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We studied distribution of zeros of the partition function of the ferromagnetic Ising model near the Yang-
Lee edge on a family of Sierpinski gasket lattices whose members are labeled by an integer b (2 � b <

∞). The obtained exact results on the first seven members of this family show that, for b � 4, associated
correlation length diverges more slowly than any power law when distance δh from the edge tends to zero,
ξYL ∼ exp [ln(b)

√| ln(δh)|/ ln(λ0)], λ0 being a decreasing function of b. We suggest a possible scenario for the
emergence of the usual power-law behavior in the limit of very large b when fractal lattices become almost
compact.
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I. INTRODUCTION

A close connection between the zeros of the partition
function in the complex plane of an appropriate variable
and the onset of phase transition was first pointed out by
Yang and Lee [1]. They showed that all of the zeros of the
partition function of a nearest-neighbor ferromagnetic Ising
model lie on the unit circle in the complex field activity plane
y = exp(−2H/kBT ). In the thermodynamic limit these zeros
are expected to condense, yielding a limiting density of zeros
g(h′′,T ) (h′′ = H ′′/kBT , where H ′′ denotes the imaginary part
of the complex field H = H ′ + iH ′′). For any temperature T

above the critical temperature there exists a pair ±iH0(T ) of
zeros lying closest to the real H axis, commonly referred to as
Yang-Lee (YL) edge singularities. As these nonanalytic points
exert the most direct influence on the model thermodynamic
behavior for real H and T , it is very important to understand
the nature of these singularities.

Determination of the limiting density of zeros is generally
a highly nontrivial problem and little is known about its
behavior near the YL edge, let alone about its actual form
in the whole region of interest. It is widely accepted, however,
that the density of zeros near the edge exhibits a power-law
behavior, g ∼ |δh|σ , as δh = h′′ − h0(T ) → 0, where σ is the
YL edge critical exponent. Since in this case exists only one
relevant variable [2], all other YL critical exponents can be
expressed in terms of σ . In particular, the correlation length ξYL

critical exponent νYL , which describes the spatial decay of the
two-spin correlation function near the edge, ξYL ∼ |δh|−νYL ,
can be related to σ : σ = dνYL − 1, where d is the space
dimensionality. It has been suggested [2,3] that the value
of this exponent depends only on the space dimensionality
and is independent of temperature for all T above the critical
temperature. When d = 1, the problem can be solved exactly,
which yields σ = −1/2. Despite the fact that g(h′′,T ) is
not known exactly for two-dimensional ferromagnetic Ising
model, it has been predicted σ = −1/6 in d = 2 [4]. It is
believed that σ maintains its mean-field value σ = 1/2 above
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the upper critical dimension d = 6 (see Ref. [5] for a recent
review of the application of YL formalism to equilibrium and
nonequilibrium phase transitions).

The original YL circle theorem [1] is independent of the
topological structure of the underlying lattice and should
also apply to appropriate models of certain nonhomogeneous
systems, like models of diluted ferromagnets. This stimulated a
considerable research interest for studies of the ferromagnetic
Ising model on a variety of hierarchical graphs [6,7]. There
are several reasons for such an interest. First, many interesting
exact results can be obtained on the finitely ramified structures,
while analogous problems on the standard homogenous spaces
are usually rather difficult. Lacking translation invariance,
self-similar graphs may be used to model some aspects
of nonhomogeneous and disordered systems. One can also
expect that such studies may reveal the influence of different
geometrical and topological characteristics of the underlying
graph on the nature of critical behavior in general.

Several studies performed so far on deterministic fractals
show that density of zeros exhibits a scaling form near the
edge, which is more complicated than a pure power law.
Using a decimation approach, the exact recursion relations
were constructed, and nontrivial values of νYL and σ were
obtained, mainly numerically [6]. Subsequently, this method
was extended to allow an exact description of the YL edge
singular behavior, first, to the case of “quasilinear” fractal
lattices [7] and, more recently, to self-similar lattices having
better connectivity [8]. It was shown that the form of these
singularities depends on the way the lattice coordination
number fluctuates from site to site of the lattice and that it may
differ markedly from the usual power-law form. Surprisingly,
in some cases it was found that these singularity forms coincide
with those for the simple zero-field Gaussian model on the
same structure. This motivated us to explore this problem more
systematically by considering the ferromagnetic Ising model
on a class of Sierpinski-type fractal lattices (see Fig. 1). Each
member of this family can be labeled by an integer b, 2 � b <

∞, which represents lattice spatial scaling factor. This family
often has been used in the past to study critical behavior of
some interesting statistical mechanical models, especially in
the context of a possible fractal to homogenous space critical
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(a) (b) (c)

FIG. 1. Schematic representation of the r-th level Sierpinski type
fractal with spacial scaling factor b = 2 (a), b = 3 (b), and b = 4 (c).
To construct an r-th order triangle with b = 2, for example, one has
to join three r − 1-th upward-pointed triangles as shown in (a).

behavior crossover, because both fractal and spectral lattice
dimension tends to 2 for large b, while fraction (b − 2)/(b + 4)
of sites having coordination number 6 tends to 1 in this limit.
These studies revealed, however, that there is no a simple
connection between the limiting critical behavior on fractals
(i.e., when b → ∞) and those on standard two-dimensional
lattices. For example, an exact analysis of linear and branched
polymer models on this class of lattices [9] showed that
some critical exponents do not tend to their two-dimensional
counterparts.

In this paper, we show that YL correlation length for
b = 4,5,6,7 diverges more slowly than any power law, ξYL ∼
exp [ln(b)

√| ln(δh)|/ ln(λ0)], where λ0(b) is a decreasing
function of b. At first glance it is difficult to reconcile such
a behavior with the common power-law divergence. It seems,
however, that λ0(b) tends to 1 for large b, which indicates
that the quoted asymptotic form may be inapplicable in the
limit b → ∞.

An elegant solution, which relies on the existence of a
star-triangle transformation for the Ising model on the usual
Sierpinski gasket with spatial scaling factor b = 2, has been
found [6]. Unfortunately, it is difficult to extend this approach
to the case of lattices with the spatial scaling factor b > 2.
Recently, we used the method of recursion relations for
conditional partition functions to study this problem on b = 3
lattice [8]. As it was established, however, these relations are
singular at pertinent fixed points, and this fact prevented the
standard fixed point analysis. Our approach was based on
the existence of an invariant manifold, which allowed us to
make an asymptotic expansion of appropriate variables near
the fixed point. In this way, we have been able to show that
the YL correlation length in this case displays a logarithmic
rather than the usual power-law behavior.

In this paper we shall extend this analysis to fractals
having b > 3. Since recursion relations for b > 3 are very
cumbersome, we shall illustrate our approach on the simple
b = 2 case in Sec. II A. The main motive for this is not, of
course, to rederive known results using a different method
but rather to introduce notation and establish some general
intermediate results which we use throughout the paper. In
Sec. II C we give a detailed account of analytical and numerical
results for the b = 4 case, which seems to be representative of
the whole b � 4 lattice family. Then, in Sec. II D, we present
very precise numerical results for b = 5,6,7 lattices, which
are based on exact recursion relations and numerical insights
about structure of the invariant manifolds. The conclusions are
summarized in Sec. III.

II. YANG-LEE EDGE PROBLEM FOR THE ISING MODEL
ON SIERPINSKI FRACTALS

The Ising model on the b = 2 gasket, for real values of mag-
netic field and other interaction parameters, has been studied
in detail in Ref. [10] using a decimation renormalization group
transformation. Since decimation transformations are not well
suited for studies of the YL edge problem, it has been studied
using a block-spin [11] renormalization group transformation
on the same lattice [6]. Some interesting exact results for the
YL edge problem on the b = 3 gasket have been obtained
recently [6]. Let us note, however, that the b = 2 and b = 3
cases are not generic in the sense that the correlation length in
the first case displays the standard power-law singularity while
it follows a logarithmic law in the second case. On the other
hand, it turns out that correlation lengths of the Ising model
on b = 4,5,6,7 lattices have a qualitatively similar singular
behavior near the edge, which differs from both power and
logarithmic law. Independent of the type, all these singularities
can be examined within the approach that we are going to
describe.

A. b = 2 gasket

Consider the nearest-neighbor ferromagnetic Ising model
with a uniform magnetic field on an r-th level triangle shown
in Fig. 1(a). The partition function Z(r) of the model can
be written as a simple combination of only four conditional
partition functions Z

(r)
1 = Z(r)(+, + ,+), Z

(r)
2 = Z(r)(−, + ,

+), Z
(r)
3 = Z(r)(+, − ,−), and Z

(r)
4 = Z(r)(−, − ,−), where

Z(r)(+, + ,+), for example, denotes the partition function of
an r-th level triangle with three corner spins [represented by
black circles in Fig. 1(a)] being fixed in the “up state.” One
can then, by keeping fixed states of these three spins, and
summing over 23 states of three interior spins [open circles
in Fig. 1(a)] of an r-th level triangle, write down recursion
relations for the above partition functions. Being homogenous,
the obtained system of recursion relations can be simplified
if one introduces the reduced variables, for example, in the
following way: z2 = Z2/Z1, z3 = Z3/Z1, and z4 = Z4/Z1. In
terms of these variables, one can write

z′
2 = z2

z1
, z′

3 = z3

z1
, z′

4 = z4

z1
, (1)

where zi (i = 1,2,3,4) depend on z2,z3,z4, and on the magnetic
field variable y = exp(−2h),

z1 = y3 + 3y2z2
2 + 3yz2

2z3 + z3
3,

z2 = y3z2 + y2z3
2 + 2y2z2z3 + 2yz2z

2
3 + yz2

2z4 + z2
3z4,

(2)
z3 = y3z2

2 + 2y2z2
2z3 + y2z2

3 + yz3
3 + 2yz2z3z4 + z3z

2
4,

z4 = y3z3
2 + 3y2z2z

2
3 + 3yz2

3z4 + z3
4.

To obtain an r-th order partition function z
(r)
i (i = 2,3,4)

one has to iterate the above recursion relations r times, starting
with the following initial conditions: z(0)

2 = xy, z(0)
3 = xy2, and

z
(0)
4 = y3, where x = exp(−4K) (here K = J/kT > 0 stands

for a standard ferromagnetic interaction strength between each
nearest-neighbor pair of spins).

Now one can express derivatives of the free energy in terms
of zi and some scaled derivatives of the original variables Zi .
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For example, the average magnetization M per spin is given
by

NM = t1 + 3t2 + 3t3 + t4

1 + 3z2 + 3z3 + z4
, (3)

where we have omitted the iteration index r on the left-
and right-hand side of the above relation; here N represents
the number of sites of an r-th level lattice, N ≡ N (r) =
3(3r + 1)/2, and ti denote the scaled derivatives t

(r)
i =

(∂Z
(r)
i /∂h)/Z(r)

1 , i = 1,2,3,4. Using the original recursion
relations for partition functions Zi , one can construct an exact
system of recursion relations for ti , which can be used further
to reveal the asymptotic behavior of density of zeros g near
the edge [1], g ∝ Re(M). In a similar way, one can construct
a two-spin correlation function in the external magnetic field
G =< S1S2 > − < S1 >< S2 > between two outer spins of
an r-th level triangle, lying on a mutual distance R = 3r , in
terms of z

(r)
2 , z

(r)
3 , and z

(r)
4

G = 4
z3 − z2

2 − z2z3 − z2
3 + z4 + z2z4

(1 + 3z2 + 3z3 + z4)2
, (4)

where we omitted the iteration index r . As is expected,
one can show that this function decays exponentially, G ∼
exp(−R/ξYL) for R 	 ξYL, where ξYL is the correlation
length.

As we quoted above, for any T > 0 there exists a strip
|H ′′| < H0(T ) inside of which the density of zeros vanishes.
The limiting value H0(T ) can be determined numerically, by
study of the magnetization (3) and the correlation function
(4). To calculate magnetization one has to iterate (2) together
with the corresponding system of recursion relations for scaled
derivatives ti . If one starts with a sufficiently small value of an
imaginary magnetic field H = iH ′′, such that H ′′ lies inside
the strip of H0(T ), one finds M = 0 for large r . Then, by
increasing H ′′ in small steps, one shall cut the edge H0 of the
strip, which will be characterized by a finite value of M. To
make better control of the onset of M 
= 0, it is convenient to
add a small real part H ′ to the magnetic field. During iterations
the value of H ′ should be decreased gradually by approaching
the edge more and more closely. Numerically, one can also
note that the correlation length ξYL grows without bounds
when approaching the limits of the strip.

Let us note that the system of recursion relations (2) has a
number of different fixed points. Here we are looking for the
YL fixed points only, i.e., those fixed points that can be reached
using the above quoted initial conditions. Both numerical and
analytical analyses reveal that, for H ′ = 0 and H ′′ → H0, z2,
z3, and z4 iterate toward the fixed point

z∗
2 = −iy

1/2
0 , z∗

3 = −y0, z∗
4 = iy

3/2
0 , (5)

where y0 = exp(−2ih0) depends on the value of the tempera-
ture parameter x(T ); there exists also an equivalent fixed point
with coordinates being complex conjugate of (5). In particular,
for x = 1/2 we have found h0 = 0.384 389 080 . . .. But, as it
can be easily verified, recursion relations (2) are singular at
this point (because z1,z2,z3, and z4 vanish for z2 = z∗

2, z3 = z∗
3,

and z4 = z∗
4), which does not allow us to make a common

fixed-point analysis. This puzzle is quite similar to the one
already encountered in our earlier studies of the YL edge

problem for ferromagnetic Ising model on fractals. As detailed
in Refs. [7,8], the basic step in a search for the asymptotic form
of relevant variables near the edge is the observation that all
iterates of these variables lie on an (invariant) manifold. The
situation is analogous for recursion relations (1): As we first
noticed numerically, and afterward corroborated analytically,
one can introduce a variable, for example, δz = z3 − z∗

3, which
is small near the fixed point in such a way that the remaining
two variables can be expressed as some suitable expansions
over δz

z2 = z∗
2 + c1δz + c2(δz)2 + c3(δz)3 + . . . ,

(6)
z4 = z∗

4 + d1δz + d2(δz)2 + d3(δz)3 + . . . ,

where ci and di (i = 1,2,3 . . .) are some complex parameters
which depend on y0. These parameters obey a set of algebraic
equations which follow from the conditions that two successive
iterates, i.e., z2,δz and z′

2,δz
′ as well as z4,δz and z′

4,δz
′, satisfy

(6) with the same values of ci and di . The existence of an
invariant manifold, as well as the form of expansion (6) is not
obvious. In fact, using the insights from the numerical study
of recursion relations at the fixed point, we propose the ansatz
(6), which will be justified a posteriori.

The expansion coefficients ci and di can be calculated
numerically for a given value of the interaction parameter
x(K) and the associated critical value y0 of y(x). As we
noted above, they satisfy a set of polynomial equations,
which allow us to find the first few coefficients explic-
itly: c1 = iy

−1/2
0 /2, d1 = −3iy

1/2
0 /2, c2 = ia2y

−3/2, d2 =
ib2y

−1/2
0 , c3 = ia3y

−5/2, d3 = ib3y
−3/2, where new coeffi-

cients a2,b2,a3,b3 are real and can be determined as suitable
solutions of some simpler algebraic equations. For example,
we have found that a2 and b2 satisfy the simple relation
b2 = 3a2, and a2 represents a solution of the equation

262 144 a6
2 + 102 400 a4

2 + 10 240 a3
2

+192 a2
2 − 96 a2 − 5 = 0. (7)

Since this equation has six solutions, we can select the proper
one by making comparison with the value that follows from
numerical iterations of (2) at the edge. In this way, we have
identified the positive solution of (7), a2 = 0. 085 095 609,
as the appropriate one. Higher-order coefficients are subject
to rather cumbersome equations and they will not be given
here. Nevertheless, these coefficients can be calculated with
arbitrary numerical precision (we have calculated, for exam-
ple, a3 = 0.028 611 062, b3 = 0.110 815 562), which can be
regarded as a justification of the validity of the form (6) along
the invariant manifold.

Having determined the form (6), we can use it to find the
proper form of recursion relations, which is expected to be
valid near the edge. Thus, taking into account that near the fixed
point (5) variables z2 and z4 follow the asymptotic behavior
(6), and making an expansion of the third recursion relation
near the fixed point, we get a very simple recursion relation
for the deviation δz

δz′ = c δz + O(δz2), (8)

where c is a real constant which can be expressed in terms of
first few expansion coefficients (numerically we have found
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c = 0.534 172 974). As a consequence of this, z
(r)
3 approaches

its fixed point value z∗
3 = −y0 in the following way: z

(r)
3 −

z∗
3 ∼ cr . Now one can see that the two remaining variables

z2 and z4 follow the same asymptotic behavior, z(r)
i − z∗

i ∼ cr ,
i = 2,4. Then a simple analysis of (4) reveals that, for h = ih0,
the correlation function displays a similar behavior G ∼ c2r

(“critical slowing down”).
In fact, the quoted asymptotic relations also hold for a finite

but sufficiently small values of δh = h′′ − h0, provided r � r0,
where r0 	 1 is the number of iterations one can make along
the invariant manifold before going away from it [starting
with initial conditions in which y = y0 exp(−2iδh)]. Thus,
the value of r0 depends on δh [see formula (10)]. On the other
hand, for r > r0 correlation function decreases much faster:
G ∼ κ2r ≡ exp(−2 r/ξYL), where parameter κ < 1 depends on
δh and ξYL = −1/ ln[κ(δh)] denotes the YL correlation length.
Then an asymptotic matching, r ∼ r0, leads to ξYL = 2r0 , as
could be expected on the finite-size scaling grounds.

The number r0 can be determined from the asymptotic
behavior of scaled derivatives t

(r)
i = (∂Z

(r)
i /∂h)/Z(r)

1 . Indeed,
for a small δh and r < r0 we can write

z
(r)
i (δh) = Z

(r)
i (δh)

Z
(r)
1 (δh)

≈ z
(r)
i (0) + t

(r)
i δh

1 + t
(r)
1 δh

≈ z∗
i + (

t
(r)
i − z∗

i t
(r)
1

)
δh. (9)

On the other hand, our study of an exact system of recursion
relations for scaled derivatives, t (r)

i = (∂Z
(r)
i /∂h)/Z(r)

1 , reveals
that, for r < r0, their leading asymptotic behavior has the form
t

(r)
i ∼ λr

t , where λt = 5.379 953 310 plays the role of “thermal
eigenvalue” (in the terminology of the renormalization group
theory). Thus, r0 can be estimated from the condition that the
second (growing) term on the right-hand side of (9) should
be of the order of the first one, |t (r0)

i − z∗
i t

(r0)
1 ||δh| ∼ λ

r0
t |δh| ∼

|z∗
i |, i.e.,

λ
r0
t δh ∼ O(1), or r0 ∼ | ln(δh)|/ ln(λt ). (10)

This means that the asymptotic behavior of the YL correlation
length has the power-law form ξYL ∼ (δh)−νYL with

νYL = ln(2)/ ln(λt ) = 0.411 193. (11)

Leading asymptotic behavior near the edge of the magnetiza-
tion per site, and thus of the density of zeros g ∝ Re(M), can
be derived from (3) as follows: g ∼ N−1t

(r0)
i ∼ 3−r0λ

r0
t , which

means that g diverges following the power law

g ∼ (δh)σ , σ = ln(3/λt )/ ln(λt ) = −0.347 105. (12)

Let us note here that the above-quoted values of σ and
νYL coincide with corresponding exact values that have been
obtained earlier using block-spin transformations [6]. The
advantage of the approach we outlined in this section is,
however, that it can be extended to the cases where the
methods based on star-triangle transformation are seem to be
inapplicable (in particular, to gaskets having spatial scaling
factor b > 2).

B. b = 3 gasket

This case was studied recently in the context of a relation
between YL ferromagnetic Ising model criticality and the
criticality of the Gaussian model on nonhomogenous fractal
structures [8]. For the sake of completeness, we quote here the
main results. Thus, it has been shown that the YL correlation
length near the edge diverges following a logarithmic law
rather than the usual power-law behavior,

ξYL ∼ ln	(δh), 	 = ln(3/2)/ ln(2). (13)

It has also been demonstrated that density of zeros near the
edge displays very sharp divergence, which is modulated by
the presence of a weaker logarithmic term,

g ∼ | ln(δh)|−
/δh, 
 = ln(6)/ ln(2). (14)

C. b = 4 gasket

To study YL critical behavior of the ferromagnetic Ising
model on gaskets with spatial scaling factor b > 3 we shall use
an extension of the approach we described above. Thus, as in
the case b = 2, partition function of the model on an r-th order
triangle can be written as a combination of four conditional
partition functions defined in Sec. II A. To obtain recursion
relations for these partition functions, one has to sum over
2(b−1)(b+4)/2 states of interior spin variables, keeping the states
of three outer spins fixed. Since the number of relevant states
increases very quickly with b, one has to use computer facilities
to obtain requisite relations. Given that resulting recursion
relations are rather cumbersome for b > 3, we will not present
them here but they will be available on request. On the other
hand, the initial conditions that we introduced in Sec. II A, as
well as the general formulas (3) and (4) for the magnetization
and correlation function, remain unchanged, except that N
now denotes the number of sites of an r-th order triangle with
spatial scaling factor b,

N = [2r+1(b + 1) + (b + 4)(b + 1)rbr ]/[2r (b + 2)]. (15)

Since it turns out that the singular behavior near the edge
of the Ising model on the b = 4,5,6,7 lattices is qualitatively
the same, we shall give here some details of the analytical and
numerical analyses for the simplest case, b = 4, and provide
only the main results for b > 4.

As mentioned above, the resulting recursion relations for
the restricted partition functions are rather cumbersome even in
the b = 4 case, so they will be omitted here. Both the numerical
and the analytical analyses show that, for a given value of
x = exp(−4K), there exists a pair ±ih0 of purely imaginary
values of H/kBT such that z

(r)
j iterates toward the YL critical

point

z∗
2 = y

2/3
0 (1 − i

√
3)/2, z∗

3 = −y
4/3
0 (1 + i

√
3)/2,

(16)
z∗

4 = −y2
0 ,

or to the second (equivalent) fixed point having values that
are complex conjugate of (16). For example, we have found
numerically that this fixed point can be reached for x = 1/2
and h0 = 0.224 844 628 . . .. As in the case b = 2, we have
found that both the numerator and the denominator of the
corresponding recursion relations vanish at (16), which means
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that it represents a singular fixed point. Following the approach
outlined in Sec. II A, one can show that this fixed point lies on
an invariant manifold. Using the insights based on numerical
studies, it seems that an expansion of type (6) still holds,

z2 = z∗
2 + e1δz + e2(δz)2 + e3(δz)3 + . . . ,

(17)
z3 = z∗

4 + f1δz + f2(δz)2 + f3(δz)3 + . . . ,

where δz = z4 + y2
0 is small near the critical point and

parameters ei,fi can be determined from the condition that
“renormalized” variables z′

2 and z′
3 have the same expansion

(17) over δz′ = z′
4 + y2

0 . Using these conditions and recursion
relations one can, in principle, find requisite algebraic equa-
tions for expansion coefficients. To handle tedious algebraic
manipulations we used facilities provided by the known
MATHEMATICA package. For example, we have found that the
coefficient e1 should satisfy a cumbersome quadratic equation
which we give in the appendix [see Eq. (A1)]. It is interesting,
however, that the rather messy solution of this equation can
be cast into the very simple form: e1 = −y

−4/3
0 (1 − i

√
3)/6.

Once we found e1, the expansion coefficient f1 can be deter-
mined from Eq. (A2) of the appendix, f1 = y

−2/3
0 (1 + i

√
3)/3.

In particular, for the above-quoted values x = 1/2 and y0 =
y(x,h0) = 0.836 861 304 − 0.547 414 977 i, one finds e1 =
−0.320 823 359 + 0.090 462 607 i and f1 = 0.091 323 506 +
0.660 382 057 i, which is in excellent agreement with the
values obtained by direct study of pertinent recursion relations.
In a similar way, after a number of algebraic transformations,
we get simple expressions for e2 and f2: e2 = 5y

−10/3
0 (1 −

i
√

3)/72 and f2 = −5y
−8/3
0 (1 + i

√
3)/72. For the above-

quoted value of y0, numerical values of e2 and f2 are in agree-
ment with those obtained from iterations of recursion relations.
We have not been able to find some simple closed forms for the
higher-order expansion coefficient, and so we report here only
the numerical values e3 = 0.422 859 654 + 0.380 131 181 i

and f3 = 0.307 884 985 − 0.455 064 135 i, which are deter-
mined from pertinent algebraic constraints and the above
quoted value of y0. Anyway, the presented analytical and
numerical findings can be regarded as a justification of the
expansion form (17).

Having specified the form (17), we can use it to
find the proper form of recursion relations, which is expected
to be valid near the edge. In particular, taking into account
that near the fixed point (16) variables z2 and z3 follow
the asymptotic behavior (17), and making an expansion of
recursion relation z′

4 = z′
4(z2,z3,z4) near this fixed point, we

get an exact asymptotic recursion relation for δz = z4 − z∗
4,

δz′ = 2
5δz + O(δz2). (18)

As a consequence of this, along the invariant manifold one
finds z

(r)
i − z∗

i ∼ (2/5)r , i = 2,3,4, implying that the correla-
tion function (4) for h = i h0(x) follows the similar behavior,
G ∼ (2/5)2r . In fact, the same asymptotic behavior holds for
a finite but small δh = h′′ − h0, provided r � r0, where r0

depends on δh. It turns out that this correlation function
decreases much faster for r > r0, G ∼ κ4r = exp(−4r/ξYL),
where ξYL = −1/ ln[κ(δh)] is the YL correlation length.
These two regions can be connected by an asymptotic
matching, which yields the estimates ξYL ∼ 4r0 . To express

this asymptotic relation in terms of δh, we use the approach
that we outlined in Sec. II A. Thus, we also studied an exact
system of recursion relations for the scaled derivatives t

(r)
i =

(∂Z
(r)
i /∂h)/Z(r)

1 . It is convenient to express these recursion
relations in a matrix form, with matrix elements being some
function of z

(r)
i . Using the above results for the asymptotic

behavior of z
(r)
i along the invariant manifold, one can show

that these matrix elements grow as ∼(5/2)5r . A condition of
self-consistency for the asymptotic behavior of t

(r)
i then implies

that its leading term should have the form (5/2)r
2
. This allows

us to write

t
(r)
i ∼ (5/2)r

2
λr

1, r < r0 	 1, i = 1,2,3,4, (19)

where we also indicated the form of the next-to-leading term
in the asymptotic form of t

(r)
i . We have not been able to

extract the exact value of λ1, but we calculated it numerically.
To estimate r0 = r0(δh) we can still use formula (9) and
arguments presented after it. Thus, taking only dominant term
of t

(r)
i , we get

(5/2)r
2
0 δh ∼ O(1). (20)

This result, together with the above estimate ξYL ∼ 4r0 , reveals
that the YL correlation length increases as δh → 0 more
slowly than any power law but faster than (13)

ξYL ∼ exp [ln(4)
√

| ln(δh)|/ ln(5/2)]. (21)

Let us note that the same leading asymptotic behavior follows
the correlation length of a simple Gaussian model on the same
structure [12].

To corroborate our analytical findings, and to provide
some further insight into the critical behavior of the model,
we also studied it numerically. First, we examined behavior
of scaled derivatives t

(r)
i as a function of the iteration

index r (r < r0). In particular, we focused our attention
on the ratio δ(r) = ln(t (r+1)

4 /t
(r)
4 )/2r , which should have

the form δ(r) = ln(5/2) + const/r for r 	 1, providing
(19) holds. To test it, we iterated the exact system of the
recursion relation t

(r)
i using very large numerical precision.

In this way, we have obtained, for example, δ(50) =
0.921 042 871 463 727, δ(51) = 0.920 949 692 256 088,
δ(52) = 0.920 860 096 864 128, which is not far from the
theoretical value ln(5/2) = 0.916 290 731 874 2. In order to
extrapolate the finite-r values of δ(r) to r → ∞, we use the
simple sequential fit, δ(r) = δ(∞) + A/rα , where parameters
δ(∞), α, and A can be estimated from any three consecutive
values of δ(r). In particular, for the quoted values of δ(r) one
finds δ(∞) = 0.916 290 731 873 6 which differs from ln(5/2)
just on the 12th significant digit! For the same values of
δ(r) one gets α = 0.999 999 999 8, which also provides clear
numerical support of validity of the asymptotic form (19). As
in the case of Gaussian model [12], the subdominant term λr

1
of this form is a decreasing function of r , λ1 = 0.643 343.
Although this value differs from the corresponding value for
the Gaussian model [12], note that this entails a change in the
form of corrections to scaling terms only.

We have also studied the correlation function (4) and its
correlation length near the edge numerically. The overall
picture of the logarithm of the correlation length as a function
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FIG. 2. Scaled correlation length (critical amplitude) ξ0 =
ξYL/ exp[ln(4)| ln(δh)/ ln(5/2)|1/2] as a function of | ln(δh)|1/2. The
correlation length ξYL is computed using formula (4) and an exact
system of recursion relations. Our numerical estimate of the period
τ (τ ≈ 0.9 572) is in very good agreement with the theoretical
prediction τ = √

ln(5/2).

of | ln (δh)|1/2 looks like a straight line with superimposed
oscillations. A similar sort of some small oscillations have
been noticed earlier in many different situations, especially in
the context of fractal self-similarity or discrete scale invariance
(see, e.g., Ref. [13]). In Fig. 2 we presented oscillatory behav-
ior of the correlation length critical amplitude ξ0, i.e., scaled
correlation length ξ0 = ξYL/ exp[ln(4)| ln(δh)/ ln(5/2)|1/2] as
a function of | ln (δh)|1/2. According to the theory of log-
periodic corrections to power-law scaling [13], period τ of
these oscillations is determined by “thermal” eigenvalue λt ,
τ = ln(λt ). If we rewrite the asymptotic law (20) in the form
(10), r0 ∼ | ln(δh)|1/2/ln(5/2)1/2, we conclude that ξ0 should
be a periodic function in | ln(δh)|1/2 with period τ = √

ln(5/2).
These findings are in excellent agreement with numerical data
presented in Fig. 2. It is also interesting to note that a very
small change of the exact values of parameters appearing in
(21) can destroy the steady behavior of ξ0 presented in this
figure.

The singular behavior of the density of zeros g near the
edge can be deduced from formula (3). Indeed, keeping
only dominant terms in this relation, we get g ∼ t

(r0)
i /N ∼

(5/2)r
2
0 10−r0 , where N ∼ 10r0 describes the asymptotic site

number growth of an r0-th order triangle [see formula (15) for
b = 4]. This, together with asymptotic relation (20), reveals
that density of zeros diverges near the edge in the following
way:

g ∼ exp [− ln(10)
√| ln(δh)|/ ln(5/2)]

δh
. (22)

D. b > 4 gaskets

Yang-Lee edge singularity for the ferromagnetic Ising
model on fractals with b > 4 can be, in principle, studied
in a similar way. Since the corresponding system of recursion

TABLE I. Values of critical magnetic fields h = ih0 calculated for
the fixed value x = 1/2 of the interaction strength x = exp(−4K).
The presented values of growth constants λ0 and λ1, b > 4, are also
calculated for these specific values of h0 and x; it is expected, however,
that they remain unchanged along the critical line h0 = h0(x).

b h0 λ0 λ1

4 0.289 636 078 5/2 6.433 433 × 10−1

5 0.262 841 748 2.005 661 588 1.626 075 × 10
6 0.241 967 570 1.846 528 451 1.099 184 × 102

7 0.224 844 628 1.771 693 310 4.579 340 × 102

relations is very large in these cases, their analytical analysis
would be a very involved procedure. For this reason, for the
b = 5,6,7 cases we shall give numerical results only. Note,
however, that the presented results are obtained from a very
precise numerical analysis of the corresponding exact systems
of recursion relations and that they are accurate to (at least)
seven significant digits.

As this analysis reveals, in all these cases the YL singular
behavior is qualitatively similar to the b = 4 example. In
particular, we have found that YL fixed points have an
unchanged form (16), while the asymptotic form of the scaled
derivatives t

(r)
i , r < r0, is quite similar to (19),

t
(r)
i ∼ λr2

0 λr
1, and, therefore, λ

r2
0

0 λ
r0
1 δh ∼ O(1), (23)

where the values of the growth constants λ0 and λ1 are given in
Table I. An analysis of asymptotic behavior of the correlation
function (4) at criticality h = ih0(x) shows that its correlation
length follows the expected behavior ξYL ∼ br , yielding the
general asymptotic behavior

ξYL ∼ exp [ln(b)
√

| ln(δh)|/ ln(λ0)], b > 3. (24)

In the same spirit, the singular behavior of the density of zeros
near the edge can be expressed in terms of b and λ0 only,

g ∼ exp [− ln[b(b + 1)/2]
√| ln(δh)|/ ln(λ0)]

δh
. (25)

Although the growth constants λ1 have no influence on the
leading asymptotic behavior, we believe that they should be
useful for a more precise description of the correlation length,
especially for larger values of b. Indeed, one can notice a
general trend that λ0 slowly decreases while λ1 rather quickly
increases as a function of b (see Table I). Then there exists a
range of values δh over which the second term of (23) is, in

fact, dominant [i.e., λ
r0
1 δh ∼ O(1), instead of λ

r2
0

0 δh ∼ O(1)],
which entails a power-law behavior of the correlation length.
Though such a power-law will, after all, cross to the true
asymptotic law (24) for sufficiently small δh, this example
points out the necessity of using much care when interpreting
numerical results on finite lattices.

III. CONCLUSION

We studied the YL edge singularity problem for the
ferromagnetic Ising model on a two-dimensional class of
Sierpinski fractal lattices by using exact complex-valued
recursion relations. These relations are singular at pertinent YL
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fixed points, preventing us from making a common fixed-point
analysis. Instead, we applied an asymptotic matching analysis
to explore singular behavior of the correlation length and
density of zeros near the edge. Exact results, based on an
asymptotic expansion of relevant variables along the invariant
manifolds, are presented for lattices having b = 2 and b = 4
and numerically exact results for lattices with 4 < b < 8.

We have shown that the YL correlation length
for b > 3 grows more slowly than power law, ξYL ∼
exp [ln(b)

√| ln(δh)|/ ln(λ0)], while the power-law divergence
of the density of zeros near the edge is modulated by the
presence of a weaker multiplicative term (25). This singular
behavior is qualitatively similar to the one found earlier for
a zero-field Gaussian model (corresponding to the statistics
of equally weighted random paths) on the same class of
lattices. In fact, we have demonstrated that these two models
share the same class of universality in the b = 3 and b = 4
cases. The same coincidence has been noticed earlier—in
the case of models situated on fractals with nonuniform
coordination number. In this sense, our results for b > 4
present some exceptions from earlier findings. It is well
known, however, that these two models on homogenous
lattices (and even fractal lattices having uniform coordination
number) belong to different universality classes, and it is a
real surprise that they can share the same universality class in
some cases; further work is needed in order to clarify these
points.

We presented here results for only the first seven members
of the lattice family. It is tempting to speculate what can happen
for larger values of the spatial scaling factor b. For large b the

fraction (b − 2)/(b + 4) of lattice sites having coordination
number 6 tends to 1, and one can expect that in this limit fractal
lattices mimic increasingly a compact triangular lattice. Since
the YL singularity in the latter case has the power-law form, it
seems difficult to recover this form if general formula (23) is
valid for every b > 3. Note, however, that the growth constant
λ0 decreases with b. A rough estimate of λ0(∞), based on data
presented in Table I, indicates that λ0(b) should be close to
1 for large b. This could provide a sign of the inapplicability
of (21) in the limit b → ∞. Under same assumptions, the
asymptotic form (23) crosses to a form of type (10), which
entails a power-law behavior.
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APPENDIX

To indicate the form of the algebraic constraints imposed on
the expansion coefficients, we give here two equations which
determine parameters e1 and f1 entering asymptotic formulas
(17). They are expressed in terms of y and the fixed point of
(16), using the approach described in the main text. Although
these equations are rather cumbersome, one can verify that they
allow the simple solutions e1 = −y−4/3(1 − i

√
3)/6 and f1 =

y−2/3(1 + i
√

3)/3, where y denotes a point on the critical line
y0 = y(x,h0). Direct numerical analysis of recursion relations
near the edge, performed for x = 1/2 and associated value of
y = y0, corroborates these analytical findings.

52y + 29 900y2 + 1 315 600y3 + 1 0623 470y4 + 20 801 200y5 + 10 623 470y6 + 1 315 600y7 + 29 900y8 + 52y9

− (2 + 5 200y + 460 460y2 + 6 249 100y3 + 19 315 400y4 + 15 452 320y5 + 3 124 550y6 + 131 560y7 + 650y8)z∗
2

+ (650 + 131 560y + 3 124 550y2 + 15 452 320y3 + 19 315 400y4 + 6 249 100y5 + 460 460y6 + 5 200y7 + 2y8)z∗
2

2

+ 3y2e1[23 + 7150y − 32 890y2 − 4 061 915y3 − 18 572 500y4 − 17 866 745y5 − 4 029 025y6 − 182 390y7 − 949y8

+ 3yz∗
2(1 + 1 625y + 32 890y2 − 1 562 275y3 − 13 520 780y4 − 21 246 940y5 − 7 811 375y6 − 624 910y7 − 7 475y8

− 3y9) − 3yz∗
2

2(247 + 20 930y − 411 125y2 − 8 209 045y3 − 21 544 100y4 − 12 810 655y5 − 1 743 170y6 − 42 250y7

− 77y8)] + 9y2 e2
1

[
y(y − 1)(1 + 2 276y + 166 726y2 + 1 729 001y3 + 3 660 541y4 + 1 729 001y5 + 166 726y6

+ 2 276y7 + y8) + y(299 + 50 830y + 904 475y2 + 2 414 425y3 − 742 900y4 − 2 187 185y5 − 427 570y6

− 12 350y7 − 25y8)z∗
2 − (25 + 12 350y + 427 570y2 + 2 187 185y3 + 742 900y4 − 2 414 425y5

− 904 475y6 − 50 830y7 − 299y8)z∗
2

2] = 0. (A1)

y(1 + y)(1 + 83y + y2)
(
1 + 3z∗

2
2
e1 − 3z∗

2f1
) + 9y(4 + 14y + y2)

(
z∗

2 + 3z∗
2

2
f1 + 3e1y

2
)

+9(1 + 14y + 4y2)
(
z∗

2
2 − 3z∗

2e1y
2 + 3f1y

2
) = 0. (A2)
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