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Wigner surmise for mixed symmetry classes in random matrix theory
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We consider the nearest-neighbor spacing distributions of mixed random matrix ensembles interpolating
between different symmetry classes or between integrable and nonintegrable systems. We derive analytical
formulas for the spacing distributions of 2 × 2 or 4 × 4 matrices and show numerically that they provide very
good approximations for those of random matrices with large dimension. This generalizes the Wigner surmise,
which is valid for pure ensembles that are recovered as limits of the mixed ensembles. We show how the coupling
parameters of small and large matrices must be matched depending on the local eigenvalue density.
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I. INTRODUCTION

Random matrix theory (RMT) is a powerful mathematical
tool which can be used to describe the statistical behavior of
quantities arising in a wide variety of complex systems. It has
been applied to many mathematical and physical problems
with great success; see [1–3] for reviews. This wide range of
applications is based on the fact that RMT describes universal
quantities that do not depend on the detailed dynamical
properties of a given system but rather are determined by
global symmetries that are shared by all systems in a given
symmetry class.

In RMT the operator governing the behavior of the system,
such as the Hamilton or Dirac operator, is replaced by a random
matrix with suitable symmetries. One then studies statistical
properties of the eigenvalue spectrum of such random matrices,
typically in the limit of large matrix dimension. To compare
different systems in the same symmetry class with RMT, the
eigenvalues of the physical system as well as those of the
random matrices need to be “unfolded” [4]. The purpose of
such an unfolding procedure is to separate the average behavior
of the spectral density (which is not universal) from the spectral
fluctuations (which are universal). Unfolding is essentially a
local rescaling of the eigenvalues, resulting in an unfolded
spectrum with mean level spacing equal to unity. How the
rescaling is to be done is not unique and may depend on the
system under study.

In this paper we focus on the so-called nearest-neighbor
spacing distribution P (s), i.e., the probability density to find
two adjacent (unfolded) eigenvalues at a distance s. This
quantity probes the strength of the eigenvalue repulsion due to
interactions and can be computed analytically for the classical
RMT ensembles, resulting in rather complicated expressions
given in terms of prolate spheroidal functions [5]. However,
it was realized early on that the level spacing distribution of
large random matrices is very well approximated by that of
2 × 2 matrices in the same symmetry class.1 For most practical
purposes it is sufficient to use this so-called Wigner surmise [8]
instead of the exact analytical result. It is given by

Pβ(s) = aβsβe−bβs2
, (1.1)

1This does not work for non-Hermitian complex matrices [6,7].

with β = 1,2,4 corresponding to the Gaussian orthogonal
ensemble (GOE), Gaussian unitary ensemble (GUE), and
Gaussian symplectic ensemble (GSE) of RMT, respectively.
The quantities aβ and bβ are chosen such that∫ ∞

0
ds Pβ(s) = 1 and 〈s〉 =

∫ ∞

0
ds Pβ(s) s = 1 (1.2)

in all three cases. Explicit formulas will be given in Sec. II.
RMT describes quantum systems whose classical coun-

terparts are chaotic [9] and correctly predicts the strong
short-range correlations of the eigenvalues due to interactions.
In contrast, the level spacing distribution of a quantum system
whose classical counterpart is integrable is given by that of a
Poisson process,

P0(s) = e−s , (1.3)

corresponding to uncorrelated eigenvalues. We assign the
Dyson index β = 0 to ensembles of this kind, which is a
consistent extension of the generalized Gaussian ensembles
with arbitrary real β > 0 introduced in Ref. [10].

Often physical systems consist of parts with different
symmetries, or of a classically integrable and a chaotic
part. Changing a parameter of the system may then result
in transitions between different symmetry classes. Now,
the question is whether a symmetry transition in a given
physical system can be described by a transition between
RMT ensembles (or Poisson). It has been shown in numerous
studies that this is indeed the case. For example, billiards are
showcases for the interplay of chaos and integrability, and
certain billiards exhibit Poisson–GOE transitions [11–14]. A
transition between GOE and GUE behavior takes place in
the spectrum of a kicked top [15] or kicked rotor [16] when
time-reversal symmetry is gradually broken. Furthermore, a
transition from Poisson to GOE statistics was found for random
points on fractals as the dimension is changed [17]. In the
spectrum of the hydrogen atom in a magnetic field, transitions
were observed from Poisson to GOE [18] as well as from
GOE to GUE [19]. Transitions from Poisson to GOE or
GUE statistics also occur in condensed matter physics, e.g.,
in the metal-insulator (Anderson) transition [20,21] whose
properties are similar to those of the Brownian motion model
introduced in Ref. [22]. In relativistic particle physics the Dirac
operator shows transitions between different chiral symmetry
classes [23] or an Anderson-type transition [24–26]. In the
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spectra of nuclei a transition between GOE and Poisson
spectral statistics takes place when levels sequences with
different exact quantum numbers are mixed [4]. We thus
conclude that RMT is broadly applicable not only to pure
systems but also to mixed systems.

In this paper, we assume the Hamiltonian describing the
mixed system to be of the form2

H = Hβ + λHβ ′ , (1.4)

where Hβ represents the original system whose symmetry
or integrability is broken by the perturbation Hβ ′ for small
coupling parameter λ, and vice versa for large λ. For the
quantities we analyze the absolute scale of H is irrelevant;
only the relative scale between the different parts matters.

From the level statistics point of view, Hβ and Hβ ′

correspond either to a Poisson process or to one of the three
RMT ensembles. Hence, there are ( 4

2 ) = 6 possibilities for
a transition between two of these four cases in Eq. (1.4),
i.e., Poisson–GOE, Poisson–GUE, Poisson–GSE, GOE–GUE,
GOE–GSE, and GUE–GSE. If a GSE matrix is involved in
the transition, there are two possibilities for the other matrix:
self-dual or not.3 This leads to an even larger variety of mixed
ensembles. Many transitions of this kind have been studied in
earlier works, usually for large matrix dimension. Transitions
between Gaussian ensembles are considered in Ref. [5], but
closed forms for the spacing distribution could not be obtained,
and self-dual symmetry was not conserved in the transitions
involving the GSE. Mixtures of Gaussian ensembles with
conserved self-dual symmetry and small matrix size are
considered in Ref. [29], but only numerical results are given for
the spacing distributions. Other examples include the heuristic
Brody distribution [30] interpolating between Poisson and
the GOE, the spacing distribution of a generalized Gaussian
ensemble of 2 × 2 real random matrices [31], and a complete
study of the transition between Poisson and the GUE [32]. The
two-point correlation function of the latter case is also studied
in Ref. [33].

Note that an exact analytical calculation of P (s) for systems
described by an ansatz of the form (1.4) is much harder than,
e.g., the analytical calculation of low-order spectral correlation
functions, which are already difficult to obtain. Here, we do
not attempt an analytical calculation of P (s) for large matrix
dimension. Rather, motivated by the reliability of the Wigner
surmise, we study the possible transitions in Eq. (1.4) for
2 × 2 matrices (or, in the symplectic case, 4 × 4 matrices,
because the smallest nontrivial self-dual matrix has this size)
and compare the resulting level spacing distributions with
that of large random matrices, the latter obtained numerically.
The cases of Poisson–GOE and GOE–GUE were worked out
earlier by Lenz and Haake [15], and the spacing distribution
of a 2 × 2 matrix interpolating between Poisson and GUE is
given in Ref. [34]. These cases will briefly be reviewed below,
and the remaining ones are the main subject of this work.

2Other possibilities have also been investigated (see, e.g., [5,27,28])
but will not be considered in this paper.

3An even-dimensional matrix A is called self-dual if JAT J T = A,
with J given in Eq. (G4).

This paper is organized as follows. In Sec. II we derive
analytical results for P (s) for small matrix sizes. If Hβ ′

is from the GSE (i.e., Hβ ′ is self-dual) we construct in
Secs. II D, II F, and II G self-dual matrices Hβ to maintain
the Kramers degeneracy. In Sec. II H we consider the case
where a 4 × 4 GSE matrix is perturbed by a non-self-dual
GUE matrix. Section III provides strong numerical evidence
that the results obtained in Sec. II approximate the spacing
distributions of large random matrices very well. We give a
perturbative argument for the matching of the couplings used
for the Wigner surmise and for large matrices, respectively,
and derive an approximate result that involves the eigenvalue
density. This result describes the numerical data rather well.
We also show that the transitions from the GSE to either a
non-self-dual Poissonian ensemble or the GOE proceed via an
intermediate transition to the GUE and can also be described by
the surmises calculated in Sec. II. We summarize our findings
and conclude in Sec. IV. Technical details are worked out in
several Appendices.

II. SPACING DISTRIBUTIONS FOR SMALL MATRICES

A. Preliminaries

In the spirit of the Wigner surmise, we now calculate
the distributions P (s) of eigenvalue spacings s of mixed
ensembles for the smallest nontrivial (i.e., 2 × 2 or 4 × 4)
matrices, with P (s) normalized as in Eq. (1.2). Unfolding
is not needed for these matrices since they have only two
independent eigenvalues (except for Sec. II H). We first study
the transitions from the integrable to the chaotic case for the
three Gaussian ensembles and then proceed to the transitions
between different symmetry classes.

We define the 2 × 2 Poisson process by a matrix

H0 =
(

0 0

0 p

)
, (2.1)

where p is a Poisson distributed non-negative random number
with unit mean value; i.e., its probability density is P0(p) =
e−p. The eigenvalue spacing of this matrix is obviously Poisso-
nian, as the spacing is just p, and therefore we obtain Eq. (1.3).

The choice of H0 may look like a special case, but it
suffices for our purposes. The most general Hermitian 2 × 2
matrix with spacing p can be obtained from Eq. (2.1) by a
common shift of the eigenvalues (which does not influence
the spacing) and a basis transformation. This transformation
can be absorbed in the perturbing matrix since it does not
change the probability distribution of the latter. To see this,
suppose we had started with a general nondiagonal H0, also
with eigenvalues 0 and p, instead of Eq. (2.1). When added
to a random matrix Hβ ′ with β ′ = 1,2,4, we choose it to
be real symmetric, Hermitian, or self-dual, respectively, in
order to preserve the symmetry properties of Hβ ′ . Then H0

is diagonalized by a suitable matrix �; i.e., diag(0,p) =
�−1H0�, where � is orthogonal (β = 1), unitary (β = 2), or
symplectic (β = 4). In the total matrix H this is equivalent to
�−1Hβ ′� perturbing diag(0,p), but the probability distribution
of the perturbation is invariant under the transformation �.

For matrices H1,2,4 from the GOE, GUE, and GSE,
respectively, we choose the mean values of the matrix elements
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FIG. 1. (Color online) Spacing distributions P0→β ′ (s; λ) of the transitions Poisson → GOE [left, Eq. (2.4)], GUE [middle, Eq. (2.12)] and
GSE [right, Eq. (2.26)] for 2 × 2 or 4 × 4 matrices with coupling parameters λ = 0.02, 0.08, 0.2, 0.4, and 0.8 (maxima moving from left to
right as λ increases). In the GSE case the matrix representing the Poisson process was made self-dual. All formulas were verified by comparison
to numerically obtained spacing distributions of 2 × 2 or 4 × 4 random matrices.

to be 0 and the normalization

〈[(H1,2,4)ii]
2〉 = 2

〈[(
H

(ν)
1,2,4

)
i �=j

]2〉 = 1. (2.2)

The index ν = 0, . . . ,β − 1 distinguishes the components of
the complex GUE or quaternion GSE matrix elements, while
the GOE matrix elements possess only a real part.

All results we derive from Eq. (1.4) will be symmetric in λ

since the distribution of the elements of Hβ ′ is symmetric about
zero (the perturbation will be taken from one of the Gaussian
ensembles in each case). This means that our results should be
expressed in terms of |λ|. To avoid such cumbersome notation
we restrict ourselves to non-negative λ.

B. Poisson to GOE

We first consider the case that corresponds to a classically
integrable system perturbed by a chaotic part with antiunitary
symmetry squaring to 1. The integrable part is represented by a
Poisson process, and the chaotic one by the GOE. The spacing
distribution for this case has been derived in Ref. [15], and we
state it here for the sake of completeness.

The 2 × 2 random matrix

H = H0 + λH1 =
(

0 0

0 p

)
+ λ

(
a c

c b

)
(2.3)

consists of H0 from (2.1) and H1 from the GOE, i.e., a real
symmetric matrix with normalization given in Eq. (2.2). The
calculations are very similar to the ones for the transition from
Poisson to the GSE, which are presented in Sec. II D (see also
Appendix A). The resulting spacing distribution of H reads

P0→1(s; λ) = Cs e−D2s2
∫ ∞

0
dx e

− x2

4λ2 −x
I0

(
xDs

λ

)
, (2.4)

with

D(λ) =
√

π

2λ
U

(
− 1

2
,0,λ2

)
, (2.5)

C(λ) = 2D(λ)2, (2.6)

where U is the Tricomi confluent hypergeometric function (or
Kummer function) [[35], Eq. (13.1.3)] and I0 is a modified
Bessel function [[35], Eq. (9.6.3)]. P0→1(s; λ) is plotted in
Fig. 1 (left) for various values of λ. The formula is equivalent

to the one given in Ref. [15], but our integration variable x is
scaled differently.

In the limiting cases of λ → 0 and λ → ∞ we have

D(λ) ∼
{

1/(2λ) for λ → 0,√
π/2 for λ → ∞.

(2.7)

Using the asymptotic expansion of the Bessel function, it is
straightforward to show that for λ → 0 we obtain the Poisson
result e−s . It is even simpler to show that the Wigner surmise
(πs/2) e−πs2/4 for the GOE is obtained for λ → ∞.

The small-s behavior of P0→1(s; λ) shows interesting
features. To investigate this behavior, we consider separately
the cases λ = 0 and λ > 0. For λ = 0 we have by construction

P0→1(s; 0) = e−s = 1 − s + O(s2). (2.8)

For λ > 0 we obtain from Eq. (2.4)

P0→1(s; λ) = c(λ)s + O(s3), (2.9)

with

c(λ) ∼
√

π

2λ
for λ → 0, (2.10)

which means that we recover the linear level repulsion of the
GOE for arbitrarily small λ, i.e., for arbitrarily small admixture
of the chaotic part as also observed in Refs. [36–38]. This
implies that for λ → 0 the distribution, viewed as a function
of λ, develops a discontinuity at s = 0, since P0→1(s = 0; λ =
0) = 1 while P0→1(s = 0; λ > 0) = 0. This effect is clearly
seen in Fig. 1 (left).

For small values of λ and s, we observe something
reminiscent of the Gibbs phenomenon, i.e., the interpolation
overshoots the Poisson curve considerably. In the limit of λ →
0, one can show (see Appendix B 2) that the maximum of P0→1

is at smax = 2.51393 λ with a finite value of P0→1(smax; λ →
0) = 1.17516. This implies an overshoot of 17.5% compared
to the Poisson curve. Such an effect also occurs in the
transitions from Poisson to GUE and GSE that are treated
in Secs. II C and II D below, with, respectively, quadratic and
quartic level repulsion in the small-s regime.

The large-s behavior of P0→1(s; λ) is analyzed in Ap-
pendix A, and we obtain Poisson-like behavior for any finite
λ [see Eq. (A7)]. This is in contrast to the small-s behavior,
which is GOE-like for any nonzero λ.
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C. Poisson to GUE

We now consider the transition from Poisson to the GUE.
This corresponds to a classically integrable system with a
chaotic perturbation without antiunitary symmetry. The 2 × 2
random matrix

H = H0 + λH2 =
(

0 0

0 p

)
+ λ

(
a c0 + ic1

c0 − ic1 b

)
(2.11)

contains H2 from the GUE, i.e., a complex Hermitian matrix
with normalization (2.2). The spacing distribution of an
equivalent setup with different normalizations of the random
matrix elements was already considered in Ref. [34], so we
just state the result,

P0→2(s; λ) = Cs2 e−D2s2
∫ ∞

0
dx e

− x2

4λ2 −x sinh z

z
, (2.12)

with z = xDs/λ and

D(λ) = 1√
π

+ 1

2λ
eλ2

erfc(λ) − λ

2
Ei(λ2)

+ 2λ2

√
π

2F2

(
1

2
,1;

3

2
,
3

2
; λ2

)
, (2.13)

C(λ) = 4D(λ)3

√
π

. (2.14)

Here, erfc is the complementary error function [ [35],
Eq. (7.1.2)], Ei is the exponential integral [ [35],
Eq. (5.1.2)], and 2F2 is a generalized hypergeometric function
[39, Eq. (9.14.1)]. We could also have written the result in the
form of Eqs. (A2) and (A3) since sinh z = √

πz/2 I1/2(z).
To check the validity of Eq. (2.12) and to see the emergence

of the limiting spacing distributions, we now consider the
limits λ → 0 and λ → ∞. First note that for λ → 0 we have

D ∼ 1

2λ
and C ∼ 1

2λ3
√

π
(2.15)

so that Eq. (2.12) becomes for s > 0

P0→2(s; 0) = lim
λ→0

s2

2λ3
√

π

∫ ∞

0
dx e

− 1
4λ2 (s2+x2)−x sinh z

z

= s

2
√

π

∫ ∞

0
dx

e−x

x
lim
λ→0

1

λ

(
e
− (s−x)2

4λ2 − e
− (s+x)2

4λ2
)

︸ ︷︷ ︸
=2

√
π[δ(s−x)−δ(s+x)]

= e−s , (2.16)

which is the Poisson distribution as required. For λ → ∞ we
have

D ∼ 2√
π

and C ∼ 32

π2
(2.17)

so that Eq. (2.12) becomes

P0→2(s; ∞) = 32s2

π2
e− 4s2

π lim
λ→∞
z→0

∫ ∞

0
dx e

− x2

4λ2 −x sinh z

z

= 32s2

π2
e− 4s2

π , (2.18)

which is the Wigner surmise for the GUE.

The integral in Eq. (2.12) can be computed numerically
without difficulties as the integrand decays like a Gaussian
for large x and becomes constant for small x.4 The resulting
distribution P0→2(s; λ) is plotted in Fig. 1 (middle).

As in Sec. II B, a discontinuity is found at s = 0 toward the
Poisson result. For λ > 0 we obtain from Eq. (2.12)

P0→2(s; λ) = c(λ)s2 + O(s4), (2.19)

with

c(λ) ∼ 1

2λ2
for λ → 0. (2.20)

Hence we obtain the quadratic level repulsion of the GUE
for arbitrarily small coupling parameter. For λ → 0, the
maximum of the function is at smax = 3.00395 λ, with a value
of P0→2(smax; λ → 0) = 1.28475 (see Appendix B 2).

The large-s behavior of P0→2(s; λ) is given by Eq. (A7);
i.e., it is Poisson-like.

D. Poisson to GSE

In this case, a classically integrable system is perturbed by
a chaotic part with antiunitary symmetry squaring to −1 and
hence represented by the self-dual matrices of the GSE. One
has to consider 4 × 4 matrices here, because a self-dual 2 × 2
matrix is proportional to 12 and has only one nondegenerate
eigenvalue. As mentioned in Sec. I, there are now two
possibilities: The Poisson process could be represented by
a self-dual or a non-self-dual matrix. Here we only consider
the former possibility, while the latter will be discussed in
Sec. III E. A self-dual Poisson matrix is obtained by taking a
tensor product of Eq. (2.1) with 12. Thus the transition matrix
is

H = H0 ⊗ 12 + λH4 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 p 0

0 0 0 p

⎞
⎟⎟⎟⎠

+ λ

⎛
⎜⎜⎜⎝

a 0 c0 + ic3 c1 + ic2

0 a −c1 + ic2 c0 − ic3

c0 − ic3 −c1 − ic2 b 0

c1 − ic2 c0 + ic3 0 b

⎞
⎟⎟⎟⎠,

(2.21)

where the GSE matrix H4 is Hermitian and self-dual, and
can be represented by a 2 × 2 matrix whose elements are real
quaternions (see [5] for details).

We now explain the calculation of the spacing distribution
for this transition. The computation of the previous cases,
Poisson to GOE and Poisson to GUE, can be done in a similar
fashion.

4Note that the integral can be expressed in terms of imaginary error
functions, but for increasing s delicate cancellations occur that make
it impractical to use this form for numerical evaluation. This is why
we present Eq. (2.12) as the final formula, which is well suited for
numerical integration.
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Due to the self-dual structure of H , the spacing S between
its nondegenerate eigenvalues can be computed analytically
and reads

S = λ

√
(a − b − p/λ)2 + 4cμcμ, (2.22)

where the repeated index μ indicates a sum from 0 to 3. We
have intentionally written S instead of s since we eventually
need to rescale the spacing to ensure 〈s〉 = 1. The desired
spacing distribution is proportional to the integral

I (S) =
∫

dp da db

3∏
ν=0

dcν P0(p)Pa(a)Pb(b)Pcν
(cν)

× δ(S −
√

[a − (b + p/λ)]2 + 4cμcμ), (2.23)

where we have rescaled S by λ for simplicity and are not yet
concerned with the normalization. The distributions Pα(α) of
the random variables α = a,b,c0,c1,c2,c3 are Gaussian, with
variances given by Eq. (2.2),

σ 2
a,b = 2σ 2

c0,c1,c2,c3
= 1. (2.24)

Inserting this into Eq. (2.23) and shifting b → b − p/λ gives

I (S) ∝
∫ ∞

0
dp

∫ ∞

−∞
da db

3∏
ν=0

dcν e−p− 1
2 a2− 1

2 (b−p/λ)2−cμcμ

× δ(S −
√

(a − b)2 + 4cμcμ). (2.25)

The multidimensional integral in this expression is computed
in Appendix C 1. Rescaling the spacing and normalizing the
distribution to satisfy Eq. (1.2), we obtain

P0→4(s; λ) = Cs4e−D2s2
∫ ∞

0
dx e

− x2

4λ2 −x z cosh z − sinh z

z3
,

(2.26)

with z = xDs/λ and

D(λ) = λ

2
√

π

∫ ∞

0
dx e−2λx

× (4x3 + 2x)e−x2 + √
π (4x4 + 4x2 − 1) erf(x)

x3
,

(2.27)

C(λ) = 8D(λ)5

√
π

, (2.28)

where erf is the error function [[35], Eq. (7.1.1)]. The last

term in the integrand of Eq. (2.26) is proportional to I3/2(z),
in agreement with Eqs. (A2) and (A3).

In the limiting cases of λ → 0 and λ → ∞ we find

D(λ) ∼
{

1/(2λ) for λ → 0,

8/(3
√

π ) for λ → ∞.
(2.29)

For λ → 0, manipulations analogous to those performed in
Eq. (2.16) lead to the Poisson result e−s . For λ → ∞ the
integral in Eq. (2.26) becomes trivial and yields 1/3 so that we
obtain the Wigner surmise (64/9π )3s4e−64s2/9π for the GSE.

Equation (2.26) is plotted in Fig. 1 (right) and again displays
a discontinuity at s = 0 as λ → 0. For λ > 0 we now have

P0→4(s; λ) = c(λ)s4 + O(s6), (2.30)

with

c(λ) ∼ 1

12λ4
for λ → 0. (2.31)

For λ → 0, the maximum of the function is at smax =
3.76023 λ, with a value of P0→4(smax; λ → 0) = 1.43453 (see
Appendix B 2).

The large-s behavior of P0→4(s; λ) is again Poisson-like
and given by Eq. (A7).

E. GOE to GUE

With this section we start the investigation of transitions be-
tween different chaotic ensembles using the smallest possible
matrix size.

We consider the 2 × 2 matrix

H = H1 + λH2. (2.32)

The spacing distribution for this transition was already
computed in Ref. [15]. With the normalization of ensembles
given in Eq. (2.2), it reads

P1→2(s; λ) = Cs e−D2s2
erf

(
Ds

λ

)
, (2.33)

with

D(λ) =
√

1 + λ2

√
π

(
λ

1 + λ2
+ arccot λ

)
, (2.34)

C(λ) = 2
√

1 + λ2 D(λ)2. (2.35)

This formula matches the result of [15] up to a rescaling of
the coupling parameter λ by a factor of

√
2, which is due to a

different normalization of the ensembles used there.
In the limiting cases of λ → 0 and λ → ∞ we have

D(λ) ∼
{√

π/2 for λ → 0,

2/
√

π for λ → ∞.
(2.36)

For λ → 0, the error function in Eq. (2.33) can be replaced by
unity (for s > 0), and we obtain the Wigner surmise for the
GOE. For λ → ∞, using the first-order Taylor expansion of
the error function yields the Wigner surmise for the GUE.

The result (2.33) is plotted in Fig. 2 (left). In the small-s
region, we now have for λ > 0

P1→2(s; λ) = c(λ)s2 + O(s4), (2.37)

with

c(λ) ∼ π

2λ
for λ → 0. (2.38)

Similar to the previous sections, a nonanalytic transition
between weaker and stronger level repulsion develops as
λ → 0, except that now there is no jump in the function itself
but rather in its derivative at s = 0. Therefore, the stronger
level repulsion takes over immediately in the small-s regime,
if λ > 0. As we shall see below, this also happens in the
remaining transitions, GOE to GSE and GUE to GSE, and
seems to be a characteristic feature of the mixed ensembles.

The large-s behavior of P1→2(s; λ) is obtained immediately
from Eq. (2.33) by noticing that erf(x) → 1 for x → ∞. In
analogy to the transitions from Poisson to RMT this implies
that the large-s behavior is dominated by the ensemble with
the smaller β.
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FIG. 2. (Color online) Spacing distributions Pβ→β ′ (s; λ) of the transitions GOE → GUE [left, Eq. (2.33)], GOE → GSE [middle, Eq. (2.41)],
and GUE → GSE [right, Eq. (2.52)] for 2 × 2 or 4 × 4 matrices with coupling parameters λ = 0.1, 0.2, 0.4, and 0.8 (maxima increasing with
λ). In the cases involving the GSE, the GOE or GUE matrices were made self-dual. All formulas were verified by comparison to numerically
obtained spacing distributions of 2 × 2 or 4 × 4 random matrices.

F. GOE to GSE

As the GSE is involved in this transition, we need matrices
of size 4 × 4. Again there are two possibilities: The GOE
matrix could be made self-dual, or it could be non-self-dual
(as it generically is). Here we only consider the former case,
while the latter case will be discussed in Sec. III E. As in
Ref. [29] we define a modified GOE matrix by

H1 ⊗ 12 =

⎛
⎜⎜⎜⎝

a 0 c 0

0 a 0 c

c 0 b 0

0 c 0 b

⎞
⎟⎟⎟⎠, (2.39)

with real parameters a, b, and c. This matrix is self-dual, so
we can add it to a matrix from the GSE without spoiling the
symmetry properties of the latter. Thus we consider

H = H1 ⊗ 12 + λH4, (2.40)

where H1 and H4 are normalized according to Eq. (2.2). The
eigenvalues of the sum are doubly degenerate and can be
calculated easily due to self-duality.

After some algebra (see Appendix C 2) we obtain for the
spacing distribution of H ,

P1→4(s; λ) = Cs4e−(1+2λ2)D2s2
∫ 1

0
dx (1 − x2) e(xDs)2

× [I0(z) − I1(z)], (2.41)

where z = (1 − x2)D2s2, I0 and I1 are modified Bessel

functions, and

D(λ) = λ − λ3 + (1 + λ2)2 arccot λ√
2π λ

√
1 + λ2

, (2.42)

C(λ) = 29/2

√
π

λ2(1 + λ2)3/2D(λ)5. (2.43)

In the limiting cases of λ → 0 and λ → ∞ we have

D(λ) ∼
{√

π/(23/2λ) for λ → 0,

8/(3
√

2πλ) for λ → ∞.
(2.44)

For λ → 0, we use the asymptotic expansion of the Bessel
functions to simplify the integral over x in Eq. (2.41) and obtain
the Wigner surmise for the GOE. For λ → ∞, the exponential

and the difference of the Bessel functions in the integral over x

can be replaced by unity, and the Wigner surmise for the GSE
follows trivially.

The distribution P1→4(s; λ) is plotted for several values of
λ in Fig. 2 (middle) and displays a continuous interpolation
between the GOE and GSE curves. In the small-s region, the
level repulsion is of fourth order for nonvanishing λ. This is
visible in the plots and can be shown by expanding P1→4(s; λ)
for λ > 0 and small s,

P1→4(s; λ) = c(λ)s4 + O(s6), (2.45)

with

c(λ) ∼ π2

12λ3
for λ → 0. (2.46)

The large-s behavior of P1→4(s; λ) can be obtained using
the asymptotic expansion

I0(z) − I1(z) = ez

[
1√

8πz3/2
+ O(z−5/2)

]
(2.47)

in Eq. (2.41), resulting in

P1→4(s; λ) ∼
√

π

32

C

D3
s e−2(λDs)2

for s → ∞. (2.48)

Again, the large-s behavior is dominated by the ensemble with
the smaller β.

G. GUE to GSE

Again, due to the presence of the GSE, we have two
possibilities for the GUE: self-dual or not. The former case
is simpler and analyzed here, while the latter case will be
considered in Sec. II H. We first have to clarify how to obtain
a self-dual 4 × 4 matrix whose eigenvalues have the same
probability distribution as those of a 2 × 2 matrix from the
GUE. In analogy to Sec. II F, one could try H2 ⊗ 12, but
the resulting matrix is not self-dual. Instead, we consider the
matrix

H 4
2 =

(
H2 0

0 HT
2

)
(2.49)

with H2 given in Eq. (2.11). The eigenvalues of H 4
2 are

obviously equal to those of H2, but they are twofold degenerate.
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Interchanging the second and third row and column of H 4
2 , we

obtain the matrix

H sd
2 =

⎛
⎜⎜⎜⎝

a 0 c0 + ic1 0

0 a 0 c0 − ic1

c0 − ic1 0 b 0

0 c0 + ic1 0 b

⎞
⎟⎟⎟⎠, (2.50)

which is self-dual and has the same eigenvalues as H 4
2 . A

matrix of this form was already introduced in Ref. [29].
The proper self-dual matrix for the GUE to GSE transition

is thus

H = H sd
2 + λH4, (2.51)

with H4 given in Eq. (2.21). The calculation of the correspond-
ing spacing distribution proceeds in close analogy with the one
presented in Appendix C 2, and we find the closed expression

P2→4(s; λ) = Ce−(λDs)2
[2(Ds)2 − √

πDse−(Ds)2
erfi(Ds)],

(2.52)

with the imaginary error function erfi(x) = −i erf(ix) and

D(λ) = 1

λ
√

π

(
2 + λ2 − λ4 arccsch λ√

1 + λ2

)
, (2.53)

C(λ) = 2λ3

√
π

(1 + λ2)D(λ), (2.54)

where arccsch is defined in Ref. [[35], Eq. (4.6.17)].
In the limiting cases of λ → 0 and λ → ∞ we have

D(λ) ∼
{

2/(λ
√

π ) for λ → 0,

8/(3λ
√

π ) for λ → ∞.
(2.55)

For λ → 0, the asymptotic expansion of the second term in
the square brackets of Eq. (2.52) yields −1. This can be
neglected compared to the first term in the square brackets,
which gives the Wigner surmise for the GUE. For λ → ∞,
Taylor expansion of the square brackets in Eq. (2.52) yields
the Wigner surmise for the GSE.

The result (2.52) is plotted in Fig. 2 (right). In the small-s
region, we have for λ �= 0

P2→4(s; λ) = c(λ)s4 + O(s6), (2.56)

with

c(λ) ∼ 256

3π3λ2
for λ → 0. (2.57)

The large-s behavior of P2→4(s; λ) can be obtained by
noticing that for large s the first term in the square brackets of
Eq. (2.52) dominates the second term so that

P2→4(s; λ) ∼ 2CD2 s2 e−(λDs)2
for s → ∞. (2.58)

Again, the large-s behavior is dominated by the ensemble with
the smaller β.

H. GSE to GUE without self-dual symmetry

In this section, we consider a matrix taken from the GSE
whose Kramers degeneracy is lifted by a perturbation taken
from the GUE without self-dual symmetry. As we shall see,
this case also gives a surmise for other transitions involving

H
4

H
4
 + λ H

2

S
1

S
2S

FIG. 3. (Color online) Perturbation of GSE eigenvalues removing
the degeneracy.

the GSE and another ensemble without self-dual symmetry.
We will return to this point in Sec. III E.

1. General considerations

The 4 × 4 transition matrix is

H = H4 + λH2, (2.59)

with H4 taken from the GSE and H2 from the GUE, both
in standard normalization, Eq. (2.2). As H2 has no self-dual
symmetry, the twofold degeneracy of the GSE spectrum is
removed and eigenvalue pairs are split up. If the perturbation
is small, there are two different spacing scales in this setup, as
shown in Fig. 3 where the perturbation of two nearest-neighbor
eigenvalues is sketched:

S1: the spacings between previously degenerate eigenval-
ues, which are of the same order of magnitude as the coupling
parameter for small couplings; these are formed by the two
smallest and the two largest eigenvalues of H ;

S2: the intermediate spacing, which is formed by the second
and third largest eigenvalue of H ; in the limit λ → 0 this is
the original spacing of the GSE matrix H4.

The joint probability density of the eigenvalues of H is
given, up to a rescaling, by [5, Eq. (14.2.7)]

P (θ1,θ2,θ3,θ4)

= C0 exp

(
−

4∑
i=1

θ2
i

)
�(θ1,θ2,θ3,θ4)

× [h(d21)h(d43) + h(d32)h(d41) − h(d31)h(d42)], (2.60)

with

�(θ1,θ2,θ3,θ4) =
∏
i<j

(θj − θi), (2.61)

h(x) = xe−x2/λ2
, (2.62)

dij = θi − θj , (2.63)

C0 = 1

9π2
λ−6 (2 + λ2)5. (2.64)
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FIG. 4. (Color online) Spacing distributions for the transition from GSE → GUE (non-self-dual) for 4 × 4 matrices and various values of
the coupling parameter λ. Left: Spacings s1 between previously degenerate eigenvalues. Middle: Spacings s1, but zoomed in to the rectangular
region indicated in the plot on the left; 2 × 2 GUE stands for λ → 0; 4 × 4 GUE stands for λ → ∞; for the interpolation curves we chose
λ = 0.4,1,2 (maxima decreasing). Right: Intermediate spacing s2; GSE stands for λ = 0; 4 × 4 GUE stands for λ → ∞; for the interpolation
curves we chose λ = 0.05,0.15,0.3,1 (maxima decreasing).

As we are only interested in spacings and thus in differences
of eigenvalues, we introduce new variables

t1 = d21 = θ2 − θ1, (2.65)
t2 = d32 = θ3 − θ2, (2.66)
t3 = d43 = θ4 − θ3 (2.67)

and keep the original variable θ1. The Jacobi determinant
of this transformation is 1, and we can now perform the θ1

integration, which results (up to a constant factor) in

P (t1,t2,t3) = �(−t1,0,t2,t2 + t3)

× exp
{− 1

4

[
(t1 + 2t2 + t3)2 + 2t2

1 + 2t2
3

]}
× [

h(t1)h(t3) − h(t1+t2)h(t2+t3)

+h(t1+t2+t3)h(t2)
]
. (2.68)

We now derive the distributions of the two different kinds
of spacings from this formula. We assume θ1 � θ2 � θ3 � θ4

and include the resulting combinatorial factor of 4! explicitly.

2. Spacings between originally degenerate eigenvalues

To obtain the distribution of the spacing between the two
smallest eigenvalues of H (the two largest ones give the same
result due to symmetry), we set t1 = S1 and integrate over t2
and t3 from 0 to ∞. This results in the spacing distribution

P 1
4→2(s1; λ) = CD

∫ ∞

0
dt2 dt3 P (Ds1,t2,t3), (2.69)

with

C(λ) = 4

3
π−3/2 λ−6(2 + λ2)5, (2.70)

D(λ) = C(λ)
∫ ∞

0
dS1 dt2 dt3 S1 P (S1,t2,t3). (2.71)

We replaced S1 by s1 to indicate that this is the spacing on the
unfolded scale, i.e., with a mean value of 1. One of the integrals
could in principle be done analytically, but this results in such
a lengthy expression that it seems more sensible to evaluate all
integrals numerically.

The distribution in the limit λ → 0 can either be obtained
by perturbation theory (see Appendix D 1) or by directly

evaluating the spacing distribution in the limit λ → 0. First
note that

lim
λ→0

2√
πλ3

x h(x) = δ(x), (2.72)

where the λ dependence of h, which is suppressed in our
notation, plays a crucial role. As the mean value of the spacing
S1 on the original scale has to become arbitrarily small in
the GSE limit due to the Kramers degeneracy, we consider
a rescaled spacing s̃1 = S1/λ. Therefore h(S1) becomes for
small λ

h(S1) = h(λs̃1)
λ→0≈ λs̃1 e−s̃2

1 . (2.73)

With these considerations we obtain from Eq. (2.68)

P (λs̃1,t2,t3)

∝ λ e− 1
4 [(λs̃1+2t2+t3)2+2λ2 s̃2

1 +2t2
3 ]

×
[

2s̃2
1√

πλ
e−s̃2

1 δ(t3)(λs̃1 + t2)(λs̃1 + t2 + t3)t2(t2 + t3)

− δ(λs̃1 + t2) δ(t2 + t3) λs̃1t2t3(λs̃1 + t2 + t3)

+ δ(λs̃1 + t2 + t3) δ(t2) λs̃1(λs̃1 + t2)(t2 + t3)t3

]
(2.74)

as λ → 0. The last two terms in square brackets vanish upon
evaluation of the t2 and t3 integrals, because the zeros of the
arguments of their δ functions lie outside of the integration
region. Performing the t3 integration in the first term we obtain
for nonzero λ and s̃1

P 1
4→2(s̃1; λ)

λ→0∝ s̃2
1 e−s̃2

1 . (2.75)

Up to normalization and rescaling this is the spacing distribu-
tion of a 2 × 2 GUE matrix.

In the opposite limit λ → ∞ the result (2.69) reduces to
the distribution of the first and last spacings of a pure 4 × 4
GUE matrix. This distribution can be obtained from similar
considerations, starting from [5, Eq. (3.3.7)].

The result (2.69) is shown in Fig. 4 (left and middle) for
several values of λ, along with the limiting distributions for
λ → 0 and λ → ∞. All these curves are very similar and can
only be distinguished by the naked eye in the zoomed-in plot.
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We have validated the result (2.69) by comparing it to the
spacing distribution of numerically obtained 4 × 4 random
matrices.

3. Perturbed GSE spacing

We now consider the perturbed spacing of the original GSE
matrix, which was formed by the two degenerate eigenvalue
pairs of H4. The distribution of this spacing is obtained by
setting t2 = S2 and integrating P defined in Eq. (2.68) over
t1 and t3 from 0 to ∞. With proper normalization as given in
Eq. (2.2), this yields

P 2
4→2(s2; λ) = CD

∫ ∞

0
dt1 dt3 P (t1,Ds2,t3), (2.76)

with

C(λ) = 4

3
π−3/2 λ−6(2 + λ2)5, (2.77)

D(λ) = C(λ)
∫ ∞

0
dS2 dt1 dt3 S2 P (t1,S2,t3). (2.78)

Again, the replacement of S2 by s2 means that this is the
intermediate spacing on the unfolded scale, i.e., with a mean
value of 1.

In the limit λ → 0 the result (2.76) reduces to the Wigner
surmise for the GSE, while in the opposite limit λ → ∞ it
reduces to the spacing distribution of the intermediate spacing
of a pure 4 × 4 GUE matrix, which can again be obtained from
similar considerations.

The result (2.76) is shown in Fig. 4 (right) for several values
of λ, along with the limiting distributions for λ → 0 and λ →
∞. The maximum of the interpolation first drops down as λ is
increased from 0, while at a value of λ around 1 it starts to rise
again as the distribution approaches its λ → ∞ limit. Note
that the limiting distributions of s1 and s2 for λ → ∞, i.e., the
red dashed curves in Fig. 4, turn out to be almost identical to
each other and to the Wigner surmise for the GUE.

We have also validated the result (2.76) by comparing it to
the spacing distribution of numerically obtained 4 × 4 random
matrices.

III. APPLICATION TO LARGE SPECTRA

In this section we will show numerically that the formulas
derived in Sec. II for small matrices describe the spacing distri-
butions of large random matrices very well. This observation
should be viewed as our main result.

When comparing the results obtained from large matrices to
our generalized Wigner surmises, a natural question is how the
corresponding coupling parameters, i.e., λ in Eq. (1.4), should
be matched. This question will be addressed in the next section
based on perturbation theory, while the numerical results will
be presented in the remaining portions of Sec. III.

A. Matching of the coupling parameters

The setup is most easily explained by means of the transition
from Poisson to the GUE. The Poisson case is represented by
a diagonal N × N matrix H0 with independent entries θi (i =
1, . . . ,N ), each distributed according to the same distribution
P(θ ), which we choose independent of N . The eigenvalue

density of H0 is thus ρ0(θ ) = NP(θ ), and the local mean level
spacing is 1/ρ0(θ ). We consider

H = H0 + αH2, (3.1)

where H2 is an N × N random matrix taken from the GUE,
subject to the usual normalization, Eq. (2.2).

As in the 2 × 2 case, the eigenvalues θi will experience a
repulsion through H2. We will show in first-order perturbation
theory that the relevant quantity for the repulsion is a
combination of the eigenvalue density of H0 and the variance
of the matrix elements of H2.

Ordinary perturbation theory in α yields a first-order
eigenvalue shift of the θi of

�θ
(1)
i = α(H2)ii . (3.2)

This shift does not lead to a correlation of the eigenvalues, as
it just adds an independent Gaussian random number to each
of them. Therefore, the eigenvalues remain uncorrelated, and
their spacing distribution remains Poissonian.

However, if there is a small spacing of order α between
two5 adjacent eigenvalues θk and θ of H0, first-order almost-
degenerate perturbation theory [40] predicts that the perturbed
eigenvalues are the eigenvalues of the matrix(

θk 0

0 θ

)
+ α

(
(H2)kk (H2)k

(H2)k (H2)

)
. (3.3)

This matrix is almost identical to the 2 × 2 matrix consid-
ered in Sec. II C, Eq. (2.11), with two differences: (i) The
unperturbed eigenvalues θk and θl are shifted, but this does
not affect the spacing distribution. (ii) The mean spacing
of the unperturbed eigenvalues is not 1, but 1/ρ0(θ ). We
dropped the subscript on the eigenvalue θ here, because
adjacent eigenvalues are very close for large N , and therefore
ρ0(θk) ≈ ρ0(θ) = ρ0(θ ).

To be able to match to the 2 × 2 formulas, we have to correct
for the different mean spacing of the unperturbed matrix. We
can do this by multiplying the matrix in Eq. (3.3) by ρ0(θ )
without affecting the normalized spacing distribution. This
results in the relation

λ(θ ) = ρ0(θ ) α (3.4)

between the coupling parameters of the 2 × 2 case and the
N × N cases. Note that the 2 × 2 parameter λ has acquired
a dependence on the eigenvalue θ of H through the local
eigenvalue density of H0. To be able to describe the spacing
distribution of H in the spectral region around θ by the
generalized Wigner surmise, we assume that we have to insert
this λ(θ ) into the 2 × 2 formulas. This choice of universal
coupling parameter is in line with an “unfolded” coupling
parameter mentioned in Refs. [32,41] and a similar result from
perturbation theory [42]. Appendix E contains a calculation
for large matrices in second-order perturbation theory, also
showing that the strength of the perturbation to be used in the
generalized Wigner surmise only depends on the combination
ρ0(θ ) α.

5For small α, we are unlikely to find three or more small (i.e., of
order α) consecutive spacings.
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We now turn from the example “Poisson to GUE” to the
general case, which we write as

H = Hβ + αHβ ′ . (3.5)

The same considerations hold with two modifications: (i) The
unperturbed matrix is not necessarily diagonal by construction.
However, it can be diagonalized by a transformation that
can be absorbed in the perturbation.6 We can therefore treat
it as diagonal (with eigenvalues correlated as dictated by
the unperturbed ensemble). (ii) The mean spacing s̄β of the
unperturbed 2 × 2 (4 × 4) matrix from Sec. II is

s̄0 = 1(Poisson), s̄1 = √
π (GOE),

(3.6)

s̄2 = 4√
π

(GUE), s̄4 = 16

3
√

π
(GSE).

Therefore, we now have to multiply Eq. (3.5) by s̄βρβ(θ ) to get
the correct mean spacing s̄β for the unperturbed matrix. This
results in a universal, but θ -dependent, coupling parameter

λ(θ ) = s̄βρβ(θ )α (3.7)

with the eigenvalue density ρβ(θ ) of the unperturbed matrix.
Equation (3.7) holds for all the transitions we consider, and in
each case β is the Dyson index of the unperturbed ensemble.

In turn, this perturbative argument provides us with a
formula of how to choose the coupling α in large matrices
in order to approximate the spacing distribution of H by 2 × 2
(4 × 4) formulas with parameter λ, i.e.,

α = λ

ρβ(θ )s̄β

, (3.8)

where ρβ(θ ) is the eigenvalue density in the spectral region we
wish to study. In this way we can choose a value of λ resulting
in a spacing distribution roughly in the middle of the two
limiting cases. Choosing α in Eq. (3.5) without this guidance
is likely to result in a spacing distribution that is dominated by
one of the limiting cases.

B. Transitions from integrable to chaotic

1. Check of Wigner surmise

We first consider transitions from Poisson to RMT for
matrices with N nondegenerate eigenvalues. The explicit
numerical realization is the Hamiltonian

H = H0 + �

ρ0(0)
Hβ ′ , (3.9)

where Hβ ′ is a matrix taken from one of the Gaussian
ensembles, with normalization as given in Eq. (2.2). H0 is
the same matrix as in Eq. (3.1) for the perturbation Hβ ′ in
GOE or GUE, whereas a self-dual H0 is constructed by a
direct product with 12 as in Sec. II D if the perturbation is

6Note that we choose the perturbations Hβ ′ such that their
probability distribution is always invariant under the transformations
that diagonalize Hβ , just like in the Poisson to RMT cases. However,
this does not work for some of the transitions between the GSE and
ensembles without self-dual symmetry, which we discuss separately
in Sec. III E.

taken from the GSE. We choose a Gaussian for the distribution
of the eigenvalues of H0, i.e., P(θ ) = (1/

√
2π ) exp(−θ2/2),

so ρ0(0) = N/
√

2π . From Eq. (3.8) we would then expect the
spacing distribution in the center of the spectrum around θ = 0
to be approximated by the corresponding 2 × 2 formulas (2.4),
(2.12), and (2.26) with coupling λ = �.

As can be seen in Fig. 5, the formulas for the 2 × 2
matrices indeed describe the spectra of large matrices quite
well in a wide range of the coupling parameter �. The spacing
distribution was evaluated in the center of the spectrum,
defined as the interval (−0.2,0.2), because the eigenvalue
density is almost constant and equal to ρ0(0) in this region
so that no unfolding is needed. The analytical curve was
obtained by a fit (see Appendix F for details) of the 2 × 2
(or 4 × 4) formula to the numerical data with fit parameter λ.
As expected by the perturbative considerations, λ comes out
on the same order of magnitude as �, and it almost matches
for small �. However, λ is considerably smaller than � for
stronger couplings. Presumably, the repulsion of the many
other eigenvalues in the spectrum not present in the smallest
matrices has a squeezing effect on the spacing, which works
against the repulsion caused by the perturbation. This would
explain the smaller coupling parameter.

2. Dependence of coupling parameter on eigenvalue density

The considerations in Sec. III A imply a linear relation
between local eigenvalue density and effective coupling
parameter, Eq. (3.7), for matrices of the form given in Eq. (3.1).
This means that a perturbation should have a different impact
on the spacing distribution of a single matrix in different
regions of its spectrum (as qualitatively observed in Ref. [15]).
This section provides a detailed analysis of this phenomenon.

Again, we consider a diagonal Poissonian matrix H0 of
large dimension perturbed by a matrix taken from one of the
Gaussian ensembles Hβ ′ ,

H = H0 + αHβ ′ . (3.10)

This time we will choose some fixed α and look separately at
different parts of the spectrum of H with a varying eigenvalue
density. According to Eq. (3.7) the effective 2 × 2 (4 × 4)
coupling parameter λ should be the product of α and the
local eigenvalue density of H0. In Appendix E we show in
perturbation theory up to second order that the local coupling
parameter is in fact a function of this product.

To treat such a system numerically one has to construct
a Poissonian ensemble with a varying eigenvalue density,
perturb it, and measure the coupling parameter in different
parts of the spectrum. This is done by cutting the spectrum
into small windows with approximately constant eigenvalue
density and fitting (see Appendix F for details) the spacing
distributions inside the windows to the formulas for the
2 × 2 (4 × 4) matrices. We therefore obtain a fitted coupling
parameter λ for each window.

For the numerical calculations, the eigenvalues θi of the
matrix H0 were distributed in the interval (−N/2,N/2)
according to the somewhat arbitrarily chosen distribution

P(θi) = 1

N

[
1

2
+ 6

(
θi

N

)2

+ 8

(
θi

N

)3]
, (3.11)
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FIG. 5. (Color online) Spacing distributions for the transition of large matrices from Poisson to GOE (top), GUE (middle), and GSE
(bottom) with several values of the coupling � in Eq. (3.9). The histograms show the numerical data, while the full curves are the analytical
results for 2 × 2 (4 × 4) matrices with fitted coupling parameter λ; see Secs. II B through II D. The quantity �2 defined in Appendix F is a
measure of the fit quality, which is small for a good fit. Each plot has been obtained by diagonalizing 50 000 matrices with 400 nondegenerate
eigenvalues.

N being the number of independent eigenvalues of H0. The
matrix Hβ ′ is normalized in the usual way, Eq. (2.2).

The eigenvalue density ρ(θ ) of the total matrix H is plotted
along with the analytical ρ0(θ ) = NP(θ ) of H0 in the top row
of Fig. 6. One can see that the perturbation only has a negligible
effect on the spectral density.

The dependence of the coupling parameter on the eigen-
value density is plotted in the bottom row of Fig. 6 for
α = 0.1. No error bars are shown because the statistical errors
are negligibly small. A linear fit through the origin with
minimized squared deviation was performed to obtain the
proportionality factor between the eigenvalue density and the
coupling parameter. The quantity δ2 shown in the plots is a
measure of the fit quality and defined by

δ2 =
√√√√ N∑

i=1

(λi − λ̃i)2

N

/ N∑
j=1

λj

N
, (3.12)

where the λi are the numerically obtained coupling parameters
for each spectral window and the λ̃i are the corresponding
predictions from the linear fit at the given eigenvalue density.
Because δ2 is a monotonically increasing function of the
squared deviation it is also minimized by our fitting procedure.

As can be seen, the linear dependence of the effective
coupling parameter on the eigenvalue density is confirmed
very well by the numerical data for all the transitions. Note
that the fit quality gets better with increasing Dyson index β ′;
i.e., it is worst for the GOE and best for the GSE. This is
most likely explained by the fact that the spacing distributions
change more rapidly with respect to the coupling parameter
for larger β ′ (cf. Fig. 1), which allows for a more precise
measurement of the coupling.

Although the linear dependence of the effective coupling
on the eigenvalue density has been demonstrated beyond
reasonable doubt, the proportionality factor is less clear. As can
be read off from Fig. 6 the proportionality factor is smaller than
α; i.e., the measured coupling parameter is smaller than the
expected one. This agrees with the observation in Sec. III B1
where an explanation was given in terms of the effect of other
eigenvalues.

C. Transitions from one symmetry class to another

1. Check of Wigner surmise

We now consider chaotic systems composed of different
symmetry classes, the latter represented by pure Gaussian
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FIG. 6. (Color online) Transitions Poisson → GOE (left), Poisson → GUE (middle), and Poisson → GSE (right). Top: Unperturbed and
perturbed eigenvalue density, the latter obtained numerically. Bottom: Effective coupling λ obtained from fits of the 2 × 2 (4 × 4) level spacings
P0→β ′ (s) [see Eqs. (2.4), (2.12), and (2.26)] as a function of the local eigenvalue density in 35 equally large windows of the spectrum. Linear
fit and proportionality factor with errors defined by the 95% confidence interval are given in the plots. The quantity δ2 defined in Eq. (3.12) is a
measure of the fit quality, which is small for a good fit. The numerical data were obtained from 105 random matrices of dimension 600 (GOE
and GUE) or 800 (GSE).

ensembles. If the GSE is involved, we consider the case of
a self-dual perturbed ensemble in this section (see Sec. III D
for the case of a non-self-dual perturbed ensemble). A self-dual
GOE can be constructed by taking the direct product with 12

as in Sec. II F, while the self-dual GUE is more involved (see
Appendix G). All ensembles are normalized as in Eq. (2.2).
Again motivated by Eq. (3.8), we consider the Hamiltonian

H = Hβ + �

ρβ(0)s̄β

Hβ ′ . (3.13)

For large matrix size, the eigenvalue density of Hβ is a
semicircle which extends to rβ = √

2βN , and its eigenvalue
density in the center is

ρβ(0) =
√

2N√
βπ

. (3.14)

The results for the three transitions among the Gaussian
ensembles are shown in Fig. 7 for N = 400. Again, only
the center of the spectrum, defined as the interval (−5,5),
was evaluated. (The whole semicircle extends to about ±28
for Hβ ∈ GOE and about ±40 for Hβ ∈ GUE.) The coupling
parameter λ was obtained by a fit (see Appendix F for details)
to the corresponding 2 × 2 (4 × 4) formula, which yields a
good approximation to the numerical data throughout the
transition in each case. As in Sec. III B1, λ is close to �

as expected.
For � = 1 and N = 400 the mixed matrix is roughly given

by H = Hβ + O(10−1)Hβ ′ . From the λ values given in Fig. 7,
which should be compared to those in Fig. 2, we see that

the transition is almost completed in this case and that the
spacing distribution is already very similar to the one of the
perturbing ensemble. What is relevant for the transition is
not the relative magnitude of the matrix elements (which
depends on N through the local eigenvalue density) but the
rescaled coupling parameter �; i.e., the transition occurs for
� = O(1). The same phenomenon was found for the two-point
function [41], which is related to the spacing distribution for
small s.

2. Dependence of coupling parameter on eigenvalue density

We now consider the dependence of the coupling parameter
on the local eigenvalue density as in Sec. III B2, but now
for transitions between Gaussian ensembles. In these cases,
the fitting procedure of the effective coupling becomes less
precise, because the functions of the spacing distributions
change only very slowly with λ, as can be seen in Fig. 2.
Therefore, we restrict ourselves to the case of a self-dual GOE
matrix H1 that is perturbed by a GSE matrix H4 as the level
repulsion differs the most in these two ensembles.

In Fig. 8 we show results from the mixed matrix

H = H1 + αH4, α = γ

ρ1(0)s̄1
, (3.15)

with γ = 0.2. (For details about the self-dual GOE and the
normalization, see Sec. III C1.) According to Eq. (3.8) the
effective 4 × 4 coupling parameter λ should be αρ(θ )s̄1 =
γρ(θ )/ρ1(0), i.e., proportional to the local eigenvalue density
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FIG. 7. (Color online) Spacing distributions for the transition of large matrices: GOE → GUE (top), GOE → GSE (middle), and
GUE → GSE (bottom), with several values of the coupling � in Eq. (3.13). The histograms show the numerical data, while the full curves
are the analytical results for 2 × 2 (4 × 4) matrices with fitted coupling parameter λ (see Secs. II E through II G). The quantity �2 defined in
Appendix F is a measure of the fit quality, which is small for a good fit. Each plot has been obtained by diagonalizing 50 000 matrices with 400
nondegenerate eigenvalues.

normalized by the density ρ1(0) in the center, with the
proportionality factor given by the input parameter γ . As one
can see, there is again a linear dependence of the fitted coupling
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FIG. 8. (Color online) Transition GOE → GSE. Left: Un-
perturbed eigenvalue density (approximated by a semicircle) and
perturbed eigenvalue density. Right: Effective coupling λ obtained
from fits of the 4 × 4 level spacings P1→4(s) [see Eq. (2.41)], as a
function of the local eigenvalue density in 35 equally large windows in
the spectrum. Linear fit and proportionality factor with errors defined
by the 95% confidence interval are given in the plots. The quantity
δ2 defined in Eq. (3.12) is a measure of the fit quality, which is small
for a good fit. The numerical data were obtained from 105 random
matrices of dimension 800.

parameter � on the local density (and again, the perturbation
has no measurable effect on the eigenvalue density). The
proportionality factor is almost compatible with the expected
value γ .

D. Perturbation of a GSE matrix by a non-self-dual
GUE matrix

In this section, we apply the formulas derived in Sec. II H
for the spacing distributions of a 4 × 4 matrix from the GSE
perturbed by a matrix from the GUE, this time without self-
dual symmetry, to large matrices. We consider a 2N × 2N

matrix

H = H4 + �

ρ4(0)s̄4
H2, (3.16)

where H4 is taken from the GSE and H2 is the perturbation
from the GUE. Both H4 and H2 are normalized in the usual
way [see Eq. (2.2), and for the prefactor of H2 see Sec. III A].
To ensure a constant eigenvalue density, we again restrict
the measurements to the center of the spectrum, defined
by the interval (−5,5). The numerically obtained spacing
distributions were rescaled to a mean value of 1.
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FIG. 9. (Color online) Spacing distributions between previously degenerate eigenvalues s1 (top) and previously nondegenerate eigenvalues
s2 (bottom) for the transition GSE → GUE without self-dual symmetry for various values of the coupling parameter � in Eq. (3.16). The
histograms show the numerical data, while the full curves are the 2 × 2 GUE surmise P2 (top) and the surmise P 2

4→2(s2; λ) given in Eq. (2.76)
(bottom), the latter with fitted coupling parameter λ. The quantity �2 defined in Appendix F is a measure of the fit quality, which is small for a
good fit. The numerical data were obtained by diagonalizing 50 000 random matrices of dimension 400 for each plot.

As in Sec. II H, we will separately consider the spacings
between originally degenerate eigenvalues and the remaining
ones. The distributions of the former were obtained by
measuring every second spacing, starting with the first one
of each random matrix. They are plotted in Fig. 9 (top)
and show perfect agreement with the 2 × 2 GUE surmise,
which is practically indistinguishable from the exact result
derived for 4 × 4 matrices, P 1

4→2(s1; λ) given in Eq. (2.69).
As in Sec. II H2, this distribution is almost independent of the
coupling parameter.

The distribution of the spacings between previously non-
degenerate eigenvalues is shown in Fig. 9 (bottom). Again,
every second spacing was measured, but starting with the
second one this time. We get an almost perfect agreement
of the numerical data with the surmise P 2

4→β ′ (s2; λ) defined
in Eq. (2.76) throughout the transition. The parameter λ was
again determined by a fit (see Appendix F) and approximately
matches the perturbative prediction from Sec. III A.

E. Other transitions between the GSE and ensembles
without self-dual symmetry

Let us now consider the transition from the GSE to either
the GOE or Poisson, both without self-dual symmetry. These
two cases are more complicated than the cases discussed so
far because, as we shall discuss now, the transitions proceed
via an intermediate transition to the GUE.

Let us first focus on the case

H = H4 + �

ρ4(0)s̄4
H1, (3.17)

where H4 is from the GSE, H1 is from the GOE without self-
dual symmetry, and we again concentrate on the central part of

the spectrum (near zero). For small �, we show in Appendix A
in first-order perturbation theory that the perturbation by the
GOE has exactly the same effect on the eigenvalues as the
perturbation by the GUE considered in Sec. II H, modulo a
rescaling of the coupling parameter, i.e.,

P 1
4→1(s1; λ) = P 1

4→2(s1; λ/
√

2) � P2(s1), (3.18)

P 2
4→1(s2; λ) = P 2

4→2(s2; λ/
√

2). (3.19)

Therefore, we first expect a transition from the GSE to the
GUE, corresponding to the breaking of the self-dual symmetry.
This expectation is confirmed in Fig. 10 (top and middle).

As � is increased to very large values, a transition to GOE
behavior must eventually occur. The question is whether this
transition is described by the surmise of Sec. II E. We show in
Fig. 10 (bottom) that this is indeed the case. Note that a rising
� amounts to a shrinking fitted coupling parameter λ because
the direction of the transition is turned around compared to
Sec. II E. Here, � → ∞ means that H is a pure GOE matrix,
which is described by the surmise with λ = 0.

The case of GSE to Poisson without self-dual symmetry
is analogous. For small values of the coupling parameter, the
self-dual symmetry of the GSE is broken by the perturbation so
that we expect a GSE to GUE transition for the spacings s1 and
s2 as in the GSE to GOE case considered above. For very large
values of the coupling parameter we should eventually find
a transition to Poisson behavior, described by the surmise of
Sec. II C. We have confirmed these expectations numerically
but do not show the corresponding plots here.

Note that in the transitions considered in Secs. III B through
III D a single antiunitary symmetry (or integrability in the
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FIG. 10. (Color online) Spacing distributions for the transition GSE → GOE without self-dual symmetry for various values of the coupling
parameter � in Eq. (3.17). Top: Spacings s1 between previously degenerate eigenvalues (for small �). Middle: Spacings s2 between previously
nondegenerate eigenvalues (also for small �). Bottom: All spacings (for large �). The histograms show the numerical data, while the full
curves are the 2 × 2 GUE surmise P2 (top), the surmise P 2

4→1(s2; λ) given in Eq. (3.19) (middle), and the surmise P1→2(s; λ) given in Eq. (2.33),
the latter two with fitted coupling parameter λ. The quantity �2 defined in Appendix F is a measure of the fit quality, which is small for a good
fit. The numerical data were obtained by diagonalizing 50 000 random matrices of dimension 400 for each plot.

case of Poisson) was broken or restored. In contrast, we now
have two transitions. As � increases from zero, an antiunitary
symmetry T with T 2 = −1 gets broken. As � decreases
from infinity, either an antiunitary symmetry with T 2 = 1 gets
broken (in the case of GOE) or integrability gets broken (in
the case of Poisson). For intermediate values of � the system
follows GUE statistics because all antiunitary symmetries
and/or integrability are broken. This is illustrated in Fig. 11.

Λ

GSE GUE GOE

0 Λ ∼ 1 ∞

T 2 = −
broken

T 2 =
broken

FIG. 11. Schematic picture of the transition from GSE to non-
self-dual GOE, which proceeds via an intermediate transition to the
GUE. An analogous picture applies to the transition from GSE to
non-self-dual Poisson.

IV. SUMMARY

We have derived generalized Wigner surmises for the
nearest-neighbor spacing distributions of various mixed RMT
ensembles from 2 × 2 and 4 × 4 matrices. If the GSE was
involved in the transition, we have distinguished two cases: (i)
perturbations of the GSE by a self-dual ensemble and (ii) per-
turbations of the GSE by a non-self-dual ensemble, for which
we separately considered two different kinds of spacings.

We have shown that all of these distributions yield a
good description of the spectra of large mixed matrices when
restricted to a range of constant spectral density. The coupling
parameters in the generalized Wigner surmise and in the large
mixed matrices are related via the local eigenvalue density of
the latter. This relation is well approximated by Eq. (3.7).

We expect that the results for P (s) derived in this paper
will be useful in numerical and/or experimental studies of
systems with mixed symmetries, such as those mentioned in
Sec. I. P (s) is a convenient quantity that is easily analyzed
numerically or experimentally and typically does not suffer
from serious unfolding issues. In particular, the properties of
the level spacings should help us to clarify whether the mixing
of the symmetry classes in a given physical system is of the
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additive type (1.4) we have investigated here. If so, fits to the
generalized Wigner surmises provide estimates of the coupling
parameter in terms of the local eigenvalue density. In turn,
the coupling parameter could quantify other properties of the
mixed systems.
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APPENDIX A: ANALYSIS OF THE LARGE-s BEHAVIOR

We consider the large-s behavior of the spacing distri-
butions for the three transitions from Poisson to RMT. For
simplicity, we first consider the non-normalized spacing S and
convert to the normalized spacing s at the end. We start with
the initial ansatz for the distributions,

I (S) =
∫

dp da db

β−1∏
ν=0

dcν P0(p)Pa(a)Pb(b)Pcν
(cν)

× δ

⎛
⎝S −

√√√√[a − (b + p/λ)]2 + 4
β−1∑
μ=0

cμcμ

⎞
⎠ ,

(A1)

which is the generalization of Eq. (2.23) to β = 1, 2, and 4.
As in Appendix C 1, we introduce new variables u = a + b

and t = a − b, transform the cν to spherical coordinates, and
eliminate the δ function by integrating out the radius. This
yields

I (S) ∼
∫ ∞

0
dp

∫ S

−S

dt (S2 − t2)
β

2 −1Se
− p2

4λ2 −p− pt

2λ
− 1

4 S2

∼ Sβe− 1
4 S2

∫ ∞

0
dp e−p2−2λp

∫ 1

−1
dx (1 − x2)

β

2 −1e−pxS

∼ Sβe− 1
4 S2

∫ ∞

0
dp e−p2−2λp Xβ(pS), (A2)

where we substituted t = xS, rescaled p → 2λp, and ex-
pressed the x integral (up to normalization) as

Xβ(pS) = (pS)−
β−1

2 I β−1
2

(pS), (A3)

where I is a modified Bessel function [[35], Eq. (9.6.18)].
We now compute the integral in Eq. (A2) in saddle-point
approximation, assuming S to be large. The asymptotic
expansion of Xβ for β = 1,2,4 reads

Xβ(pS) = 1√
2π

(pS)−
β

2 epS. (A4)

For p = O(S−1) we cannot use this expansion, but the
contribution of this region to the integral can be shown to
be negligible compared to the leading order we consider here.
The exponential in the integrand is now

e−p2−2λp+pS, (A5)

with a maximum at pmax = S/2 − λ. Standard manipulations
then yield the saddle-point result

I (S) ∼ e−λS[1 + O(S−1)]. (A6)

The normalized distributions are obtained from I (S) by
rescaling the spacing and restoring the normalization factors
that were omitted in the calculation above, resulting in

P0→β(s; λ) = e−2λDs[2λDeλ2 + O(s−1)], (A7)

where we replaced S by 2Ds with D given in Eqs. (2.5), (2.13),
and (2.27) for β = 1,2,4, respectively. The meaning of this
result is that for arbitrarily large (but finite) λ, i.e., arbitrarily
close to the pure Gaussian ensemble, the large-s behavior is
Poisson-like. This is in contrast to the small-s behavior, which
is dominated by the Gaussian ensemble for arbitrarily small
(but nonzero) λ. The findings for the large-s behavior were
also confirmed numerically.

APPENDIX B: ANALYSIS OF THE GIBBS PHENOMENON

The spacing distribution of ensembles interpolating be-
tween Poisson and RMT reveal a Gibbs-like phenomenon close
to the Poisson limit, i.e., for small λ: P (s; λ) does not converge
uniformly to the Poisson curve e−s at s = 0. Rather, there is
an overshoot whose amount does not vanish in the λ → 0
limit and whose position s approaches 0 in this limit. In this
Appendix we work out the value and position of this maximum.
We start with a brief review of the Gibbs phenomenon in
the Fourier transform, as known from textbooks such as [43]
(which, however, mostly discuss the Gibbs phenomenon only
in the Fourier series).

1. Gibbs phenomenon in the Fourier transform

The Gibbs phenomenon is related to the convergence of
the inverse Fourier transform with a cutoff in the integral (or
to the convergence of the Fourier series with a cutoff in the
sum) toward the original function f . Let us denote its Fourier
transform by F ,

F (ω) = 1

2π

∫ ∞

−∞
ds e−iωsf (s), (B1)

and the result of the cutoff inverse transform by f with two
arguments,

f (s; λ) =
∫ 1/λ

−1/λ

dω eiωsF (ω). (B2)

These formulas can be combined into a convolution

f (s; λ) =
∫ ∞

−∞
ds ′f (s ′)δλ(s − s ′) (B3)

of the original function with the Dirichlet kernel

δλ(s − s ′) = 1

2π

∫ 1/λ

−1/λ

dω eiω(s−s ′) = sin[(s − s ′)/λ]

π (s − s ′)
. (B4)

The question is how f (s; λ) is related to the original function
f (s) in the λ → 0 limit.7 If f (s) is smooth and absolutely

7The λ → 0 limit of f (s; λ) is also denoted as the principal value.
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integrable, f (s; λ) approaches it everywhere. Accordingly, the
Dirichlet kernel approaches the delta distribution in the sense
of acting on smooth test functions.

At discontinuities of the original function f (s), however,
f (s; λ) approaches the average of the left and right limits of
f (s). Intuitively, this comes from the nonzero width of the
Dirichlet kernel,8 which in the convolution (B3) probes both
sides of the discontinuity. Furthermore, the functions f (s; λ)
for fixed λ possess maxima and minima whose positions
move, in the limit λ → 0, toward the discontinuity and whose
values over- and undershoot the function. This is the Gibbs
phenomenon.

For definiteness let us consider a set of exponentially
decaying functions with a jump discontinuity of unit size9

at s = 0,

f (s) =
{

0 for s < 0,

e−ds for s > 0,
(B5)

that include the Poisson curve (d = 1) and the Heaviside
function (d = 0). The Fourier transforms are

F (ω) = 1

2π

1

d + iω
, (B6)

and the cutoff inverse transforms read

f (s; λ) = i

2π
e−ds

[
Ei

(
ds − i

s

λ

)
− Ei

(
ds + i

s

λ

)]
. (B7)

For the Poisson curve these functions are plotted for three small
values of λ in Fig. 12 (top), where several maxima above and
several minima below e−s are clearly visible.

To analyze the limit λ → 0 we can zoom in on the region of
small s, of size proportional to λ. This amounts to considering
functions of a rescaled argument

s̃ = s

λ
(B8)

in a constant-s̃ range. We define

f̂ (s̃; λ) = f (s̃λ; λ)

= i

2π
e−ds̃λ[Ei(ds̃λ − is̃) − Ei(ds̃λ + is̃)]. (B9)

If we keep s̃ fixed, these functions have a well-defined limit
as λ → 0,

g(s̃) = lim
λ→0

f̂ (s̃; λ)

= i

2π
[Ei(−is̃) − Ei(is̃)] = 1

2
+ Si(s̃)

π
, (B10)

with the sine integral Si(s̃) = ∫ s̃

0 dx sin x/x. As Fig. 12
(bottom) shows, this limiting function captures infinitely
many maxima at s̃ = π,3π, . . . and infinitely many minima
at s̃ = 2π,4π, . . . . The overshoot at the first maximum is the
well-known number

1

2
+ Si(π )

π
− 1 = 0.0894899. (B11)

8This nonzero width is relevant in many areas of physics such as
band-limited signals, ringing, and diffraction of waves at slits.

9As all formulas are linear in f (s), the case of arbitrary jumps is
completely analogous.
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FIG. 12. (Color online) The Gibbs phenomenon in the Fourier
transform of the Poisson curve, with λ = 0.01,0.005,0.0025, respec-
tively. Top: The functions f (s; λ) approaching the original function
e−s (dashed), first maximum moving to the left as λ decreases.
Bottom: The rescaled functions f̂ (s̃; λ) approaching the limiting
function g(s̃) (dashed) with decreasing λ (see text).

Concerning the convergence of the Fourier transform, we
conclude that in the limit λ → 0 the functions f (s; λ) have a
maximum at s = πλ, with an overshoot approaching 8.9%.

Note that the limiting function g is the same for all these
functions independently of the decay constants d; i.e., it
is solely determined by the discontinuity. In other words,
the smooth part of the function f (s) drops out when going
from f̂ (s̃; λ) to g(s̃) in the λ → 0 limit [see Eq. (B9) versus
Eq. (B10)]. This can be shown to be universal. Rescaling the
integration variable in Eq. (B3) and using λδλ(λx) = δ1(x) one
has

f (s; λ) =
∫ ∞

0
ds ′′f (λs ′′)δ1

(
s

λ
− s ′′

)
, (B12)

f̂ (s̃; λ) =
∫ ∞

0
ds ′′f (λs ′′)δ1(s̃ − s ′′), (B13)
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where we still assume f (s < 0) = 0 for simplicity. The
limiting function is

g(s̃) = f (0+)
∫ s̃

−∞
dt δ1(t) = f (0+)

[
1

2
+ Si(s̃)

π

]
, (B14)

which agrees with (B10) for all functions with f (0+) = 1.
The last equation in particular relates the Dirichlet kernel

δλ and the limiting function g. Therefore, f (s; λ) can also be
reconstructed by a convolution with (the derivative of) g,

f (s; λ) =
∫ ∞

0
ds ′ f (s ′)

1

λ
g′

(
s − s ′

λ

)
, (B15)

where g′(x) = dg/dx.

2. Gibbs phenomenon in the Poisson to RMT transitions

For the Gibbs-like phenomenon in the mixed spacing
distributions we start with the Poisson to GSE case. For this
transition we found the spacing distribution Eq. (2.26). In
analogy to the previous section we rescale the argument and
define

P̂0→4(s̃; λ)

= P0→4(s̃λ; λ) = Cλ4s̃4e−D2λ2 s̃2

×
∫ 1

−1
dx (1 − x2) e(xDλs̃)2+2λ2xDs̃ erfc(xDλs̃ + λ).

(B16)

In the limit λ → 0 we make use of the behavior of C(λ) and
D(λ),

D(λ) ∼ 1

2λ
and C(λ) ∼ 1

(2λ)4
, (B17)

to arrive at the limiting function

g0→4(s̃) = lim
λ→0

P̂0→4(s̃; λ)

= s̃4

16
e− s̃2

4

∫ 1

−1
dx (1 − x2) e(xs̃/2)2

erfc
xs̃

2

= s̃

8
[(2 + s̃2)

√
πe− s̃2

4 erfi(s̃/2) − 2s̃]. (B18)

In Fig. 13 we plot this function, together with P̂0→4(s̃; λ),
approaching it for small λ.

Again, this limiting function captures a maximum, which
can numerically be determined to be at s̃ = 3.76023 with
a value of 1.43453. As before, the phenomenon is solely
determined by the discontinuity of the Poisson curve at s = 0
as the original Poisson distribution e−p can be shown to drop
out from Eqs. (B16) to (B18).

So in the transition from Poisson to GSE, P0→4(s;λ) in the
limit of small λ has a maximum at s = 3.76λ, overshooting
the Poissonian e−s by 43.5%. Likewise, in the other transitions
P0→1(s; λ) and P0→2(s; λ) we have equivalently defined
limiting functions

g0→1(s̃) =
√

π

2
s̃ e−s̃2/8 I0(s̃2/8), (B19)

g0→2(s̃) =
√

π

2
s̃ e−s̃2/4 erfi(s̃/2). (B20)
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FIG. 13. (Color online) The rescaled spacing distributions
P̂0→4(s̃; λ) in the Poisson to GSE transition, Eq. (B16), for λ =
0.05,0.025,0.01 (maxima increasing) approaching the limiting func-
tion g0→4(s̃), Eq. (B18) (dashed curve).

These have maxima at s̃ = 2.51 and s̃ = 3.00, overshooting
the Poisson curve by 17.5% and 28.5%, respectively, as quoted
in the body of the paper. We observe that these numbers grow
with the Dyson index β ′ of the perturbing ensemble.

From the small-s̃ behavior g0→4(s̃) = s̃4/12 + O(s̃6) we
conclude that P0→4(s; λ) = s4/(12λ4) + O(s6) for small
λ, which reproduces our observation in Eqs. (2.30) and
(2.31). Analogous agreement is obtained with Eqs. (2.9),
(2.10), (2.19), and (2.20) for the other two cases.
This concludes our empirical results on the Gibbs-like
phenomenon.

For the analogies at a more fundamental level, the spacing
distribution P0→4(s; λ) is related to the integral (2.23)

1

λ
I (S/λ) =

∫ ∞

0
dp e−p δλ(S,p) (B21)

of the unperturbed Poisson distribution with the kernel

δλ(S,p) =
∫

da . . . dc3 Pa(a) . . . Pc3 (c3)

× δ(S − λ

√
(a − b − p/λ)2 + 4(cμcμ)). (B22)

The nonzero width of this kernel causes the Gibbs phenomenon
in the spacing distribution near the discontinuity of the Poisson
distribution e−p at p = 0. Note that in the limit λ → 0 the
second line of Eq. (B22) approaches δ(S − p), thus decoupling
from the integrals over a, . . . ,c3. The latter are normalized by
construction so that the kernel δλ(S,p) approaches δ(S − p).

There are (at least) two features that are different from
the Fourier case. First, the kernel is not a function of S − p,
and thus Eq. (B21) is not a convolution, in contrast to
the Fourier case, Eq. (B15). Second, at the discontinuity
P0→4(0; λ) = 0 is not the average (equal to 1/2) of the left and
right limits of the original Poisson curve e−p (put to zero for
negative p).
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APPENDIX C: EXPLICIT CALCULATION OF SPACING
DISTRIBUTIONS

1. Poisson to GSE

We start from Eq. (2.25), transform c0, . . . ,c3 to spherical
coordinates with c2 = cμcμ, and introduce u = a + b and
t = a − b. This yields

I (S) ∝
∫ ∞

0
dp dc c3

∫ ∞

−∞
du dt e

−p− 1
4 (u2+t2)+ p(u−t)

2λ
− p2

2λ2 −c2

× δ(S −
√

t2 + 4c2)

∝
∫ ∞

0
dp dc c3

∫ ∞

−∞
dt e

−p− pt

2λ
− p2

4λ2 − 1
4 (t2+4c2)

× δ(S −
√

t2 + 4c2), (C1)

where in the last step we have integrated over u. We now use
the δ function to integrate over c, resulting in

I (S) ∝ S e− S2

4

∫ ∞

0
dp e

− p2

4λ2 −p

∫ S

−S

dt (S2 − t2)e− pt

2λ

∝ S4 e− S2

4

∫ ∞

0
dp e

− p2

4λ2 −p z cosh z − sinh z

z3

≡ J (S), (C2)

where z = pS/2λ.
The normalized level spacing distribution P0→4(s),

Eq. (2.26), is obtained from J (S) by rescaling and nor-
malization, i.e., P0→4(s) = C · J (2Ds)/(2D)4. Defining the
moments of the distribution,

In =
∫ ∞

0
dS SnJ (S), (C3)

we obtain from Eq. (1.2)

D = I1

2I0
and C = (2D)5

I0
. (C4)

Explicit evaluation of I0 and I1 gives

I0 = 4
√

π, (C5)

I1 = 4λ

∫ ∞

0
dx e−2λx

× (4x3+2x)e−x2 +√
π (4x4+4x2−1) erf(x)

x3
, (C6)

from which we obtain Eqs. (2.27) and (2.28).

2. GOE to GSE

We consider the matrix H in Eq. (2.40). With a small change
in notation for H1, we have

H = H1 ⊗ 12 + λH4 =

⎛
⎜⎜⎜⎝

A 0 C 0

0 A 0 C

C 0 B 0

0 C 0 B

⎞
⎟⎟⎟⎠

+ λ

⎛
⎜⎜⎜⎝

a 0 c0 + ic3 c1 + ic2

0 a −c1 + ic2 c0 − ic3

c0 − ic3 −c1 − ic2 b 0

c1 − ic2 c0 + ic3 0 b

⎞
⎟⎟⎟⎠,

(C7)

where the variances of the random variables are given by
Eq. (2.2). If two variables are Gaussian distributed with
variances σ 2

1 and σ 2
2 , their sum is again Gaussian distributed

with variance σ 2
1 + σ 2

2 . Since H depends on A, B, and C and
a, b, and c0 only through the combinations A + λa, B + λb,
and C + λc0, we can immediately integrate out A, B, and C,
with the corresponding change in the variances of a, b, and
c0. To simplify the notation, we absorb λ in H4 and divide
all matrix elements of H by

√
1 + λ2. This yields a problem

equivalent to Eq. (C7),

H →

⎛
⎜⎜⎜⎝

a 0 c0 + ic3 c1 + ic2

0 a −c1 + ic2 c0 − ic3

c0 − ic3 −c1 − ic2 b 0

c1 − ic2 c0 + ic3 0 b

⎞
⎟⎟⎟⎠, (C8)

with

σ 2
a,b = 2σ 2

c0
= 1, 2σ 2

ci
= λ2

1 + λ2
≡ σ 2, (C9)

where i = 1,2,3. The matrix in Eq. (C8) has two nondegener-
ate eigenvalues whose spacing is given by

S =
[

(a − b)2 + 4
3∑

ν=0

cνcν

]1/2

, (C10)

where we have again written S instead of s since we still need
to enforce the normalizations (1.2). The spacing distribution
is proportional to the integral

I (S) =
∫ ∞

−∞
da db dc0dc1dc2dc3 e

− 1
2 (a2+b2+2c2

0)− ci ci

σ2

× δ
(
S −

√
(a − b)2 + 4c2

0 + 4cj cj

)
, (C11)

where repeated indices indicate a sum over i and j from 1 to
3. We now transform c1, c2, c3 to spherical coordinates with
c2 = cici and introduce u = a + b and t = a − b. This yields

I (S) ∝
∫ ∞

−∞
du dt dc0dc c2 e

− 1
4 (u2+t2+4c2

0)− c2

σ2

× δ
(
S −

√
t2 + 4c2

0 + 4c2
)
. (C12)

The integral over u can be performed trivially and only results
in a prefactor. Using the δ function to integrate over c, we
obtain

I (S) ∝
∫ ∞

0
dt dc0 e

− 1
4 (t2+4c2

0)− 1
4σ2 (S2−t2−4c2

0)

× S

√
S2 − t2 − 4c2

0 θ
(
S2 − t2 − 4c2

0

)
, (C13)

where we have used the symmetries of the integrand to raise
the lower limit of the integrations to zero. We now perform the
transformation

t = Sx and c0 = 1
2Sy

√
1 − x2 (C14)
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with Jacobian 1
2S2

√
1 − x2. Since t and c0 are non-negative,

so are x and y. The θ function in Eq. (C13) then implies
0 � x,y � 1. Reinserting the definition of σ 2 from Eq. (C9),
we obtain

I (S) ∝ S4
∫ 1

0
dx dy (1 − x2)

√
1 − y2e

− S2

4λ2 [λ2+(1−x2)(1−y2)]
.

(C15)

We now substitute y = cos φ, note that cos2 φ = 1
2 (1 −

cos 2φ), and use the integral representation [[35], Eq. (9.6.19)]
of the modified Bessel functions I0 and I1 to obtain after some
algebra

I (S) ∝ S4e
− 1+2λ2

8λ2 S2
∫ 1

0
dx (1 − x2) e

S2x2

8λ2 [I0(z) − I1(z)]

≡ J (S), (C16)

with z = (1 − x2)S2/(8λ2). This corresponds to Eq. (2.41)
with S = √

8λDs. The properly normalized spacing distribu-
tion is therefore given by P1→4(s) = CJ (

√
8λDs)/(

√
8λD)4.

Defining

In =
∫ ∞

0
dS SnJ (S) (C17)

we obtain from Eq. (1.2)

D = I1√
8λI0

and C = (
√

8λD)5

I0
. (C18)

Explicit evaluation of I0 and I1 gives

I0 = 8
√

π

(
λ2

1 + λ2

)3/2

, (C19)

I1 = 16λ3

[
λ(1 − λ2)

(1 + λ2)2
+ arccot λ

]
, (C20)

from which we obtain Eqs. (2.42) and (2.43).

APPENDIX D: PERTURBATION OF A LARGE GSE
MATRIX BY A NON-SELF-DUAL MATRIX

We consider a mixed 2N × 2N matrix that interpolates
between the GSE and one of the other Gaussian ensembles,

H = H4 + �

ρ4(0)s̄4
Hβ ′ , (D1)

where H4 is taken from the GSE and Hβ ′ from the GOE
or GUE. We study this matrix for large N in first-order
degenerate perturbation theory to show similarities between
the two different perturbations and to make a connection to
the case of GSE to non-self-dual GUE for N = 2, which was
treated in Sec. II H.

Degenerate perturbation theory predicts that each of the N

previously degenerate eigenvalue pairs splits up and that the
shifts of the two members of the pair are the eigenvalues of
the matrix

�

ρ4(0)s̄4
Mij with Mij = 〈ψi |Hβ ′ |ψj 〉; i,j = 1,2. (D2)

The |ψ1,2〉 are the orthonormal eigenvectors of the unperturbed
matrix H4 that span the degenerate subspace of the eigenvalue
pair under consideration.

We show in the following that M is a 2 × 2 GUE matrix
for β ′ = 2 as well as for β ′ = 1, in the latter case with a
normalization different from Eq. (2.2).

1. GUE

This case is very simple, because the GUE is invariant
under unitary transformations, which contain the symplectic
transformations. This means that the transformation diagonal-
izing the GSE matrix H4 can be absorbed in H2 without loss
of generality, and therefore one can choose |ψi〉k = δik with
i = 1,2 and k = 1, . . . ,2N . Thus, we obtain

Mij =
2N∑

k,l=1

δik (H2)kl δlj = (H2)ij , (D3)

which is obviously a 2 × 2 matrix from the GUE with the usual
normalization, Eq. (2.2). As this holds also for N = 2, it is a
perturbative explanation for the fact that in the limit λ → 0
the spacings between previously degenerate eigenvalues are
distributed exactly like the ones of 2 × 2 GUE matrices.

2. GOE

We will show that in this case M is again a matrix from the
GUE with the only difference that the variances of its elements
are only half as large as in the previous section. This case is
a bit more involved because one cannot generally diagonalize
a self-dual matrix by an orthogonal transformation (which
would preserve the probability distribution of H1), and thus
it is impossible to choose the eigenvectors of H4 as in the
previous section. Explicitly, the matrix elements read

Mij = 〈ψi |H1|ψj 〉 = 〈
ψ re

i

∣∣H1

∣∣ψ re
j

〉 + 〈
ψ im

i

∣∣H1

∣∣ψ im
j

〉
+ i

(〈
ψ re

i

∣∣H1

∣∣ψ im
j

〉 − 〈
ψ im

i

∣∣H1

∣∣ψj
re
〉)
, (D4)

where we split the eigenvectors |ψi〉 into real and imaginary
parts: |ψi〉 = |ψi

re〉 + i|ψ im
i 〉, and H1 is real.

We will now show that the four vectors |ψ re
1 〉, |ψ im

1 〉, |ψ re
2 〉,

and |ψ im
2 〉 are orthogonal in the limit of infinite matrix size.

For some combinations of them one can show this also for
finite N using the quaternionic structure of the eigenvectors,( 〈ψ1|

〈ψ2|
)

= (q1 q2 · · · qN ), (D5)

with quaternions in matrix representation

qk =
(

q
(0)
k + iq

(3)
k q

(1)
k + iq

(2)
k

−q
(1)
k + iq

(2)
k q

(0)
k − iq

(3)
k

)
. (D6)

One can read off immediately that〈
ψ re

1

∣∣ψ re
2

〉 = 〈
ψ im

1

∣∣ψ im
2

〉 = 0, (D7)〈
ψ re

1

∣∣ψ im
1

〉 = −〈
ψ re

2

∣∣ψ im
2

〉
, (D8)〈

ψ re
1

∣∣ψ im
2

〉 = 〈
ψ im

1

∣∣ψ re
2

〉
; (D9)

i.e., there are only two independent scalar products.
Let us assume that for large N the q

(ρ)
k can be treated as

independent random variables with mean value zero. Then the
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mean values of those scalar products are zero as well, e.g.,

〈〈
ψ re

1

∣∣ψ im
1

〉〉 =
N∑

k=1

〈
q

(0)
k q

(3)
k + q

(1)
k q

(2)
k

〉 = 0, (D10)

where the outer angular brackets indicate an average over
the random matrix ensemble. From the normalization of the
eigenvectors |ψi〉 the variances of the q

(ρ)
k are proportional to

1/N . This yields for the variances of the scalar products

〈〈
ψ re

1

∣∣ψ im
1

〉2〉 =
N∑

k=1

(〈[
q

(0)
k

]2〉〈[
q

(3)
k

]2〉 + 〈[
q

(1)
k

]2〉〈[
q

(2)
k

]2〉)

∝
N∑

k=1

1

N2
= 1

N
(D11)

and likewise for 〈ψ re
1 |ψ im

2 〉. Since in the N → ∞ limit both the
mean values and the variances of the scalar products vanish,
the four vectors become orthogonal in this limit for every
single realization of the random matrix. We have checked
this numerically, which implies that the assumption of the
independence of the q

(ρ)
k was valid.

As for the normalization of the four vectors, the squared
norms of the real and imaginary parts agree on average and
sum up to 1 due to the normalization of the eigenvectors |ψi〉.
Invoking the central limit theorem, we observe that in the limit
N → ∞ the norms of the real and imaginary parts equal 1/

√
2

even for a single realization of the random matrix. Hence,
multiplying the four real vectors |ψ re

1 〉, |ψ im
1 〉, |ψ re

2 〉, and |ψ im
2 〉

by
√

2, one obtains, in the limit N → ∞, an orthonormal real
basis in the subspace under consideration.

Finally, we use the fact that the matrix elements of a
GOE matrix H1 are independent random numbers in every
orthonormal (real) basis, with variances 1 and 1/2 on and off
the diagonal, respectively. Thus we conclude that the Mij are
also independent random numbers with variances〈 [

M re
11

]2 〉 = 〈 [
M re

22

]2 〉 = 1
2 , (D12)〈 [

M re
12

]2 〉 = 〈 [
M im

12

]2 〉 = 1
4 . (D13)

These are half the variances of a GUE matrix, which is
equivalent to a multiplication of each element of M by
1/

√
2. This explains the rescaling of the coupling parameter

in the definitions of P 1
4→1(s1; λ) and P 2

4→1(s2; λ), Eqs. (3.18)
and (3.19).

For small N the argument in this section does not work.
Presumably, this is the reason why the spacing distributions
for the transition from GSE to GOE differ from those for the
transition from GSE to GUE in the case of 4 × 4 matrices (not
shown in this paper, but checked numerically), whereas they
match very well for large matrices.

APPENDIX E: PERTURBATIVE CALCULATION OF THE
RELATION BETWEEN EIGENVALUE DENSITY AND

COUPLING PARAMETER

We consider a diagonal Poissonian matrix H0 perturbed by
a matrix taken from one of the Gaussian ensembles Hβ ′ ,

H = H0 + αHβ ′ , (E1)

where Hβ ′ is chosen in the usual normalization [see Eq. (2.2)].
The calculations are done for arbitrary matrix dimension,
which will be sent to infinity at the end. We denote the number
of generically nondegenerate eigenvalues by N ; i.e., we
consider N × N matrices. If Hβ ′ is taken from the GSE, these
are quaternion valued and correspond to complex 2N × 2N

matrices.
To obtain an N -independent eigenvalue density of the

Poissonian ensemble, we define the probability distribution
of the individual eigenvalues θi of H0 by

P0(θi) = 1

N
P̂0(θi/N ), (E2)

where P̂0 is some N -independent probability distribution.
Both P0 and P̂0 are normalized to one. The eigenvalue density
of the Poissonian ensemble is thus

ρ0(θ ) = NP0(θ ) = P̂0(θ/N) = P̂0(θ̂ ), (E3)

where we have defined θ̂ = θ/N . Generically, we have θi =
O(N ) and θ̂i = O(1).

We now consider a fixed spacing S between two adjacent
eigenvalues of H0, θ1 and θ2 = θ1 + S. The remaining eigen-
values have to reside outside the interval (θ1,θ2). This results
in the conditional probability distribution

Pout
0 (θi) = 1

N
P̂out

0 (θi/N )

=
{

0 for θi ∈ (θ1,θ2),
P0(θ)

1−∫ θ2
θ1

dθ ′ P0(θ ′)
otherwise. (E4)

The eigenvalue density is assumed to be almost unaffected
by the perturbation, which is confirmed in Fig. 6 (top). Of
course, this assumption is expected to hold only for small
values of the coupling parameter.

We want to calculate the effect of the perturbation on the
spacing S. If the remaining eigenvalues of H0 are close to θ1

or θ2 we have to apply almost-degenerate perturbation theory.
Up to second order in α we obtain for the perturbation of the
spacing,

�S = (EVD[(H0 + αHβ ′ )kl|θk,θl∈W ] − S)︸ ︷︷ ︸
first-order almost-degenerate perturbation theory

+ α2
N∑

i=3|θi /∈W

( |(Hβ ′)2i |2
θ2 − θi

− |(Hβ ′)1i |2
θ1 − θi

)
︸ ︷︷ ︸

second-order perturbation theory

, (E5)

where the absolute values are taken with respect to the real,
complex, or quaternionic standard norm, EVD denotes the
difference of the two eigenvalues of the matrix (H0 + αHβ ′ )kl

that correspond to the unperturbed eigenvalues, and W is
the interval in which eigenvalues have to be considered
almost degenerate with θ1 or θ2. This is defined by the
eigenvalue range (θ1 − CW,θ2 + CW ), where we choose CW =
C

(0)
W Nεα with 0 < ε < 1 and C

(0)
W > 1. This choice ensures

that the closest possible eigenvalue outside W cannot give
a second-order contribution of lower order in α than the
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almost-degenerate part.10 Note that the “degenerate window”
W grows with N . Therefore arbitrarily distant eigenvalues
are considered almost degenerate in the limit N → ∞, which
is justified because almost-degenerate perturbation theory is
valid for any difference of eigenvalues.

Considering the first-order contribution, we have to deal
with the matrix

Mkl = (H0)kl + α(Hβ ′)kl = θkδkl + α(Hβ ′)kl, (E6)

where the indices k and l run over all values for which the
eigenvalues θk and θl are localized in W , which includes at
least θ1 and θ2. This is a matrix taken from the Poissonian
ensemble perturbed by a matrix taken from one of the Gaussian
ensembles, but unlike H defined in Eq. (E1) it has a constant
eigenvalue density in the limit N → ∞. To show this, we first
consider the density at the lower end of the interval W ,

lim
N→∞

NP0(θ1 − CW ) = lim
N→∞

P̂0

(
θ1

N
− CW

N

)
= lim

N→∞
P̂0

(
θ̂1 − C

(0)
W Nε−1α

)
= P̂0(θ̂1) = ρ0(θ1). (E7)

This is the same as the eigenvalue density at the other end
of W ,

lim
N→∞

NP0(θ2 + CW ) = lim
N→∞

P̂0

(
θ1

N
+ S + CW

N

)

= lim
N→∞

P̂0

(
θ̂1 + S

N
+ C

(0)
W Nε−1α

)
= P̂0(θ̂1) = ρ0(θ1). (E8)

Thus the spectrum of M can be unfolded by multiplying with
the local eigenvalue density,

ρ0(θ1) Mkl = ρ0(θ1)θkδkl︸ ︷︷ ︸
unfolded

+ αρ0(θ1)︸ ︷︷ ︸
effective coupling

(Hβ ′)kl . (E9)

Therefore we can define a new effective coupling parameter
that solely determines the magnitude of the perturbation as in
Sec. III A.

The second-order contribution to �S in Eq. (E5) is a sum
of at most N − 2 independent random numbers. As all of these
random numbers have the same distribution we pick out one
of them,

x = α2

(
b

θ2 − θi

− a

θ1 − θi

)
with θi /∈ W, (E10)

10An eigenvalue θi = θ2 + CW at the border of W yields
a second-order shift of �θ2 = −α2|(Hβ ′ )i2|2/(C(0)

W Nεα) =
−α|(Hβ ′ )i2|2/(C(0)

W Nε).

where we defined a = |(Hβ ′)1i |2 and b = |(Hβ ′)2i |2. Its prob-
ability distribution is given by

Px(x) =
[∫ θ1−CW

−∞
+
∫ ∞

θ2+CW

]
dθ

1

N
P̂out

0 (θ/N)

×
∫ ∞

0
da dbPβ ′ (a)Pβ ′(b) δ

×
[
x − α2

(
b

θ2−θ
− a

θ1θ

)]
, (E11)

where we renamed θi = θ for convenience. The distribution
Pβ ′ depends on the symmetry class of the perturbing ensemble
(a and b are squared sums of β ′ Gaussian random variables).
The moments of this distribution are

pm =
∫ ∞

−∞
dx Px(x) xm. (E12)

After a short calculation, we obtain

pm =
∫ 0

−∞
dθ

∫ ∞

0
da db

1

N

[
P̂out

0

(
θ − C

(0)
W α

N
+ θ̂1

)

+ P̂out
0

(
S − θ − C

(0)
W α

N
+ θ̂1

)]
Pβ ′(a)Pβ ′(b)

×
[
α2

(
b

S + C
(0)
W Nεα − θ

− a

C
(0)
W Nεα − θ

)]m

.

(E13)

In the limit N → ∞, all terms that are divided by N in the
arguments of P̂out

0 can be neglected. This can be done in spite of
θ being integrated to ∞, because the last part of the integrand
(in square brackets) suppresses the large-θ region and because
P̂out

0 is a probability density that has to converge to 0 for large
argument. Also, limN→∞ P̂out

0 (θ̂1) = P̂0(θ̂1) = ρ0(θ1). We thus
obtain

pm = 2ρ0(θ1)

N

∫ 0

−∞
dθ

∫ ∞

0
da db Pβ ′(a)Pβ ′(b)

×
[
α2

(
b

S + C
(0)
W Nεα − θ

− a

C
(0)
W Nεα − θ

)]m

.

(E14)

Let us denote the second line of Eq. (E5) by �S(2). It is
O(Np1), and therefore its mean value becomes zero for
N → ∞, as it is suppressed by N−ε. The same holds for
the second moment of �S(2), which goes like N−2ε. Thus
the distribution of �S(2) is a delta function at zero, and
we can neglect its contribution to the perturbation of the
spacing. The linear relation between eigenvalue density and
coupling parameter could hence be shown up to second-order
perturbation theory.

APPENDIX F: METHOD FOR FITS TO THE SURMISES

Since most of the analytical formulas for the small matrices
contain integrals, it takes some time to compute them numer-
ically. In order to get good fits to data in a reasonable time, a
list of 1000 λ values in the interval (0.01,10) was created, with

λi = 0.01 · 1000
i−1
999 ; i = 1, . . . ,1000. (F1)
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For each λi and each surmise, the corresponding spacing
distribution was stored. The pure cases λ = 0 and λ = ∞ were
included as well.

As a measure of the fit quality, we use the L2 distance

�2 =
{∫

dx [f (x) − g(x)]2

}1/2

(F2)

between the fit and the numerical data. The fitting was done
by calculating the �2 value of each spacing distribution in the
list. From the one resulting in the smallest �2 we read off
the coupling λ. Note that the largest �2 we encounter in all
the fits is 0.019. For comparison, the L2 norms of the pure
Wigner surmises Pβ(s) range from 0.71 for β = 0 to 0.94 for
β = 4. We give no error bars, because the statistical errors
of λ obtained by methods such as the jackknife method were
negligibly small. This is also the reason why we use �2 instead
of a statistical quantity like chi-squared as a measure of the fit
quality.

APPENDIX G: CONSTRUCTION OF A SELF-DUAL GUE

In the following we construct a Hermitian, self-dual
2N × 2N matrix whose eigenvalues are twofold degenerate
and whose nondegenerate eigenvalues correspond to those of
a matrix from the GUE. We start with a matrix M that contains
an N × N GUE matrix H and its complex conjugate (equal to
the transpose),

M =
(

H 0N

0N H ∗

)
. (G1)

The eigenvalues of M are obviously those of H , but now
twofold degenerate as desired. However, M is not self-dual.
To transform M into a self-dual matrix without changing its
eigenvalues, we apply an orthogonal transformation

O =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 ··· 0 0
0 0 0 0 ··· 0 0
0 0 1 0 ··· 0 0
0 0 0 0 ··· 0 0
...

...
...

...
. . .

...
0 0 0 0 1 0
0 0 0 0 ··· 0 0

0 0 0 0 ··· 0 0
1 0 0 0 ··· 0 0
0 0 0 0 ··· 0 0
0 0 1 0 ··· 0 0
...

...
...

...
. . .

...
0 0 0 0 0 0
0 0 0 0 ··· 1 0

0 1 0 0 ··· 0 0
0 0 0 0 ··· 0 0
0 0 0 1 ··· 0 0
0 0 0 0 ··· 0 0
...

...
...

...
. . .

...
0 0 0 0 0 1
0 0 0 0 ··· 0 0

0 0 0 0 ··· 0 0
0 1 0 0 ··· 0 0
0 0 0 0 ··· 0 0
0 0 0 1 ··· 0 0
...

...
...

...
. . .

...
0 0 0 0 0 0
0 0 0 0 ··· 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= OT = O−1, (G2)

which transforms a matrix by exchanging every 2nth row and
column with the (N + 2n − 1)th one. Each of the four blocks is
a square matrix of dimension N . This is in complete analogy to
the construction of a self-dual 4 × 4 GUE matrix in Sec. II G.

We now show that the transformed matrix OT MO is self-
dual, the condition for which is

OT MO
!= J (OT MO)T J T = JOT MT OJT

→ M
!= OJOMT OJT O (G3)

with

J = 1N ⊗
(

0 −1

1 0

)
. (G4)

Multiplying J by O from the left and the right interchanges the
second, fourth, . . . with the (N + 1)th, (N + 3)th, . . . . column
and row. We thus obtain

OJO =
(
0N −1N

1N 0N

)
,

OJ T O = −OJO =
(

0N 1N

−1N 0N

)
, (G5)

and hence

OJOMT OJT O =
(
0N −1N

1N 0N

)(
HT 0N

0N H

)(
0N 1N

−1N 0N

)

=
(

H 0N

0N HT

)
= M, (G6)

which proves Eq. (G3). OT MO can therefore be written as a
quaternion matrix with real quaternions and their conjugates
at the transposed position. Each of these quaternions stands
for a matrix of the form(

c0 + ic3 c1 + ic2

−c1 + ic2 c0 − ic3

)
=

(
q p

−p∗ q∗

)
, (G7)

with complex numbers p and q. Evidently, p has to be
zero for each quaternion in OT MO, because our original M

generically contains no element which is the negative complex
conjugate of any other, and we only exchanged elements by
applying O. This means that at least half of the matrix elements
are zero. In the original M , exactly half of the matrix elements
were zero, while the other half were random variables which
depended on a total of N2 real parameters, so the same has
to hold for OT MO. From this and Hermiticity if follows that
every off-diagonal q has to be an independent complex random
number, while the q on the diagonal are real, so that there are
again N2 real degrees of freedom.

With this equivalence proven, one can construct a self-dual
GUE matrix by taking a matrix from the GSE and set its c1

and c2 components to zero. This matrix has the same joint
probability density of the eigenvalues as an N × N matrix
taken from the GUE, as it is related to a matrix of the form of
M by a fixed basis transformation.
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