η would be 1, i.e., (1 − η2)2 = 0, so in that case BR and
BL would be identically zero; the flux functions given by
Eq. (1) would then take the monotonically increasing form
FR,L(nk) = An2

k and clustering would not be possible.
In the present context reasonable values are BR = 0.1 and

BL = 0.2, which means that the height of the barrier toward
the right (hR) is taken to be twice as low as hL. The functions
FR(nk) and FL(nk) with these choices of BR,L are depicted in
Fig. 2. They are the same as in our earlier work [20], enabling
a direct comparison of the results.

Given the above flux functions, and a controllable influx
Fin(τ ) into the first compartment, the time evolution of the
system is governed by the following system of K coupled
ordinary differential equations (with the dimensionless time
variable τ = At):

dn1

dτ
= Fin(τ ) − FR(n1) + FL(n2) for k = 1,

dnk

dτ
= FR(nk−1) − FL(nk) − FR(nk) + FL(nk+1)

for k = 2, . . . ,K − 1,
dnK

dτ
= FR(nK−1) − FL(nK ) − FR(nK )

for k = K . (3)

These equations express the mass balance for each com-
partment: The change in the density nk(τ ) per unit time is
equal to the inflow rate into this compartment minus the
outflow rate. In the present work we will restrict ourselves
to time-independent inflow rates into the first compartment,
Fin(τ ) = Q. The flow that this induces in the rest of the system
is found by numerically solving the set of equations (3).

The above model does not take into account statistical
fluctuations around the behavior dictated by the flux functions.
Instead, it is a mean-field model representing the average
behavior of a sufficiently large number of experimental re-
alizations. The influence of fluctuations could be incorporated
by adding a stochastic noise term to the equations (see, e.g.,
the original paper by Eggers [16], worked out in detail in
Ref. [24]) or alternatively by an urn model approach in the
spirit of Lipowski and Droz [25–27].
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II. BRIEF REVIEW OF THE CLUSTER TRANSITION IN
THE DISCRETE SYSTEM

To get an impression of what the solution of Eq. (3) looks
like, we focus here on a representative case with K = 155
compartments. This is a sufficiently large number to give an
accurate comparison with the continuum model of the next
sections. In fact, any number K � 20 would be sufficient for a
meaningful comparison with the continuum limit of K → ∞,
as we have shown in a previous study [20].

Let us start with a uniform density profile nk(0) = 1 for all
k = 1, . . . ,K and apply a small, steady inflow rate Fin(τ ) =
Q = 1.00. This value of Q is well below the maximum
capacity of the conveyor belt. The material will therefore flow
smoothly downward and after a while a dynamical equilibrium
is established along the entire length of the system. From
that moment, the density profile does not change anymore
(dnk/dτ = 0 for all k): The equilibrium profile is shown in
Fig. 3(a). We see that nk is at a constant level 2.09 along the
whole system except for a sharp drop at the end. For future
reference we note that the slope here is −0.53 density units
per compartment. The level of the last compartment in the
steady state is found from FR(nK ) = Q, which can be solved
analytically [20].

Now we gradually increase the inflow rate, in very small
steps, taking care that in each step the system gets enough time
to adapt to the new Q value and settle in its new equilibrium
state. At Q = 1.80 the level has risen to nk = 2.68 and, more
importantly, a disturbance in the form of a density oscillation
is seen to break the uniformity of the profile [Fig. 3(b)]. This
oscillation (the first signs of which emerge already around
Q = 1.50, when the density level is at 2.46 and the negative
slope at the right end equals −0.75) originates at the far end of
the system and has a marked periodicity of two compartments.

As we increase the inflow rate further the oscillatory
pattern spreads toward the left, resembling a zipper that is
being opened. At Q = 1.87 [Fig. 3(c)] the oscillations have
proceeded up to compartment k ≈ 80, and at the critical value
Qcr = 1.873 467 53 [Fig. 3(d)] the oscillations have covered
the entire length of the system in a homogeneous way. The
density goes up and down between the values 3.013 and 2.505,
and the slope at the right end equals −0.99. Here we have
reached the maximum capacity of the system. Any further
increase of Q will lead to the formation of a cluster and the
obstruction of the flow [28].

To illustrate this, Fig. 4 shows what happens when, starting
out from the state of Fig. 3(d), we apply an inflow Q =
1.874 00 > Qcr. After 600 time steps the density of the first
compartment is seen to grow rapidly, meaning that the system
is no longer able to transfer the incoming material toward
the right. Instead, the particles entering the conveyor belt are
now immediately trapped in the first compartment, where
the surplus of material grows and grows and a cluster is
formed. To make matters worse, every new particle adds to
the efficiency of the trap by increasing the number of inelastic
collisions in this compartment. Meanwhile, the material in the
remaining compartments gradually flows out of the system. In
the first instance it does so in the form of a shock wave with
a well-recognizable front [19]; later, when less material is
involved in the flow, the profile takes a more symmetric shape.

FIG. 3. (a) The density profile (under steady flow conditions) for
Q = 1.00 in a conveyor belt consisting of 155 compartments. In the
next plots we gradually increase the inflow rate, each time giving
the system enough time to adapt to the new Q value, so all depicted
profiles represent dynamical equilibrium states in which the outflow
equals the inflow. (b) At Q = 1.80 an oscillatory pattern appears
at the right hand side of the system. (c) A further increase of the
inflow rate to Q = 1.87 causes the wavy pattern to expand toward the
left. (d) At Q = Qcr = 1.873 467 53 the amplitude of the oscillation
becomes uniform along the entire length of the system, meaning that
the maximum capacity of the conveyor belt has been reached.

This is connected to the fact that FR[nk(τ )] and FL[nk(τ )]
become practically indistinguishable when the density nk(τ )
goes to zero.
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FIG. 4. (Color online) Breakdown of the granular flow in five
snapshots. Starting from the oscillatory profile of Fig. 3(d), at
τ = 0 we increase the inflow rate to Q = 1.8740, i.e., beyond the
critical value Qcr. We witness the formation of a cluster in the first
compartment, capturing all incoming particles and obstructing the
flow. The remaining material in the other compartments still travels
to the right but once this has flown out of the system the transport
comes to a complete halt. (a) τ = 0, (b) τ = 600, (c) τ = 1000,
(d) τ = 2000, (e) τ = 8000. In all these plots the vertical axis has
been shifted a bit toward the left in order to show the cluster more
clearly.

In the above sequence of events we distinguish two key
steps. The first step is when the density oscillations appear

at the end of the system around Q = 1.50. The throughput is
still unaffected, yet these oscillations are a warning signal that
the maximum capacity of the conveyor belt is almost reached.
The second step comes at Q = Qcr = 1.873 467 53, when the
oscillatory pattern has covered the entire length of the system
and a cluster is about to be formed in the top compartment.

In the above theory, the density n1(t) in the first compart-
ment will tend to infinity (see Fig. 4); in practice this means
that the compartment will burst and it is clearly advisable to
turn off the conveyor belt before it comes to that. The reader
may wonder how the scenario changes if the compartments are
able to hold only a finite amount of material, say nfull = 10.0,
and start to flow over (through the opening downward) as soon
as this threshold is exceeded.

Since the above value of nfull is well above the critical value
n = B

−1/2
R = 3.162 for which the clustering sets in [20], this

change in the model does not in any way affect the precluster
stages. So up to the stage of Fig. 4(b) (τ = 600) everything will
occur in exactly the same way. It is only after the clustering
has set in that the system starts to behave differently: When the
first compartment is filled to nfull, it flows over into the second
compartment. And when the second compartment in turn is
filled to the brim, it flows over into the third compartment,
and so on. The final state of affairs is that all compartments
are filled to the maximum level nfull [with the exception of the
last compartment, which settles in the inflow-rate dependent
level nK (Q) given by FR(nK ) = Q] and the granular material
that enters the system, instead of getting stuck in the first
compartment, now flows smoothly—and quite efficiently!—
from one compartment to the next, not unlike the constant flow
of water through the successive basins of a cascade fountain.

The only thing that limits the efficiency of the granular
cascade, and sets an upper bound to the amount of material
that can be transported per unit time, is the finite size of the
openings between the compartments. If one pushes the inflow
rate beyond this upper bound, the extra material will again
heap up in the first compartment, just as in the system without
overflow.

For our purposes (i.e., the study of the subcritical phenom-
ena preceding the clustering) the two models are completely
equivalent. In the remainder of this paper we will therefore
continue to study the model without overflow.

III. CONTINUUM VERSION OF THE FLUX MODEL

In order to understand the physics behind the breakdown of
the flow and the cluster formation, we study the continuum
version of the flux model described in Eqs. (1)–(3). In
the continuum description, the discrete position variable k

(indicating the compartments k = 1, . . . ,K) is replaced by
a continuous variable x. Correspondingly, the fraction nk(t) is
replaced by ρ(x,t)�x, where ρ(x,t) is the number density per
unit length and �x the width of a compartment [19,29].

This replacement of nk(t) by ρ(x,t)�x transforms the
flux functions FL,R[nk(t)] into their continuum counterparts
F̃L,R(ρ(x,t)) as follows:

F̃L,R(ρ(x,t)) = 1

�x
FL,R(ρ(x,t)�x), (4)

061303-4



CRITICAL FLOW AND CLUSTERING IN A MODEL OF . . . PHYSICAL REVIEW E 85, 061303 (2012)

where we note that the dimensionality of the original flux
functions FL,R[nk(t)] is number of particles per unit time,
no./s, whereas that of F̃L,R(ρ(x,t)) is number density per
unit time, i.e., (no./m)/s. In the particular case of the Eggers
flux function Eq. (1), the continuum expression (4) takes the
following form:

F̃R,L(ρ(x,t)) = A�xρ2e−BR,L�x2ρ2
. (5)

and, as before, this may be turned into dimensionless form
by using dimensionless variables τ = At and ξ = x/�x

(meaning that ξ runs from 0 to K). We will come back to
this later.

Using Eq. (4), the balance equation Eq. (3) becomes [19]

∂ρ(x,t)

∂t
= F̃R(ρ(x − �x,t)) − F̃R(ρ(x,t))

− F̃L(ρ(x,t)) + F̃L(ρ(x + �x,t))

= −�x

(
∂F̃R

∂x
− ∂F̃L

∂x

)

+ 1

2
(�x)2

(
∂2F̃R

∂x2
+ ∂2F̃L

∂x2

)
+ · · · , (6)

where the second step follows from a Taylor expansion up
to second order in �x. Using the chain rule for partial
differentiation [∂F̃R/∂x = (dF̃R/dρ)(∂ρ/∂x), etc.] the above
equation can also be written as

∂ρ

∂t
= −P (ρ)

∂ρ

∂x
+ ∂

∂x

{
D(ρ)

∂ρ

∂x

}
, (7)

with the coefficients P (ρ) and D(ρ) given by

P (ρ) = �x

(
dF̃R

dρ
− dF̃L

dρ

)
, (8)

D(ρ) = 1

2
�x2

(
dF̃R

dρ
+ dF̃L

dρ

)
. (9)

Equation (7) is the continuum counterpart of the balance
equation (3). It is a second-order partial differential equation of
parabolic type. The right hand side contains a drift term, with
density-dependent drift velocity P (ρ), and a diffusion term
with density-dependent diffusion coefficient D(ρ). Its general
appearance resembles the famous Fokker-Planck equation
from the theory of stochastic processes [30–32]. They differ,
however, in the structure of the diffusion term. In the Fokker-
Planck equation this term has the form ∂2/∂x2{D(x,t)ρ(x,t)},
which means that the two equations coincide only when D is
independent of x. This is not the case in the present paper.

It is perhaps good to stress straight away that the above con-
tinuum model is an approximation to the discrete system. To
obtain a complete correspondence one would have to include
all higher orders in the Taylor expansion in Eq. (6). Obviously
this is not our goal, but it means that we willingly accept
small deviations from the discrete system as a consequence of
these neglected higher-order terms in the continuum model.
It will turn out that these deviations are indeed small, and
that Eq. (7) captures all the main features of the clustering
transition, including the oscillatory profile.

Especially this latter point is worth emphasizing, since
intuitively one might expect a continuum model to be capable
of describing only the global features of the dynamics (not

the local ones) and this would exclude any oscillations with
a wavelength comparable to the discreteness of the system.
The present continuum model, however, is perfectly able to
reproduce the subcritical oscillations since it has been derived
from the original discrete system on precisely the right level
of detail (the step size in the Taylor expansion was chosen to
be �x). In passing we note that we have not included a noise
term in the partial differential equation (7), so just as in the
discrete system we are aiming at a mean-field description of
the dynamics.

In the case of the Eggers-type flux functions F̃R,L(ρ) given
by Eq. (5), the coefficients P (ρ) and D(ρ) have the following
specific form:

P (ρ) = 2A(�x)2ρ{[1 − BR(�x)2ρ2]e−BR (�x)2ρ2

− [1 − BL(�x)2ρ2]e−BL(�x)2ρ2}, (10)

D(ρ) = A(�x)3ρ{[1 − BR(�x)2ρ2]e−BR (�x)2ρ2

+ [1 − BL(�x)2ρ2]e−BL(�x)2ρ2}, (11)

which are depicted in Fig. 5(b). We observe that both the
drift velocity P (ρ) (with which density perturbations travel
through the system) and the diffusion coefficient D(ρ) (which
determines whether a density disturbance will be smoothed out
or not) are positive for small values of ρ but become negative at
larger densities. This will play a crucial role in the explanation
of the clustering transition.

FIG. 5. (Color online) (a) The flux functions F̃R(ρ) and F̃L(ρ)
given by Eq. (5) for A = 1 s−1, �x = 1 m, BR = 0.1, and BL = 0.2.
Also shown (as dashed curves) are their derivatives dF̃R/dρ and
dF̃L/dρ. (b) The corresponding drift velocity P (ρ) and diffusion
coefficient D(ρ), given by Eqs. (8)–(11).
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As noted before, the problem can also be cast in dimen-
sionless form. With the transformations x → ξ = x/�x, t →
τ = At , and ρ(x,t) → ρ̃(ξ,τ ) = ρ(x,t)�x the drift-diffusion
equation [with the drift and diffusion coefficients based on the
Eggers flux function, as in Eqs. (10) and (11)] takes the form

∂ρ̃

∂τ
= −P̃ (ρ̃)

∂ρ̃

∂ξ
+ ∂

∂ξ

{
D̃(ρ̃)

∂ρ̃

∂ξ

}
(12)

with

P̃ (ρ̃) = 2ρ̃[(1 − BRρ̃2)e−BRρ̃2 − (1 − BLρ̃2)e−BLρ̃2
] (13)

and

D̃(ρ̃) = ρ̃[(1 − BRρ̃2)e−BRρ̃2 + (1 − BLρ̃2)e−BLρ̃2
]. (14)

We will work with this dimensionless form or, equivalently,
with Eq. (7) with the special choices A = 1 s−1 and �x = 1 m.
That is, our unit of time is A−1 and the unit of length is the
compartment width �x. For notational convenience we will
continue to write x, t , and ρ, with the understanding that these
are now equivalent to the dimensionless quantities ξ , τ , and ρ̃.
We further stick to the values BR = 0.1 and BL = 0.2 just as
in the previous sections.

IV. TWO-STEP PROCESS LEADING TO CLUSTERING

A. First step: Onset of the oscillatory pattern

As we saw in the Introduction, the transition from the
uniform density profile to the clustered state is accompanied
by two specific events: (i) the appearance of small oscillations
near the end of the conveyor belt, and (ii) the moment when
the oscillatory pattern covers the entire system with a constant
amplitude. The first event signals the start of the transition and
the second one the conclusion. In this section we will show
how these two events can be analyzed and understood in the
context of the partial differential equation (7). We start with
the first.

Under steady flow conditions, when the time derivative
∂ρ/∂t is zero, Eq. (7) takes the form 0 = −P (n)∂ρ/∂x +
∂/∂x{D(ρ)∂ρ/∂x} with the obvious solution ρ(x,t) = ρ0

(= const). Now, in order to study the stability of this horizontal
density profile, we consider an arbitrary perturbation to it and
see whether it grows or dies out. So we set

ρ(x,t) = ρ0 + εf (x,t), (15)

with ε a small positive parameter and f (x,t) a function at least
twice differentiable with respect to x and at least once with
respect to t , but otherwise arbitrary. Substituting this form in
Eq. (7), and keeping only terms up to first order in ε of the
Taylor expansion, we find that f (x,t) must obey the following
differential equation:

∂f (x,t)

∂t
= −P (ρ0)

∂f (x,t)

∂x
+ D(ρ0)

∂2f (x,t)

∂x2
. (16)

In this linearized equation the drift velocity and diffusion
coefficient are constant. Their values, however, depend on ρ0,
see Eqs. (10) and (11), and this has the interesting consequence
(as we will presently demonstrate) that the trivial solution
f (x,t) = 0 becomes unstable above a certain threshold value
of ρ0.

To solve Eq. (16) we need one initial and two boundary
conditions. As initial condition f (x,0) we take a small random
signal, with a different value at every �x interval interpolated
by third-order splines, fluctuating around zero with peak-
to-peak amplitude 0.0002. This mimics an arbitrary random
fluctuation and has the added advantage that it contains a wide
range of Fourier modes. At the boundaries we take (inspired
by the shape of the density profiles for the discrete system; see
Fig. 3) the following Neumann boundary conditions:

∂f (x,t)

∂x

∣∣∣∣
x=0

= 0 and
∂f (x,t)

∂x

∣∣∣∣
x=xmax

= sB, (17)

where sB denotes the (negative) slope the density profile has
at its right end. In the discrete model, as we saw in Sec. II, the
slope gets steeper for growing values of Qin or, equivalently,
for increasing density nk . In the continuum model this slope
assumes an active role: its value determines the shape of
the rest of the profile, and thereby also the onset of the
oscillations. So, whereas in the discrete system we simply
observed that the slope sB happened to be −0.75 when the first
oscillations appeared, in the continuum version it is this slope
(in combination with the critical density level) that triggers the
oscillations.

As for any partial differential equation, if we would choose
different boundary conditions we would find a different
solution to Eq. (16). So at this point of our analysis we heavily
lean on the observations from the discrete system; we have to
if we want to reproduce the behavior of the discrete system.

In Fig. 6 we show the numerical solution of Eq. (16), with
the initial and boundary conditions defined above, for several
values of the slope sB around the critical value. In order to
facilitate the comparison with the discrete system of Figs. 3
and 4, we take the length of the conveyor belt to be equal to
xmax = 155�x.

The successive values of ρ0 and sB represent increasing
inflow rates Qin. We start with ρ0 = 2.09 and sB = −0.53,
corresponding to the relatively small inflow rate Qin = 1.00
of Fig. 3(a). The solution of the linearized equation (16)
with these values is shown in Fig. 6(a). To be precise, we
show the steady solution limt→∞ f (x,t) superimposed on the
constant ρ0, i.e., the density profile limt→∞ ρ(x,t). It is seen to
correspond closely to the discrete density profile of Fig. 3(a).

The profile’s instability to small ripplelike disturbances
makes its appearance around the value ρ0 = 2.36, when sB =
−0.75. The corresponding solution of Eq. (16) superimposed
on ρ0 is depicted in Fig. 6(b): It is here that we witness the
birth of the first density oscillations.

The critical value of ρ0 at which this birth takes place is of
course not coincidental. First, P (ρ0) is very close to maximal
[cf. Fig. 5(b), the maximum occurs at ρ = 2.38], which
means—as we will show in Sec. V— that the tendency to create
oscillations is at its peak. Second, the diffusion coefficient
D(ρ0) has become quite small, meaning that any humps
and depressions in the density profile are not so efficiently
smoothed out anymore. Together these two circumstances are
responsible for the emergence of the oscillatory pattern around
ρ0 = 2.36.

Finally, in Fig. 6(c) we go beyond the onset value and show
the solution limt→∞ f (x,t) (superimposed on ρ0) for ρ0 =
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FIG. 6. (Color online) Birth of the oscillatory profile in the
continuum model (cf. the corresponding stages for the discrete system
in Fig. 3). (a) When the particle density is set to the relatively low
value ρ0 = 2.09, and the slope at the right end to sB = −0.53, the
solution of Eq. (16) with boundary condition (17) is zero throughout
the system, with only a characteristic downward twist at the end.
Superimposed on the constant level ρ0 this gives the depicted density
profile. (b) For ρ0 = 2.36 and sB = −0.75 the solution shows a tiny
oscillation at the rightmost end. This is the first step toward clustering.
(c) At ρ0 = 2.68 and sB = −0.93 the wavy pattern has expanded
toward the left, with a clear periodicity of 2�x.

2.68 and sB = −0.93. This is a near-perfect reconstruction of
the discrete profile for Qin = 1.80 in Fig. 3(b).

We see that, from all the Fourier modes present in the
initial condition, the system selects the one with wavelength
2�x, and—thanks to the fact that we have identified �x

with the compartment width—this is just the same as in the
discrete model, where the profile was found to be periodic with
twice the compartment width [20]. In fact, even if we take an
initial condition f (x,0) from which the wavelength 2�x is
deliberately lacking, the system (by means of its boundary
conditions) still produces this same oscillatory profile with
wavelength 2�x. We note that this is the shortest wavelength
the system can generate (given the discretization step �x),
indicating that the uniform density profile is primarily unstable
for perturbations on the smallest possible length scale.

If we increase ρ0 further [thereby making the diffusion
coefficient D(ρ0) smaller and smaller, see Fig. 5(b)] and
simultaneously let the slope sB become steeper, we find
that the oscillatory pattern expands toward the left. This
mimics the behavior of the full system. Here, however, we
go beyond the regime for which the linearized equation (16)
was derived and one should return to the full Eq. (7).

The fact that the oscillatory profile of the discrete system
with its two-compartment periodicity is reproduced so well by
the continuum model, which is largely due to our identification
of �x with the compartment width, illustrates the importance
of choosing a discretization step suited to the problem at hand.
Besides, it justifies our choice of keeping only terms up to
quadratic order in �x in the Taylor expansion of Eq. (6). If the
correspondence would have been less satisfactory, we would
have been forced to include terms of higher order and study
the (more involved) differential equation that emerges in that
case.

B. Second step: Instability of the fully developed oscillatory
pattern

We now come to the second step: the destabilization of
the oscillatory profile and the birth of the cluster. In order
to analyze this, we study small perturbations to the fully
developed wavy pattern:

ρ(x,t) = ρcr(x) + εg(x,t), (18)

where ρcr(x) is given by [see Fig. 7(a)]

ρcr(x) = ρ0,cr − α cos(2πx/λ), (19)

with wavelength λ = 2�x, amplitude α = 0.2500, and av-
erage value ρ0,cr = 2.7534. The perturbation g(x,t) is an
arbitrary function at least twice differentiable with respect to
x and once with respect to t . Inserting the above form Eq. (18)
into Eq. (7), the terms of order ε in the Taylor series give the
following partial differential equation for g(x,t):

∂g(x,t)

∂t

= −P [ρcr(x)]
∂g(x,t)

∂x
− ∂P

∂ρ

∣∣∣∣
ρcr(x)

∂ρcr(x)

∂x
g(x,t)

+ ∂

∂x

{
D[ρcr(x)]

∂g(x,t)

∂x
+ ∂D

∂ρ

∣∣∣∣
ρcr(x)

∂ρcr(x)

∂x
g(x,t)

}
.

(20)

Solving this equation requires one initial condition and two
boundary conditions. For the initial condition g(x,0) we again
take a small random fluctuation around zero with amplitude
0.0001. The boundary conditions now are

∂g(x,t)

∂x

∣∣∣∣
x=0

= sA and
∂g(x,t)

∂x

∣∣∣∣
x=xmax

= sB = −1.00.

(21)

The negative slope sB corresponds to the familiar density drop
at the end of the system. Its value at the critical stage when
the cluster is born is found (from the discrete system) to be
around −1.00; in the present analysis we keep it fixed. The
new feature is the slope sA at the entrance of the system. In
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FIG. 7. (Color online) Birth of the cluster in the continuum model. (a) The uniform oscillatory density profile [Eq. (19)] at the brink of
clustering. The slopes at the left and right boundaries are sA = 0 and sB = −1.00, respectively. Note that the latter boundary (at x = 155�x)
is not shown. (b) When the slope at the left end is set to sA = −1.00 (keeping sB = −1.00), the solution of Eq. (20) with boundary conditions
(21) is zero throughout the system with only two characteristic twists at the ends. Here we show this solution superimposed on the uniform
oscillation of plot (a) on the interval x = 0 to x = 40�x. The first signs of cluster formation at the left end are clearly visible. (c) If we allow
the slope sA to become steeper, here to sA = −3.00, the cluster at the entrance of the system grows accordingly.

the situation of the uniform oscillatory profile (19) this slope
is still zero, but when we force the system beyond this point,
the slope sA must acquire a negative value. This represents the
fact that the inflow rate is now larger than what the system
can handle, creating a density surplus at x = 0, which must
necessarily connect to the rest of the profile via a negative
slope.

In Figs. 7(b) and 7(c) we depict the solution of Eq. (20)
for two successive values of sA beyond the critical point. We
start with sA = −1.00, which represents the first stages of the
cluster formation. Indeed, the small random initial fluctuation
g(x,0) rapidly develops a sharp peak (followed by a small dip)
at x = 0 and an equally sharp drop (preceded by a small hump)
at x = 155�x, while everywhere else it relaxes to zero. The
superposition of the steady state limt→∞ g(x,t) and ρcr(x) is
depicted in Fig. 7(b).

In Fig. 7(c) we repeat the same procedure, but now with
sA = −3.00. This new value of sA (demanding a steeper slope
at the entrance of the system) corresponds to the next stage in
the time evolution of the growing cluster. As we see in Fig. 8,
the height of the cluster in the first compartment grows linearly
with the value of |sA|.

We could go on increasing the value of |sA|, and witness the
peak in x = 0 become higher and higher, but we rather stop
here. The stages described above are meant to correspond to
the transition from Figs. 4(a) to 4(b) and no further. When
the density profile deviates too much from the uniformly
oscillating profile, the linearized equation (20) loses its validity

FIG. 8. (Color online) The value of g(0,t) in the limit t → ∞ as
a function of the slope sA. The plot shows that the two are linearly
related. The value of limt→∞ g(0,t) superimposed on ρcr(0) gives the
height of the cluster at x = 0, as in Fig. 7.

and one should return to the full system given by Eq. (7). To be
precise, in order to reproduce the further growth of the cluster
at the entrance of the system [as observed in Figs. 4(c)–4(e)]
one should study the full Eq. (7) and let the slope at x = 0
gradually become steeper with increasing density ρ(0,t).
Simultaneously, to reproduce the depletion of the rest of
the system (between cluster and exit), also the boundary
condition at x = xmax should be adjusted continuously. Getting
everything right requires a delicate balancing between the two
boundary conditions, which is doable but will not be pursued
here.

V. PHYSICAL INTERPRETATION

The key for explaining the clustering transition in the
continuum model is the interplay between the drift and
diffusion terms in Eq. (7), with their nonconstant coefficients
P (ρ) and D(ρ). It is instructive to first consider the drift term
separately. To this end we take the reduced equation

∂ρ(x,t)

∂t
= −P (ρ)

∂ρ(x,t)

∂x
, (22)

which is an example of a nonlinear advection equation,
describing the transport of material by a medium whose
velocity P (ρ) depends on the density of that same material.
If P (ρ) would depend linearly on ρ, Eq. (22) would take
the form of the well-known inviscid Burgers equation. For
our granular transport system, however, P (ρ) is a more
complicated function of ρ [see Eq. (10)] which only becomes
linear in the limit BR,Lρ2 → 0.

Let us solve Eq. (22) with an initial condition that mimics
the uniform profile of Fig. 3(a) [see also Fig. 6(a)], with a
density level ρ = 2.09 that is well below the value 2.36 at
which [according to Fig. 6(b)] the first oscillations appear.
The boundary condition we impose (note that only one
boundary condition is needed in this case) is that the derivative
∂ρ/∂x|x=xmax has the same negative value sB = −0.53 as we
used before in Eq. (17). The result is shown in the upper row
of Fig. 9. Within 50 time steps the initially flat profile is turned
into an oscillatory pattern that extends over the whole length
of the system. The drift term alone is responsible for this
behavior.

061303-8



CRITICAL FLOW AND CLUSTERING IN A MODEL OF . . . PHYSICAL REVIEW E 85, 061303 (2012)

FIG. 9. (Color online) Starting from a flat and relatively low density profile, we study the influence of the drift and diffusion terms separately.
The figures in the top row show the numerical solution of Eq. (22), which contains only the drift term, revealing a strong tendency to form
waves. The figures in the bottom row depict the solution of Eq. (23), containing only the diffusion term, and here we witness a tendency to
form a cluster at the left side of the system.

Similarly, we may study the pure effect of the diffusion
term by means of the reduced equation

∂ρ(x,t)

∂t
= ∂

∂x

{
D(ρ)

∂ρ(x,t)

∂x

}
. (23)

This is an example of a nonlinear heat equation [33] and closely
related to the Kardar-Parisi-Zhang equation, which is used to
model the spontaneous roughening of crystal surfaces in solid
state physics [34–36].

To solve it, we choose the same initial profile as above. At
the boundaries (we now need two boundary conditions) we
require ∂ρ/∂x|x=0 = sA = −1.00 and ∂ρ/∂x|x=xmax = sB =
−0.53. In the bottom row of Fig. 9 we see that, by the action
of the diffusion alone (assisted by the boundary condition at
x = 0), the homogeneous profile develops a peak at the left
side of the system. Evidently, the density has at some stage
exceeded the critical level for which the diffusion coefficient
ceases to be positive and turns into antidiffusion. Density
differences are then no longer smoothed out, but amplified.
This is the continuum analog of clustering.

So we see that the drift term is responsible for the formation
of density oscillations, whereas the diffusion term is the one
that causes the clustering at the entrance of the system. The
overall behavior of Eq. (7) is an interplay between these two
effects. The whole sequence of events leading to the cluster
formation can be understood from Fig. 10, which shows P (ρ)
(drift velocity) and D(ρ) (diffusion coefficient) side by side.

At low density levels the diffusion coefficient is positive,
and much larger than the drift velocity, and therefore washes
away any attempts of the term −P (ρ)∂ρ/∂x to generate waves;
see the inset in the lower left corner of Fig. 10.

For increasing ρ the dominance gradually changes. In
Fig. 10 we see that P (ρ) becomes larger than D(ρ) for ρ ≈ 2.
The diffusion is still positive but quickly loses strength and
at some point is simply unable to suppress the oscillations
anymore. This point comes at ρ ≈ 2.36, when P (ρ) is near
its maximum value. This is the stage when the first density
oscillations appear at the end of the conveyor belt in the
continuum model. When we increase the inflow further, the

oscillations quickly conquer the entire system. Meanwhile,
the diffusion coefficient is still decreasing but it is preparing a
remarkable comeback.

This happens at ρ = 2.75, when D(ρ) becomes negative.
And it is at this point that the competition between drift and
diffusion suddenly turns into a collaboration, because the
antidiffusion (the tendency to enhance density differences)
finds an ideal starting point in the oscillatory pattern caused
by the drift term. Thanks to this, the clustering sets in without
delay as soon as D(ρ) becomes negative, thus completing the
clustering transition.

Looking at the transition from beginning to end, it is
worthwhile to highlight the fact that it starts at the rear
end of the system (with the first appearance of the density

FIG. 10. (Color online) The diffusion coefficient D(ρ) and the
drift velocity P (ρ) side by side. At small values of ρ the diffusion
dominates, resulting in a smooth density profile. At larger ρ the drift
term takes over and induces the characteristic density oscillations. At
a slightly higher value of ρ, the diffusion coefficient D(ρ) becomes
negative, turning the diffusion into antidiffusion: it is at this point that
the clustering sets in.
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oscillations) and is completed at the front with the formation of
the cluster. This is intimately related to the boundary conditions
at respectively x = xmax and x = 0.

In the first step, the boundary condition at the entrance is
trivial (∂ρ/∂x|x=0 = sA = 0) so nothing special happens here.
Only at the other end of the system do we have a boundary
condition that changes (the slope sB at x = xmax becomes
steeper) as the amount of material

∫
ρ(x,t)dx contained in the

system grows; naturally then it is here that the first signs of
the clustering transition appear. This happens at the critical
density level 2.36 when sB = −0.75; see Fig. 6(b).

Vice versa, when we arrive at the second step nothing
special happens at x = xmax. This time the slope at x = 0
(sA) plays the leading part, simply by acquiring a nonzero
value when the oscillatory profile reaches the entrance of the
system. As a result, the density level at the entrance is locally
made to rise, marking the birth of the cluster.

In the continuum model we tune the values of sA =
∂ρ/∂x|x=0 and sB = ∂ρ/∂x|x=xmax by hand, so in a sense
we are triggering the critical events ourselves. However,
the chosen values faithfully reproduce the discrete system
where the same things happen spontaneously. It is precisely
this—to reproduce and explain the observations of the discrete
system—that has been the aim of the continuum model all
along.

VI. CONCLUSION

By translating the original discrete system into the language
of continuous media, the present work has brought to light the
two physical mechanisms (drift and diffusion) that are at work
in the granular transport system. It has also elucidated the
intricate interplay between these two mechanisms, leading to
the formation of a cluster at the entrance of the system and
the breakdown of the particle flow. The sequence of events is
summarized in Fig. 10.

The same method of translating a discrete dynamical system
into a continuum model may be applied to other systems of
interest, such as chains of oscillators, pedestrian traffic, or the
flow of vehicles on highways [13,14]. As we have seen, the
crucial point in order to ensure that the continuum model will
be perfectly tailored to capture all the details of the dynamics
is to choose the step size in the Taylor expansion (�x) to be the
same as the size of the discrete elements of the original system.
In our transport system this was the compartment width. In
traffic modeling it would be the size of a typical car (plus some
extra space to avoid collisions), which is in the order of �x =
7.5 meters [37]. A larger step size also generates a continuum

model, of course, but will not be capable of reproducing all
the local features of the system. A smaller step size is not
advisable either, since it may generate artificial structures at
sizes smaller than the elements of the discrete system.

The method is especially suited for the study of critical
points, where we can focus on a specific set of parameters.
Following the entire evolution of the system for changing
parameters (the inflow Q in the present paper) is more
cumbersome, since any parameter change must be translated
into a corresponding change in the boundary conditions.

One of our main results was that the clustering transition
is directly related to the change in sign of the diffusion
coefficient D(ρ) when ρ exceeds a certain threshold value:
When the density in any compartment happens to exceed
this threshold, the regular diffusion is locally reversed into
antidiffusion. This means that material is drawn from the
surrounding compartments and a cluster is formed. The other
compartments, which have a smaller density and hence a
diffusion coefficient that is still positive, are drained empty.

A transition from overall diffusive behavior to (local)
antidiffusion is by no means a rare phenomenon. It can be
found in a host of systems that are prone to localization
and clustering. One example is the diffusion-antidiffusion
phase transition in stochastic processes that are attractive at
low temperatures and dispersive at high temperatures [38].
Another typical example is the spontaneous formation of a
“phantom” traffic jam when the local vehicle density exceeds
a critical threshold value (around 30 veh/km per lane, see
[13,14] and references therein). Finally we mention that space-
and time-dependent diffusion coefficients, which may locally
become negative, appear also in Hamiltonian systems where
regular and chaotic orbits co-exist. For instance, the coherent
motion of charged particles in plasmas has recently been
described in terms of a drift-diffusion equation very similar
to the one derived in the present paper [39].
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