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Separation patterns between Brazilian nut and reversed Brazilian nut of a binary granular system
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This paper studies the segregation behavior of binary granular particles with diameters at approximately 10:1 in
a vertically vibrated container. An array of transitional separation patterns between reversed Brazilian nut (RBN)
and Brazilian nut (BN) separations are observed, with their geometrical features carefully measured. The binary
particle system develops into either a stable separation pattern when f and � are relatively low or an oscillating
pattern when f and � are relatively high. We regard these patterns as different phases, in which the stable patterns
can be divided into phases of RBN, RBN transitional (RBNT), BNT, and BN. A phase parameter λ between−1
and 1 is defined to describe the separation patterns based on the mass center height difference in large and small
particles. By drawing f -�-λ phase diagrams, the system’s tendency toward BN separation was found to increase
with f and decrease with �. Furthermore, the range of the tendency toward BN separation expands when the
size of small particles rises. As the total mass of the small particles increases, the system’s tendency toward
RBN separation is enhanced. Abnormal points are also observed in the stable phase regions, and the oscillating
phase shifts among the four stable phases with time. These stable phases can be explained via an analysis of the
distribution of the dissipation energy, whereas the mechanism of the oscillating phase remains to be discovered.
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I. INTRODUCTION

Granular particles of different sizes in a container can
be separated by exerting vertical vibrations on the particle
system, and the separation pattern differs significantly because
of vibration parameters. Under certain vibration parameters,
an extremely common yet important phenomenon, Brazilian
nut (BN) separation, occurs when large particles rise to the
top and small ones sink to the bottom [1]. Contrary to the BN
mode, when small particles gain height and cover the large
ones, a reversed Brazilian nut (RBN) separation [2] occurs. In
previous studies, other patterns, such as sandwich separation
[3], in which the small particles form a layer in the middle
and the entire structure remains stable, were also reported.
Numerous researchers regard these separation phases differ-
ently and attempt to discover the physical mechanism of these
separation results [4–7]. However, a complete understanding
of the entire process of separation and segregation patterns is
needed [8–10].

To understand these phenomena fully, one important
method is to study and compare the effects of the vibration and
system parameters on the final separation result. These factors
include vibration frequency f , amplitude A, dimensionless
acceleration � = Aω2/g, total mass ratio μm, and diameter
ratio μϕ of the binary particles, as well as the coefficients
of friction and elasticity and so on [10]. The majority of the
performed experiments each studied a certain factor. However,
the other settings may also be diverse, and difficulty arises in
the analytical comparison based on the “one variable” credits.
As a result, experimental findings can be controversial. For
example, a rising f may result in better BN separation [11]
or, under other conditions, an RBN separation result [12].
Shishidia demonstrated that a greater A brings BN separation
[13], whereas Burtally proved the opposite [14]. An increase
in diameter ratio was also found to be in favor of BN [11]
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or RBN [15] separation. Such contradictory situations have
resulted in a great deal of confusion, and an overall method
of research is needed for in-depth development. Accordingly,
a technique for scanning phase diagrams was proposed. Shi
sketched two-dimensional f -� phase diagrams, in which BN,
RBN, and the sandwich phase regions were clearly exhibited
and divided [16]. Zhao formatted a three-dimensional (3D)
phase diagram containing 16 data points to enhance this
method further [17].

In our research, the formative process and final structure
of the separation pattern under different vibration parameters
were carefully studied via the phase diagram method. A phase
parameter λ associated with the difference in mass center
height of the large and small particles was defined to describe
the separation patterns. Six 3D f -�-λ phase diagrams (each
containing approximately 400 sampled points) were plotted to
study the effect of the frequency f , dimensionless acceleration
�, total mass ratio μm, and diameter ratio μϕ of binary particles
on the final separation results, thus providing a significantly
clearer view of the general tendencies when parameters
change. Essentially, f and � are external vibration parameters,
whereas μm and μϕ are parameters of the granular system.
Discussions regarding the separation mechanisms were also
conducted, delving further into the final separation patterns and
dissipative energy distributions of the large and small particles.

II. EXPERIMENT

A. Basic settings

As shown in Fig. 1, an LDS Daction standard vibrating sys-
tem was applied in our experiments. The LDS-PDA1000L ap-
paratus comprises a standard vibrator and terminal-controlling
PC software.

The binary granular particles were poured into a cylindrical
plexiglass container 10 cm in diameter and 18 cm in height,
fixed tightly on the vibrator. The vibrator produces a standard
sinusoidal wave y = A sin ωt , and the detection device on the
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FIG. 1. (Color online) Schematic diagram of the experimental
settings. (a) Vibration apparatus. (1) The cylindrical container, (2)
the binary granular particles, (3) the horizontal balance detector, (4)
the feedback probe, (5) the LDS vibrator, (6) the fixed base on the
plane floor, and (7) the controlling systems on the PC. (b) Schematic
of the different initial packing states. (c) A typical phase formation
process from RBN to BN separation.

container joins a feedback circuit to ensure the accuracy of the
vibration parameters.

Three kinds of standard 13X molecular sieve particles were
used. Their respective diameters φ were 6.00 mm ± 0.10 mm,
0.75 mm ± 0.05 mm, and 0.60 mm ± 0.05 mm, and they have
the same actual density ρ0 = 1.50 g/cm3 ± 0.05 g/cm3, i.e.,
ρl /ρs = 1. Parameters belonging to large and small particles
are marked with the subscripts l and s, respectively, such that
the total mass ratio μm = ml /ms , and the diameter ratio μϕ =
φl/φs in expression. The diameter ratio μϕ can be 10:1 or
8:1 and regular segregation patterns or phases with clearly
divided boundaries can be formed in this diameter ratio range.
As the small particles are much smaller than large particles
in their diameter, the random close packing density of their
mixture at rest, ρε, is mainly affected by small particles. In our
calculations we took the value constant as ρε = 0.75 g/cm3 ±
0.05 g/cm3.

B. Separation phases

In our experiment, we confirmed that the initial packing
state and external disturbance during vibration have no effect
on the final separation results. Within the range of the

parameters (f from 10 to 90 Hz, � from 1.0 to 3.8), a final
separation pattern in the container is achieved in 30 s, with
a boundary forming between the large and small particles.
The patterns include BN, RBN separation, and the transitional
forms between them, as shown in Figs. 2(a) and 2(b). Sandwich
separation was not observed.

The separation result shown in Figs. 2(a) and 2(b) can be
divided into several separation phases. As illustrated in Fig. 2,
the light-colored occupation represents the large particles,
and the dark-colored region reflects the small particles. Under
relatively low (f from 10 to 70 Hz, � from 1.0 to 3.8)
parameters, a BN phase, a BN transitional (BNT) phase, a
RBN transitional (RBNT) phase, and a RBN phase can coexist.
These four separation phases remain stable in the experiments.

In a typical BN separation, the large particles cover the
small ones, but their segregation forms differ in detail. During
vibration, the small particles rise on one side to form a slope,
and in some cases, a fountain breaks the top layer of large
particles. The term “BN phase” was coined to describe the
case in which the slope does not rise to touch the top and
connect the fountain circle. After this contact and connection,
the BNT phase appears. In phase division, during BN or BNT
separation, the mass center of the large particles would always
be higher than that of the small ones. Therefore, the division
point between BNT and RBNT stands where the respective
mass centers of large and small particles bear the same height.
The calculation method is discussed in later sections. For the
RBN phase, small particles cover the entire top surface, and
large particles are brought to the bottom, forming a tilted
slope on one side.

When the vibration parameters are relatively high (f from
70 to 90 Hz, � from 1.0 to 3.8), oscillating separation
patterns are observed, in which the particle system oscillates
between the four stable phases, thus appearing unstable. In
Refs. [17,18], a similar phenomenon was reported, where
the particles act chaotically, and the separation patterns vary
with time. We define this situation in the experiment as the
oscillating phase.

C. Dynamical equilibrium

In previous studies, complex and versatile convection
patterns were reported in granular systems under vertical

FIG. 2. (Color online) Illustrations of stable separation patterns observed under different vibration parameters. (a) Lateral view, (b) top
view, and (c) experimental photos. In these patterns from BN separation to RBN separation, the fountain of small particles grows in size, which
is attributed to the phase shift when f decreases from 90 to 10 Hz or when � increases from 1.0 to 3.8.
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FIG. 3. (Color online) Illustration of the convection modes
directly observed from the trajectories of the particles in contact
with the cylindrical wall and from the motion of the surface. (a)
BN phase without a small particle fountain on the top surface, in
which small particles concentrate on one side and circulate. (b) The
fountain breaks the top layer, still in the BN phase. (c) Lateral view of
convection traces of the small particles in (b). (d) The BNT or RBNT
phase, and the fountain’s size grows. (e) A typical oscillating phase.
Sometimes the fountain vanishes, and a new one emerges elsewhere.
(f) Lateral view of the small particles in (e).

vibration [9,17,19,20]. Granular convections in the container
[21] and wavy motions [22] were also observed. Usually, when
the diameter ratio μϕ is relatively large, such as 10:1 or 8:1, the
small particles tend to fluidize in motion [19,20]. Numerous
researchers have attempted to propose complete theories to
explain this mechanism [23,24]. We observed different forms
of granular convection in the stable phases, as well as different
features for the oscillating phase.

In all our experiments, large and small particles each
complete a convection cycle. The convection of small particles
flows drastically, similar to fountains, with particles rising
from the bottom to the top and then scattering off, whereas
large particles move slowly. Large and small particles interact
with each other by friction and collision to form a dynamical
equilibrium in the stable phases.

In the oscillating phase shown in Fig. 3(e), the fountain of
smaller particles moves around and the entire structure remains
unstable. In Fig. 3(f), we find irregular eddy-shaped traces,
indicating that the convection mechanism of the oscillating
phase differs from that of the stable phases. Red (thin, light
gray) arrows represent the convection trace of the small
particles, and blue (thick, dark gray) arrows represent that
of the large particles.

III. SCALING METHODS

To study the phases under different vibration and particle
system parameters quantitatively, we have defined the phase
parameter λ to describe the segregation patterns in these
situations. With the total mass of ml and ms , the radius of
the container’s cross section R0 measured, the packing height
of the mixed particles in the container Hp is expressed as

Hp = (ml + ms)

πR2
0ρε

. (1)

The relation between the large and small particles’ respec-
tive mass center heights Hl and Hs can be written as

msHs + mlHl

ms + ml

= Hp

2
. (2)

When the large particles completely cover the small ones
or when the system forms a complete BN (CBN) separation,

Hl,CBN − Hs,CBN = Hp/2. (3)

In addition, if the situation is a complete RBN (CRBN)
separation,

Hl,CRBN − Hs,CRBN = −Hp/2. (4)

We propose the phase parameter λ here to be proportional
to Hl − Hs . If λ > 0, the system is closer to BN separation,
and if λ<0, it is closer to RBN separation. When λ = 0, the
mass centers of the large and small particles stand at the same
height, and this situation becomes a dividing point. λ = −1
represents a CRBN separation, and λ = 1 denotes a CBN
separation. To describe the transitional states between CRBN
and CBN, we define the phase parameter λ as

λ = Hl − Hs

Hp/2
. (5)

Combining Eqs. (2) and (5),

λ =
(

1 + ms

ml

) (
1 − 2Hs

Hp

)
. (6)

In this equation, the mass center height of the small
particles Hs is chosen as the target of the calculation. Hs can
be determined via a detailed analysis of the morphological
features of the granular system in the Appendixes. We
summarize the division of the phases with the phase parameter
λ between−1 and 1 in Fig. 4.

IV. EXPERIMENTAL RESULTS

A. f -�-λ phase diagram

We selected binary granular particles with the diameter
ratio μϕ = 10:1 and mass ratios of μm = 1.0:0.5, 1.0:1.0,
1.0:1.5, and 1.0:2.0. We performed experiments under the
initial condition of random packing as shown in Fig. 1(b). An
f -�-λ phase diagram was scanned with the frequency f from
10 to 90 Hz, 2 Hz stepped, and � from 1.0 to 3.8, 0.2 stepped.
Each pair of (f ,�) combinations was set to the device, and
after 30 s, stable separation results were obtained. A number
of oscillation results took longer to identify. To calculate λ in
each condition, we set up geometrical models for each type
of separation result (see details in the Appendixes). In each
model, the critical geometrical parameters of the separation
structure were directly measured. The mass center heights of
the large and small particles were calculated thereafter via
mathematical analysis.

B. Effect of f and � on the separation results

It can be recognized from Fig. 5 that when μϕ = 10:1
under the influence of a relatively low f and � (f from 10 to
70 Hz, � from 1.0 to 3.8), the system exhibits stable separation
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FIG. 4. (Color online) Phase parameter λ within [−1,1] and the range for each phase. When the fountain of the small particles grows and
touches the wall, the phase is changed from BN to BNT, and λ is marked as λBN at this critical point. λ = 0 states the dividing point between
BNT and RBNT. When small particles cover the entire top surface and RBNT transforms to RBN, λ is marked as λRBN. The following phase
diagrams should be related to this criterion to obtain the separation result according to the value of λ.

states. When f alone is increased and � is kept constant, the
tendency of the particle system toward the BN phase increases.
In contrast, when � alone is increased and f is kept constant,
the tendency toward the RBN phase increases. In terms of the
stable phases, these tendencies are manifested.

For the oscillating phase, two diagrams were scanned with
μm = 1.0:1.0 in the same condition as that in Figs. 5(2) and
6. The separation results were observed to be moving in the
regions of the oscillating phase, with shifting peaks and valleys
that can be recorded through measurements of the geometrical
structure and a calculation of the phase parameter λ.

C. Effect of μm and μϕ on the separation results

As can be summarized from Figs. 5(1)–5(4), with an
increasing mass proportion of the small particles, the system’s
tendency toward the RBN phase grows. When μm = 1.0:0.5,
only the BNT and BN phases are present in the stable region.
When μm = 1.0:1.0, the RBNT phase appears in the low f and
the high � region and enlarges when μm = 1.0:1.5, pushing the
other phases to the right of the diagram. When μm = 1.0:2.0,
the RBN, RBNT, and BNT phases are present within the range
of parameters of the device.

A similar experiment was performed with μϕ = 8:1 and μm

= 1.0:1.0, as illustrated in Fig. 7. Compared with the diagram
when μm = 10:1, the tendency toward the BN phase is stronger
in μϕ = 8:1, and the area of the oscillating phase expands.

V. DISCUSSIONS

In previous studies, the separation results under different
parameter settings were mostly definite BN or RBN [11–17,
25]. However, we observed the transitional separation states
between these two when μϕ = 10:1 or 8:1, as mentioned above.
The monodirectional effects in stable separation phases can be
summarized as follows: The system’s tendency toward BN sep-
aration increases with f and μm, and decreases with � and μϕ .
The effects of f and � here come in accordance with the con-
clusion drawn from the dividing line between definite BN and

RBN in Ref. [11], where 10 mm polyurethane and 4 mm glass
spheres were applied in their experiments, with μϕ low as 2.5.

To establish a judging criterion, the method of comparing
granular temperatures was proposed in Ref. [15]. In this
method, if μϕ is smaller than the inverse of ρl /ρs , the
particle mixture should show a Brazilian nut effect, and
vice versa [11]. The influence of � is added to the criterion
as in Ref. [25], with a modifying factor of α(�) acquired
through experimental data, and μϕ takes the value from 0
to 3. In Ref. [25], it is proposed that, if μϕ is smaller than
1 + α(�)(ρl/ρs − 1), the particle system would finally exhibit
a BN separation, and vice versa [25]. Accordingly, the final
separation result for such a system with μϕ = 10:1 or 8:1
should have been definitely reversed Brazilian nut separation
when ρl /ρs = 1. However, in our experiments the separation
states between BN and RBN at these system settings are
transitional, rather than being definite. What used to be a
“mixed” state, or the dividing dots of definite BN and RBN
results that only exist in a very narrow scope as described in
Refs. [11,25], has stretched to the entire phase diagram.

Of all the separation results, a CRBN (λ =−1) is actually
never achieved. Only a very strong tendency for RBN is
observed when μm is quite low [e.g., 1.0:1.5 or 1.0:2.0 in
Figs. 5(3) and 5(4)], with relatively low f and high �. Actually,
when μϕ is high as this set, i.e., 10:1 or 8:1, the small
particles become fluidized in their motional behavior [19,20].
The mechanism of percolation [4,5] would play an important
role, when the small particles rise and tend to cover the large
ones. This makes a CRBN impossible and the separation result
appear BN intended all the time, or λ > 0 in most cases.
The diameter ratio in Ref. [25] is 3 to the upmost, and we
indicate that for higher values, new approaches considering
the influence of percolation, and proper methods describing
the transitional states between definite BN and RBN should be
included in the expression of granular temperatures.

Abnormal points in the stable phase region were also
observed in the phase diagrams. For example, in Fig. 5(2),
when f = 20–30 Hz, � = 1.5–2.0, the BN phase is observed
within the region of the BNT phase. In Fig. 5(3), when f =
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FIG. 5. (Color online) f -�-λ phase diagrams and their respective contour maps with the binary granular particles’ diameter ratio μϕ =
10:1 and mass ratios μm = 1.0:0.5, 1.0:1.0, 1.0:1.5, and 1.0:2.0. The value of λ on the z axis is marked with the color (grayscale) bar, and the
four phase diagrams include phases of RBN, RBNT, BNT, and BN with the dividing value of the phase parameter λ marked aside. Boundaries
between the stable phase and the oscillating phase were acquired through repeated experiments. The situation when λ takes the value beyond
±0.5 is quite rare, therefore we maintain the color of blue (dark gray) or red (light gray) for λ within [−1, − 0.5] and [0.5,1], respectively, for
better presentation and for easier comparison.

50–60Hz, � = 2.0–2.5, the RBNT phase is observed within
the region of the BNT phase. Moreover, in the phase diagrams,
the separation result with a relatively high f ,� are unstable
and oscillating beyond some f and � parameters marked in
each phase diagram as the oscillating phase.

We propose a method based on energy conservation
relations to explain the behavior of the binary particle mixtures
at this diameter ratio qualitatively. As discussed above, the four
parameters, namely, frequency f , dimensionless acceleration
�, total mass ratio μm, and diameter ratio μϕ , significantly
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FIG. 6. (Color online) Comparison [with Fig. 5(2)] between the stable phases and the oscillating phase with relatively high f and �

parameters. Only the region of the oscillating phase changed significantly in this comparison.

affect the separation pattern of the binary granular system.
We attempted to explain the experimental result of the stable
phases by analyzing the distribution of dissipated energy
during vibration. The frequency exerted on the granular
system is several tens of Hz, and a particle’s motion in the
system involves pressing and frictional forces. Therefore, some
relaxation time from the external excitations is reasonable. The
average incoming power P can be expressed as

P = 1

T

∫ T

0

1

2
(ml + ms)(−Aω sin ωt)2dt

= (ml + ms)A2ω2

4
= (ml + ms)g2

16π2

�2

f 2
. (7)

Apparently, P is proportional to the square of � and
inversely proportional to the square of f . In our experiment,
the convection of the small particles is much faster than that
of the large ones, and a distribution of the external energy
input occurs in the respective convections of the large and
small particles. Feitosa [26] proposed that energy primarily
dissipates through the bouncing and friction in convection
cycles, and Hou [27] confirmed that small particles have more
dissipated energy during convection.

As presented in (7), when other parameters remain constant
and only f increases, P decreases, and the energy supporting
the granular convection and dissipation also decreases. Thus,
small particles tend to move slower and segregate down into
the bottom layer. When � increases, P also increases, and

small particles gain more energy support for convection, easily
breaking the top surface to form a fountain. Hence, the system’s
tendency toward the RBN phase is enhanced. The smaller the
particles are, the more fluidized they become, consequently
sharing more dissipated energy. A stronger tendency toward
the RBN phase is thus observed. In addition, when μm

increases, the small particles share a decreasing amount
of dissipating energy. Hence, their convection slows down,
and the system’s tendency toward the BN phase increases.
The distribution of dissipating energy and the convection
pattern of small particles played an important role in this
experiment.

As for the physical mechanism of the oscillating phase,
an unified explanation is needed. A number of researchers
believe that the boundary conditions significantly affect the
oscillating system [18,28] and that the behavior of particle
layers is strongly influenced by f in this region [29].
Chaos can be found with relatively strong vibrations [30],
and more complex patterns may be observed under other
parameters [31]. The mechanism of the abnormal points in
the stable phase region and the oscillating phase must be
more carefully investigated via theories, simulations, and
experiments.

VI. CONCLUSIONS

In conclusion, we performed laboratory tests on the binary
granular particle system with diameter ratios of 10:1 and 8:1,

FIG. 7. (Color online) Comparison [with Fig. 5(2)] of the phase diagrams when μϕ = 8:1 and 10:1, with all other parameters being the
same. The general rules mentioned above in the stable phase region are maintained, and the abnormal points can be found when μϕ = 8:1, f =
30–40 Hz, and � = 1.5–2.0.
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in which a continuous array of changing patterns between BN
and RBN separation are observed, sketched, and compared
in elaborate details. The experimental results of these con-
tinually changing patterns revealed the unique characteristics
of the granular system under these specific parameters. The
separation patterns generally remain stable when f and � are
relatively low, and the stable phases BN, BNT, RBNT, and
RBN can be divided according to their geometrical features.
An oscillating result emerges when f and � are relatively high,
and the system forms an oscillating phase. A phase parameter
λ that concerns the difference in the respective mass center
heights of the large and small particles is defined between
−1 and 1 to characterize the system’s tendency toward CRBN
or CBN. f -�-λ phase diagrams clearly described the ranges
of these separation phases, and the comparisons among the
diagrams offered explicit insight into the effect of each of
the vibration and system parameters. In stable phases, the
system’s tendency toward BN separation increases with f

and μm, and decreases with � and μϕ . These phenomena
can be preliminarily explained via an analysis of the dissi-
pating energy during vibration, with more to be discovered
on the constantly transforming patterns of the oscillating
phase.
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APPENDIX A: CALCULATION METHODS FOR THE BN
PHASE WITH A FOUNTAIN

We observed the separation surfaces via experimentation.
The surface between the two kinds of particles presents
conical or flat planes after dynamical equilibrium is achieved.
Therefore, we have set up mathematical models accordingly
to get Hs .

The pattern with a fountain of small particles in the BN
phase is the most common separation result in our experiments.
When the small particles do not thoroughly cover the bottom
layer, the geometrical structure of the separation result is
presented in Fig. 8. The directly measured value is Hd . The
values calculated thereafter are Rs , Rc, and Rb.

As illustrated in Fig. 8, we focus on the structure of the
small particles. To calculate the mass center of the small
particles, we adopt the polar coordinate system and fix the
origin point on M0. The lateral shape of the fountain structure
inside the large particles was found to be a conical surface
via experimentation. After careful measurements, we found
that in all cases where the small particles break the top layer
to form a fountain, the tilting angle of the conical surface
ϕd remains constant at approximately 40◦. This condition
occurs when the small particles upsurge and push the big
particles around, through which a balance is achieved. This
balance is delicately kept during the dynamical equilibrium
process of the binary interactive convections. Therefore, we
derive

ϕd = 40◦. (A1)

Other relations of the parameters describing the structure
can be written according to Fig. 8:

tan ϕd = Hp − Hd

Rc − Rs

, (A2)

tan ϕd = Hp

Rb − Rc − Rs

. (A3)

We selected the height of the slope Hd , which can be
measured and recorded with ease, as the critical parameter
in this structure. Apparently, if the container’s shape and the
total mass of large and small particles are determined, three
unknowns remain, namely, Rs , Rc, and Rb. The equations to
solve these unknowns are the mass conservation rule combined
with (A2) and (A3).

For easy integration, we cut the structure of small particles
into three parts. The first part, V1, is the wrapping shape of the
central column with radius Rs and height Hp. This part is cut
left to the planes M1FM0 and M1EM0. In this ρ-θ -z polar co-
ordinate system centered in M0, the outer rim of the container at
the bottom, that is, a circle with radius R0, should be written as

ρ2(θ ) = cos θ (R0 − Rc)

+
√

cos2 θ (R0 − Rc)2 + (
2R0Rc − R2

c

)
. (A4)

According to the geometrical structure, the conical surface
can be expressed as

z1(ρ) = − tan ϕdρ + (Rc tan ϕd + Hd ). (A5)

In addition, in �M0EO0, the following formula presents in
view of the law of cosines in triangles:

θs = arccos
(R0 − Rc)2 + (Rb − Rc)2 − R2

0

2(R0 − Rc)(Rb − Rc)
. (A6)

The volume of the first part is

V1 =
∫ 2π−θs

θs

∫ ρ2(θ)

Rs

∫ z1(ρ)

0
ρdzdρdθ

=
∫ 2π−θs

θs

−1

3
tan ϕd

[
ρ3

2 (θ ) − R3
s

]

+ 1

2
(Rc tan ϕd + Hd )

[
ρ2

2 (θ ) − R2
s

]
dθ. (A7)

The mass center height of this part is

Hs1 = 1

V1

∫ 2π−θs

θs

∫ ρ2(θ)

Rs

∫ z1(ρ)

0
zρdzdρdθ

= 1

V1

∫ 2π−θs

θs

1

8
tan2 ϕd

[
ρ4

2 (θ ) − R4
s

]

− 1

3
tan ϕd (Rc tan ϕd + Hd )

[
ρ3

2 (θ ) − R3
s

]

+ 1

4
(Rc tan ϕd + Hd )2

[
ρ2

2 (θ ) − R2
s

]
dθ. (A8)

For the second part, the central column is

V2 = πR2
s Hp, (A9)

Hs2 = Hp

2
. (A10)
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FIG. 8. Schematic diagram of the BN phase with a small particle fountain, when small particles do not cover the entire bottom. The polar
coordinate system takes M0 as the origin point, perpendicularly beneath the fountain center M1 on the top surface. Critical parameters in this
structure, such as R0, Rc, Rb, and Hd , are also marked. In this coordinate system, Arc EF and EA0F are each written in their polar forms.

In addition, for the rest of the structure or the third part,

V3 =
∫ θs

−θs

∫ Rb−Rc

Rs

∫ z1(ρ)

0
ρdzdρdθ

= 2θs

{
−1

3
tan ϕd

[
(Rb − Rc)3 − R3

s

]

+ 1

2
(Rc tan ϕd + Hd )

[
(Rb − Rc)2 − R2

s

]}
, (A11)

Hs3 = 1

V3

∫ θs

−θs

∫ Rb−Rc

Rs

∫ z1(ρ)

0
zρdzdρdθ

= 1

V3
2θs

{
1

8
tan2 ϕd

[
(Rb − Rc)4 − R4

s

]

− 1

3
tan ϕd (Rc tan ϕd + Hd )

[
(Rb − Rc)3 − R3

s

]

+ 1

4
(Rc tan ϕd + Hd )2

[
(Rb − Rc)2 − R2

s

]}
. (A12)

The three parts together comprise the entire volume of the
small particles,

V1 + V2 + V3 = Vs = ms/ρε. (A13)

By combining Eqs. (A2), (A3), and (A13), the three
unknowns, namely, Rs , Rc, and Rb, can be solved via numerical
methods. We applied MATLAB2010A programs in our work,
and the experimental results were perfectly obtained via this
calculation method.

With these unknowns solved, we calculated Hs through
(A7)–(A12):

Hs = V1Hs1 + V2Hs2 + V3Hs3

Vs

. (A14)

Furthermore, we were able to determine the phase parameter
λ in Eq. (6).

When the small particles thoroughly cover the bottom layer
and heap to the height of Hb on the other side, the geometrical
structure of the separation result is presented in Fig. 9. The
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FIG. 9. Schematic diagram of the BN phase with a small particle fountain, wherein small particles cover the entire bottom layer and heap
on the other side to a height of Hb.

directly measured value is Hd . The values calculated thereafter
are Rs , Rc, and Hb.

The structure of small particles is cut into two parts in the
calculation. The outer ring occupies V1 and the central column
V2. The mathematical form of the conical surface remains as
in (A5), and the geometrical features can be written as

tan ϕd = Hp − Hd

Rc − Rs

, (A15)

tan ϕd = Hp − Hb

2R0 − Rc − Rs

. (A16)

For the first part,

V1 =
∫ 2π

0

∫ ρ2(θ)

Rs

∫ z1(ρ)

0
ρdzdρdθ

=
∫ 2π

0
−1

3
tan ϕd

[
ρ3

2 (θ ) − R3
s

]

+ 1

2
(Rc tan ϕd + Hd )

[
ρ2

2 (θ ) − R2
s

]
dθ, (A17)

Hs1 = 1

V1

∫ 2π

0

∫ ρ2(θ)

Rs

∫ z1(ρ)

0
zρdzdρdθ

= 1

V1

∫ 2π

0

1

8
tan2 ϕd

[
ρ4

2 (θ ) − R4
s

]

− 1

3
tan ϕd (Rc tan ϕd + Hd )

[
ρ3

2 (θ ) − R3
s

]

+ 1

4
(Rc tan ϕd + Hd )2

[
ρ2

2 (θ ) − R2
s

]
dθ. (A18)

For the second part,

V2 = πR2
s Hp, (A19)

Hs2 = Hp

2
. (A20)

The two parts together make up the whole volume of the
small particles,

V1 + V2 = Vs = ms/ρε. (A21)

Equations (A15), (A16), and (A21) were solved with
numerical methods, and we can determine the unknowns,
namely, Hb, Rc and Rs . With (A17)–(A21), we can deter-
mine Hs :

Hs = V1Hs1 + V2Hs2

Vs

. (A22)

Therefore, through Eq. (6), the phase parameter λ is deter-
mined.

APPENDIX B: CALCULATION METHODS FOR THE BN
PHASE WITHOUT A FOUNTAIN

For the cases in which the large particles cover the top
layer and the fountain is suppressed below, the interface should
theoretically be a conical surface, as in Figs. 10 and 11, where
small particles either cover the bottom or do not. For the BN
phase with a fountain, ϕd is considered to have a fixed value
of 40◦. We removed the layers of large and small particles
from top to bottom and discovered that, in cases where the
fountain is suppressed by the upper large particles, the angle
ϕ decreases, eventually reaching 0 when CBN separation is
achieved. In CBN separation, the small particles are still in
convection when the fountain becomes flat, with a minimum
height being

Hmin = ms

πR2
0ρε

. (B1)

We introduce a linear assumption for tan ϕ here, when
the highest point of the suppressed fountain gains a height
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FIG. 10. Schematic diagram of the BN Phase without a small particle fountain, where the small particles do not cover the entire bottom.
The structure of the small particles is cut into two parts. The geometrical pattern on the bottom is similar to that in FIG. 8 (c), only by canceling
the Rs circle cast from above.

of Hp − Hr :

tan ϕ = tan ϕd

Hp − Hr − Hmin

Hp − Hmin
. (B2)

The directly measured value is Hd . The values calculated
thereafter are Rs , Rc, and Hr .

Geometrically, we derive

tan ϕ = Hp − Hd − Hr

Rc

, (B3)

tan ϕ = Hp − Hr

Rb − Rc

. (B4)

The conical surface can be expressed as

z2(ρ) = − tan ϕ ρ + (Hp − Hr ). (B5)

For the first part,

V1 =
∫ θs

−θs

∫ Rb−Rc

0

∫ z2(ρ)

0
ρdzdρdθ

= 2θs

[
−1

3
tan ϕ(Rb − Rc)3 + 1

2
(Hp − Hr )(Rb − Rc)2

]
,

(B6)

FIG. 11. Schematic diagram of the BN phase without a small particle fountain, where small particles cover the entire bottom. The structure
of the small particles is considered as a whole in integration calculations.
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Hs1 = 1

V1

∫ θs

−θs

∫ Rb−Rc

0

∫ z2(ρ)

0
zρdzdρdθ

= 1

V1
2θs

[
1

8
tan2 ϕ(Rb − Rc)4 − 1

3
tan ϕ(Hp − Hr )

× (Rb − Rc)3 + 1

4
(Hp − Hr )2(Rb − Rc)2

]
. (B7)

For the second part,

V2 =
∫ 2π−θs

θs

∫ ρ2(θ)

0

∫ z2(ρ)

0
ρdzdρdθ

=
∫ 2π−θs

θs

−1

3
tan ϕ ρ3

2 (θ )

+ 1

2
(Hp − Hr )ρ2

2 (θ )dθ, (B8)

Hs2 = 1

V2

∫ 2π−θs

θs

∫ ρ2(θ)

0

∫ z2(ρ)

0
zρdzdρdθ

= 1

V2

∫ 2π−θs

θs

1

8
tan3 ϕ ρ4

2 (θ ) − 1

3
tan ϕ(Hp − Hr )ρ3

2 (θ )

+ 1

4
(Hp − Hr )2ρ2

2 (θ )dθ. (B9)

As above, with a measured Hd and Eqs. (B3), (B4), and
(A21), all the other parameters, namely, Rc, Rb, and Hr , are
determined. Subsequently, through (B6)–(B9) and (A22), Hs

is calculated, in addition to λ in (6).
In another situation, small particles cover the bottom, as

shown in Fig. 11. The directly measured value is Hd . The
values calculated thereafter are Rc, Hb, and Hr .

Geometrically, we derive

tan ϕ = Hp − Hd − Hr

Rc

, (B10)

tan ϕ = Hp − Hr − Hb

2R0 − Rc

. (B11)

The conical surface can be expressed as in (B5), and for the
whole structure,

Vs =
∫ 2π

0

∫ ρ2(θ)

0

∫ z2(ρ)

0
ρdzdρdθ

=
∫ 2π

0
−1

3
tan ϕ ρ3

2 (θ ) + 1

2
(Hp − Hr )ρ2

2 (θ )dθ, (B12)

Hs = 1

Vs

∫ 2π

0

∫ ρ2(θ)

0

∫ z2(ρ)

0
zρdzdρdθ

= 1

Vs

∫ 2π

0

1

8
tan3 ϕ ρ4

2 (θ ) − 1

3
tan ϕ(Hp − Hr )ρ3

2 (θ )

+ 1

4
(Hp − Hr )2ρ2

2 (θ )dθ. (B13)

Therefore, through Eq. (6), the phase parameter λ is deter-
mined.

APPENDIX C: CALCULATION METHODS FOR
THE BNT AND RBNT PHASES

In the BNT and RBNT phases, the fountain of the small
particles grows and connects with the slope on one side. This
interaction face remains a conical surface, as illustrated in
Fig. 12 for the BNT phase and Fig. 13 for the RBNT phase. The
directly measured values are Rc and Rst . The value calculated
thereafter is Rsb.

In �M0I0O0, in view of the law of cosines in triangles, we
obtain

θst = arccos
(R0 − Rc)2 + R2

st − R2
0

2Rst (R0 − Rc)
. (C1)

In �M0E0O0, we derive

θsb = arccos
(R0 − Rc)2 + R2

sb − R2
0

2Rsb(R0 − Rc)
. (C2)

FIG. 12. (Color online) Schematic diagram for the BNT phase. The small particles are divided into three parts. In the same polar coordinate
system, the outer rim circle in (b) is still expressed as ρ2(θ ) in Eq. (A4).
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FIG. 13. (Color online) Schematic diagram for the RBNT phase. The structure of small particles is also divided into three parts, and the
mathematical form of ρ2(θ ) is the same as that in Fig. 12.

The conical form of the interface is therefore

z3(ρ) = Hp

Rst − Rsb

(ρ − Rsb). (C3)

For the first part,

V1 =
(

πR2
st

2θst

2π
+

∫ 2π−θst

θst

∫ ρ2(θ)

0
ρdρdθ

)
Hp

=
(

R2
st θst + 1

2

∫ 2π−θst

θst

ρ2
2 (θ )dθ

)
Hp, (C4)

Hs1 = Hp/2. (C5)

For the second part,

V2 = 2
∫ θst

θsb

∫ ρ2(θ)

Rst

∫ z3(ρ)

0
ρdzdρdθ

= 2Hp

Rst − Rsb

∫ θst

θsb

1

3

[
ρ3

2 (θ ) − R3
st

]

− 1

2
Rsb

[
ρ2

2 (θ ) − R2
st

]
dθ, (C6)

Hs2 = 1

V2/2

∫ θst

θsb

∫ ρ2(θ)

Rst

∫ z3(ρ)

0
ρzdzdρdθ

= 1

V2

(
Hp

Rst − Rsb

)2 ∫ θst

θsb

1

4

[
ρ4

2 (θ ) − R4
st

]

− 2

3
Rsb

[
ρ3

2 (θ ) − R3
st

] + 1

2
R2

sb

[
ρ2

2 (θ ) − R2
st

]
dθ. (C7)

For the third part,

V3 =
∫ θsb

−θsb

∫ Rsb

Rst

∫ z3(ρ)

0
ρdzdρdθ

= 1

3
Hpθsb(Rsb − Rst )(2Rsb + Rst ), (C8)

Hs3 = 1

V3

∫ θsb

−θsb

∫ Rsb

Rst

∫ z3(ρ)

0
ρzdzdρdθ

= 1

6V3
H 2

pθsb(Rsb − Rst )(Rsb + 3Rst ). (C9)

Through Eqs. (C4), (C6), (C8), and (A13), Rsb is deter-
mined. Hs is calculated through (A14), in addition to λ in
(6). The directly measured values are Rc and Rst . The value
calculated thereafter is Rsb.

In �M1I1O1, we obtain

θsb = arccos
(R0 − Rc)2 + R2

sb − R2
0

2Rsb(R0 − Rc)
. (C10)

In addition, in �M1E1O1, we derive

θst = arccos
(R0 − Rc)2 + R2

st − R2
0

2Rst (R0 − Rc)
. (C11)

The conical form of the interface is consistent with (C3),
and for the first part,

V1 =
(

πR2
sb

2θsb

2π
+

∫ 2π−θsb

θsb

∫ ρ2(θ)

0
ρdρdθ

)
Hp

=
(

R2
sbθsb + 1

2

∫ 2π−θsb

θsb

ρ2
2 (θ )dθ

)
Hp, (C12)

Hs1 = Hp/2. (C13)

For the second part,

V2 = 2
∫ θsb

θst

∫ ρ2(θ)

Rsb

∫ Hp

z3(ρ)
ρdzdρdθ

= 2Hp

Rst − Rsb

∫ θsb

θst

−1

3

[
ρ3

2 (θ ) − R3
sb

]

+ 1

2
Rst

[
ρ2

2 (θ ) − R2
sb

]
dθ, (C14)
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FIG. 14. Illustration of the RBN phase, in which the large particles segregate on one side. The interface remains a conical surface with the
axis M0M1.

Hs2 = 1

V2/2

∫ θsb

θst

∫ ρ2(θ)

Rsb

∫ Hp

z3(ρ)
ρzdzdρdθ

= 1

V2

(
Hp

Rst − Rsb

)2 ∫ θsb

θst

−1

4

[
ρ4

2 (θ ) − R4
sb

]

+ 2

3
Rsb

[
ρ3

2 (θ ) − R3
sb

]

+ 1

2

(
R2

st − 2RsbRst

)[
ρ2

2 (θ ) − R2
sb

]
dθ. (C15)

For the third part,

V3 =
∫ θst

−θst

∫ Rst

Rsb

∫ Hp

z3(ρ)
ρdzdρdθ

= 1

3
Hpθst (Rst − Rsb)(2Rsb + Rst ), (C16)

Hs3 = 1

V3

∫ θst

−θst

∫ Rst

Rsb

∫ Hp

z3(ρ)
ρzdzdρdθ

= 1

6V3
H 2

pθst (−Rsb + Rst )(5Rsb + 3Rst ). (C17)

Through Eqs. (C12), (C14), (C16), and (A13), Rsb is
determined. Hs is calculated through (A14), in addition to
λ in (6).

Notably, the division of the phases on the λ axis, λBN and
λRBN, can also be calculated using the methods above. For λBN,
we suppose that suppose Hd = Hp. For λRBN, we suppose that
Rc + Rst = 2R0. Moreover, the values of λBN and λRBN are
easily determined using numerical methods.

APPENDIX D: CALCULATION METHODS FOR THE RBN
PHASE

In the RBN phase, the small particles rise on top and cover
all the large particles. The convection of small particles in
the RBN phase is rather drastic compared with that in other
phases. The interface is still considered a conical surface, and
the heap height of the big particles Hd is measured based on

the distance from the center of small particles’ fountain to the
rim Rc. See Fig. 14. The directly measured value is Hd . The
value calculated thereafter is Rsb.

In this case, we calculated the center mass of the large
particles, followed by that of the small ones. In �M0I0O0, we
obtain

θb = arccos
(R0 − Rc)2 + R2

sb − R2
0

2Rsb(R0 − Rc)
. (D1)

For the conical surface, we derive

z4(ρ) = Hd

2R0 − Rc − Rsb

(ρ − Rsb). (D2)

The volume of the large particles is given by

Vl =
∫ θb

−θb

∫ ρ2(θ)

Rsb

∫ z4(ρ)

0
ρdzdρdθ

= Hd

2R0 − Rc − Rsb

∫ θb

−θb

1

3

[
ρ3

2 (θ ) − R3
sb

]

− 1

2
Rsb

[
ρ2

2 (θ ) − R2
sb

]
dθ, (D3)

Hl = 1

Vl

∫ θb

−θb

∫ ρ2(θ)

Rsb

∫ z4(ρ)

0
ρzdzdρdθ

= 1

2Vl

(
Hd

2R0 − Rc − Rsb

)2 ∫ θb

−θb

1

4

[
ρ4

2 (θ ) − R4
sb

]

− 2

3
Rsb

[
ρ3

2 (θ ) − R3
sb

] + 1

2
R2

sb

[
ρ2

2 (θ ) − R2
sb

]
dθ. (D4)

With (D3), the unknown Rsb was determined. Through (D4)
and (2), Hs was calculated, and the phase parameter λ was
further obtained in (6).

The case in which the large particles cover the bottom layer
was not observed in our experiment. Therefore, in this model
setting, we ignored such a condition.
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