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The rate of temperature decrease of a cooled quantum bath is studied as its temperature is reduced to absolute
zero. The third law of thermodynamics is then quantified dynamically by evaluating the characteristic exponent ζ

of the cooling process dT (t)
dt

∼ −T ζ when approaching absolute zero, T → 0. A continuous model of a quantum
refrigerator is employed consisting of a working medium composed either by two coupled harmonic oscillators
or two coupled two-level systems. The refrigerator is a nonlinear device merging three currents from three
heat baths: a cold bath to be cooled, a hot bath as an entropy sink, and a driving bath which is the source of
cooling power. A heat-driven refrigerator (absorption refrigerator) is compared to a power-driven refrigerator.
When optimized, both cases lead to the same exponent ζ , showing a lack of dependence on the form of the
working medium and the characteristics of the drivers. The characteristic exponent is therefore determined by the
properties of the cold reservoir and its interaction with the system. Two generic heat bath models are considered:
a bath composed of harmonic oscillators and a bath composed of ideal Bose/Fermi gas. The restrictions on the
interaction Hamiltonian imposed by the third law are discussed. In the Appendices, the theory of periodically
driven open systems and its implication for thermodynamics are outlined.
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I. INTRODUCTION

Thermodynamics was initially formed as a phenomenolog-
ical theory, with the fundamental rules assumed as postulates
based on experimental evidence. The well-established part of
the theory concerns quasistatic macroscopic processes near
thermal equilibrium. Quantum theory, on the other hand, treats
the dynamical perspective of systems at atomic and smaller
length scales. The two disciplines rely upon different sets
of axioms. However, one of the first developments, namely
Planck’s law, which led to the basics of quantum theory,
was achieved thanks to consistency with thermodynamics.
Einstein, following the ideas of Planck on blackbody radiation,
quantized the electromagnetic field [1].

With the establishment of quantum theory, quantum ther-
modynamics emerged in the quest to reveal the intimate
connection between the laws of thermodynamics and their
quantum origin [2–19]. In this tradition, the present study is
aimed toward the quantum study of the third law of thermody-
namics [20–24], in particular quantifying the unattainability
principle. Apart from the fundamental interest in the emer-
gence of the third law of thermodynamics from a quantum
dynamical system, cooling mechanical systems reveal their
quantum character. As the temperature decreases, degrees of
freedom freeze out, leaving a simplified dilute effective Hilbert
space. Ultracold quantum systems contributed significantly to
our understanding of basic quantum concepts. In addition, such
systems form the basis for emerging quantum technologies.
The necessity to reach ultralow temperatures requires a focus
on the cooling process itself, namely quantum refrigeration.

The minimum requirement for constructing a continuous
refrigerator is a system connected simultaneously to three
reservoirs [25]. These baths are termed hot, cold, and work
reservoir, as described in Fig. 1. This framework has to
be translated to a quantum description of its components,
which includes the Hamiltonian of the system Hs and the
implicit description of the reservoirs. We present a careful

study on the influence of different components and cooling
mechanisms on the cooling process itself. Namely, we consider
a working medium composed of two harmonic oscillators or
two two-level systems (TLSs). Two generic models of the cold
heat bath are considered: a phonon and an ideal Bose/Fermi
gas heat bath. Another classification of the refrigerator is
due to the character of the work reservoir. The first studied
example is a heat-driven refrigerator, an absorption refrigerator
model proposed in Ref. [24], where Tw � Th � Tc.1 In a
power-driven refrigerator, the work reservoir represents zero
entropy mechanical work, which is modeled as a periodic
time-dependent interaction Hamiltonian.

The models studied contain universal quantum features of
such devices. The third law of thermodynamics is quantified by
the characteristic exponent ζ of the change in temperature of
the cold bath dTc(t)

dt
∼ −T

ζ
c when its temperature approaches

absolute zero, Tc → 0. The exponent ζ is determined by a
balance between the heat capacity of the cold bath and the heat
current Jc into the cooling device. When the performance of
the refrigerator is optimized, the final third-law characteristics
are found to be independent of the refrigerator type.

The analysis is based on a steady-state operational mode of
the refrigerator. Then the first and second laws of thermody-
namics have the form

J̃h + J̃c + P = 0, − J̃h

Th

− J̃c

Tc

− P
Tw

� 0, (1)

where J̃k are the stationary heat currents from each reservoir.
The first equality represents conservation of energy (first
law) [3,4], and the second inequality represents non-negative
entropy production in the Universe, �u � 0 (second law). The

1A similar idea was also proposed in Phys. Rev. Lett. 108, 120603
(2012) by Cleuren et al. However, one can show that this model
violates the third law. The reason for this will be discussed elsewhere.
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FIG. 1. (Color online) A quantum heat pump designated by
the Hamiltonian Hs coupled to a work reservoir with temperature
Tw , a hot reservoir with temperature Th, and a cold reservoir with
temperature Tc. The heat and work currents are indicated. In steady
state, Jh + Jc + P = 0.

fulfillment of the thermodynamic laws is employed to check
the consistency of the quantum description. Inconsistencies
can emerge either from wrong definitions of the currents Jk or
from erroneous derivations of the quantum master equation.
In Appendix A, we present a short and heuristic derivation
of such a consistent Markovian master equation based on the
rigorous weak coupling [26] or low density [27] limits for a
constant system’s Hamiltonian. Its generalization to periodic
driving proposed in Ref. [28] and based on the Floquet theory is
briefly discussed in Appendix B. In Appendix C the definition
of heat currents is proposed which satisfies the second law of
thermodynamics, not only for the stationary state but also
during the evolution from an arbitrary initial state of the
system. It allows us also to compute an averaged power in
the stationary state. Finally, in Appendix D we discuss the
condition on the interaction with a bosonic bath, to assure the
existence of the ground state.

II. QUANTUM ABSORPTION REFRIGERATORS

We develop and discuss in detail the model of a quantum
absorption refrigerator proposed in Ref. [24]. We extend the
results of Ref. [24] treating in the same way the original model
with two harmonic oscillators and its two two-level systems
counterpart to stress the universality of the proposed cooling
mechanism. The advantage of the absorption refrigerator is
its underlying microscopic model with a time-independent
Hamiltonian.

A. Absorption refrigerator model

The model consists of two harmonic oscillators or two
TLSs (A and B) which are described by two pairs of
annihilation and creation operators satisfying the commutation
or anticommutation relations

aa† + εa†a = 1, aa + εaa = 0,

bb† + εb†b = 1, bb + εbb = 0 (2)

with ε = 1 for the TLS and ε = −1 for oscillators. Each
subsystem A (B) is coupled to a hot (cold) bath at the
temperature Th (Tc). A collective coupling of the system A + B

to the third “work bath” at the temperature Tw � Th > Tc

generates heat transport. The nonlinear coupling to the “work
bath” is essential. A linearly coupled working medium cannot
operate as a refrigerator.2 The Hamiltonian of the working
medium A + B is given by

H = ωha
+a + ωcb

+b, ωh > ωc, (3)

and the interaction with the three baths (hot, cold, and work)
is assumed to be of the following form:

Hint = (a + a+) ⊗ Rh + (b + b+) ⊗ Rc

+ (ab+ + a+b) ⊗ Rw, (4)

with R(·) being the corresponding bath operator. The third term
in Eq. (4) contains the generator of a swap operation between
A and B subsystems [29].

Applying now the derivation of the Markovian dynamics
based on the weak-coupling limit (see Appendix A), one
obtains the following Markovian master equation involving
three thermal generators:

dρ

dt
= − i

h̄
[H,ρ] + Lhρ + Lcρ + Lwρ, (5)

where

Lhρ = 1
2γh([a,ρa†] + e−βhωh [a†,ρa] + H.c.), (6)

Lcρ = 1
2γc([b,ρb†] + e−βcωc [b†,ρb] + H.c.), (7)

Lwρ = 1
2γw([ab†,ρa†b] + e−βw(ωh−ωc)[a†b,ρab†] + H.c.),

(8)

and βc > βh � βw are inverse temperatures for the cold, hot,
and work bath, respectively.

The values of relaxation rates γh,γc,γw > 0 depend on the
particular models of heat baths, and their explicit form is
discussed in Appendix A. Notice that one can add also the gen-
erators describing pure decoherence (dephasing) in the form

Dhρ = − 1
2δh[a†a,[a†a,ρ]] ,

Dcρ = − 1
2δc[b†b,[b†b,ρ]] , δh,δc > 0, (9)

which, however, do not change the evolution of diagonal
matrix elements and therefore have no influence on the cooling
mechanism at the stationary state. The generator Lw is not
ergodic in the sense that it does not drive the system A + B to
a Gibbs state because it preserves a total number of excitations
a†a + b†b. This fault can be easily repaired by adding to Lw

a term of the form (6) or/and (7) but with the temperature Tw.
However, we assume that the processes described by Eqs. (6)–
(8) dominate and additional contributions can be neglected.

B. The cooling mechanism

The stationary “cold current” describing heat flux from the
cold bath to the working medium can be computed using the

2E. Martinez and J. P. Paz (unpublished).
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definitions presented in Appendix C. The cooling of the cold
bath takes place if this current is positive,

J̃c = ωcTr[(Lcρ̃)b†b] > 0. (10)

To compute J̃c, we need the following equations for the mean
values of the relevant observables n̄h = Tr(ρa†a) and n̄c =
Tr(ρb+b), which can be derived using the explicit form of the
generators (6)–(8):

d

dt
n̄h = −γh(1 + εe−βhωh )n̄h + γhe

−βhωh

+ γw(n̄c − n̄h) − R, (11)

d

dt
n̄c = −γc(1 + εe−βcωc )n̄c + γce

−βcωc

+ γw(n̄h − n̄c) + R, (12)

where R is the nonlinear rate

R = γw(1 − e−βw(ωh−ωc))Tr[ρ(b+b)(aa+)]. (13)

Equations (11)–(13) can be solved analytically in the high-
temperature limit for the work bath βw → 0, which implies
R → 0. Under this condition, the stationary cold current reads

J̃c = ωcγw

× (eβcωc + ε)−1 − (eβhωh + ε)−1

1 + γw[γ −1
h (1 + εe−βhωh )−1 + γ −1

c (1 + εe−βcωc )−1]
.

(14)

The cooling condition J̃c > 0 is equivalent to a very simple
one,

ωc

ωh

<
Tc

Th

. (15)

One can similarly compute the other heat currents to obtain
the coefficient of performance (COP),

COP = Jc

Jw

= ωc

ωh − ωc

, (16)

which becomes the Otto cycle COP [14,30].
We are interested in the final stage of the cooling process

when the temperature Tc is close to absolute zero and
hence we can assume that γc(Tc) � γh(Th). Optimizing the
cooling current means keeping essentially constant the value
of ωc/Tc [31]. This leads to the following simplification of the
formula (14):

J̃c � ωcγce
−ωc/kBTc . (17)

III. PERIODICALLY DRIVEN REFRIGERATOR

An alternative to driving the refrigerator by a “very hot” heat
bath is to apply a time-dependent perturbation to the system of
the two harmonic oscillators. One can repeat the derivation for
two TLSs, but the final expressions for the currents are more
intricate and therefore we restrict ourselves to the oscillator
working medium. The time-dependent Hamiltonian reads

H (t) = ωha
†a + ωcb

†b + λ(e−i�ta†b + ei�tab†), (18)

where � denotes the driving frequency which is chosen to be
in resonance � = ωh − ωc and λ > 0 measures the strength

of the coupling to the external field. Interaction with the baths
is given by

Hint = (a + a†) ⊗ Rh + (b + b†) ⊗ Rc. (19)

The general derivation of the weak-coupling limit Marko-
vian master equation with periodic driving is discussed in
Appendix B and is essential for consistency with the second
law of thermodynamics [6]. The master equation has the form

d

dt
ρ(t) = −i[H (t),ρ(t)] + Lh(t)ρ(t) + Lc(t)ρ(t) (20)

with Lh(c)(t) = U (t,0)Lh(c)U (t,0)†, which under resonance
conditions can be derived directly without applying the full
Floquet formalism.

The main ingredients of the derivation are as follows:
(i) Transformation to interaction picture. The bath operators

transform according to the free baths Hamiltonian, and the
system operators transform according to the unitary propagator
(under resonance conditions),

U (t,0) = T exp

{
−i

∫ t

0
H (s)ds

}
= e−iH0t e−iV t , (21)

where

H0 = ωha
†a + ωcb

†b, V = λ(a†b + ab†). (22)

(ii) Fourier decomposition of the interaction part,

a(t) = U (t,0)†aU (t,0) = eiV t [eiH0t ae−iH0 ]e−iV t

= cos(λt)e−iωht a − i sin(λt)e−iωhtb, (23)

which gives the Fourier decomposition [compare with
Eq. (B3)]

a(t) = 1√
2

(e−i(ω+
h )t d+ + e−i(ω−

h )t d−) (24)

and

b(t) = 1√
2

(e−i(ω+
c )t d+ − e−i(ω−

c )t d−), (25)

where d+ = a+b√
2

, d− = a−b√
2

, and ω±
h(c) = (ωh(c) ± λ). Simi-

larly, we can calculate a†(t),b†(t).
(iii) Performing the weak-coupling approximation, the total

time-independent (interaction picture) generator has the form

L = L(+)
h + L(−)

h + L(+)
c + L(−)

c , (26)

where

L(+)
h(c)ρ = 1

4γ
(+)
h(c)([d+,ρd

†
+] + e−βh(c)ω

+
h(c) [d†

+,ρd+] + H.c.)

(27)

and

L(−)
h(c)ρ = 1

4γ
(−)
h(c)([d−,ρd

†
−] + e−βh(c)ω

−
h(c) [d†

−,ρd−] + H.c.)

(28)

with the relaxation rates γ
(±)
h(c) = γh(c)(ωh(c) ± λ) discussed

explicitly in Appendices A and B. Any such generator and any
sum of them possess a unique stationary state (under condition
ωh(c) ± λ > 0),

ρ̃
(+)
h(c) = Z−1exp[−βh(c)ω

+
h(c)d

†
+d+] (29)
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and

ρ̃
(−)
h(c) = Z−1exp[−βh(c)ω

−
h(c)d

†
−d−]. (30)

The steady (time-independent) heat currents can be computed
using the definitions of Appendix C. For example, the heat
current from the cold bath is given by the sum of entropy
flows, which are related to the quasienergies ωc ± λ, times the
bath temperature,

J̃c = −kBTc{Tr[(L(+)
c ρ̃) ln ρ̃(+)

c ] + Tr[(L(−)
c ρ̃) ln ρ̃(−)

c ]}. (31)

This current can be calculated analytically. The result is the
following:

J̃c = 1

2

[
ω−

c

(eβcω
−
c − 1)−1 − (eβhω

−
h − 1)−1

[γ (−)
h (1 − e−βhω

−
h )]−1 + [γ (−)

c (1 − e−βcω
−
c )]−1

+ω+
c

(eβcω
+
c − 1)−1 − (eβhω

+
h − 1)−1

[γ (+)
h (1 − e−βhω

+
h )]−1 + [γ (+)

c (1 − e−βcω
+
c )]−1

]
.

(32)

Similarly to Sec. II B when the temperature Tc is close to
absolute zero, we can assume γ (−)

c � γ
(−)
h and γ (+)

c � γ
(+)
h

while keeping λ/Tc < ωc/Tc as constants. This simplifies
formula (32),

J̃c � 1
2 [ω+

c γ (+)
c e−ω+

c /kBTc + ω−
c γ (−)

c e−ω−
c /kBTc ]. (33)

Notice that the cold current does not vanish when λ tends to
zero, which obviously should be the case. This is due to the fact
that the derivation of master equations in the weak-coupling
regime involves time-averaging procedures eliminating certain
oscillating terms. This procedure makes sense only if the
corresponding Bohr frequencies are well-separated. In our
case, it means that ω−

c should be well separated from ω+
c ,

which implies that λ ∼ ωc. Indeed, if both ωc and λ vanish,
the cold current vanishes as well. This problem of time scales
in the weak-coupling Markovian dynamics has been discussed,
for constant Hamiltonians, in Ref. [32] (see also [33] for the
related “dynamical symmetry breaking” phenomenon).

IV. THE DYNAMICAL THIRD LAW
OF THERMODYNAMICS

There exist two seemingly independent formulations of the
third law of thermodynamics, both originally stated by Nernst
[20,22]. The first is a purely static (equilibrium) one, also
known as the Nernst heat theorem, and can simply be phrased
as follows:

(a) The entropy of any pure substance in thermodynamic
equilibrium approaches zero as the temperature approaches
zero.

The second is a dynamical one, known as the unattainability
principle:

(b) It is impossible by any procedure, no matter how
idealized, to reduce any assembly to absolute zero temperature
in a finite number of operations [34].

Different studies investigating the relation between the two
formulations have led to different answers regarding which
of these formulations implies the other, or if neither does.
Although interesting, this question is beyond the scope of

this paper. For further considerations regarding the third law,
we refer the reader to Refs. [23,34–38]. In particular, in
Refs. [37,38] the validity of the static formulation (a) has been
confirmed for a large class of open quantum systems. We shall
use a more concrete version of the dynamical third law, which
can be expressed as follows:

(b′) No refrigerator can cool a system to absolute zero
temperature at finite time.

This formulation enables us to quantify the third law,
i.e., evaluating the characteristic exponent ζ of the cooling
process dT (t)

dt
∼ −T ζ for T → 0. Namely, for ζ < 1 the system

is cooled to zero temperature at finite time. As a model
of the refrigerator, we use the above-discussed continuous
refrigerators with a cold bath modeled either by a system of
harmonic oscillators (bosonic bath) or the ideal gas at low
density, including the possible Bose-Einstein condensation
effect. To check under what conditions the third law is valid, we
consider a finite cold bath with the heat capacity cV (Tc) cooled
down by the refrigerator with the optimized time-dependent
parameter ωc(t) and the additional parameter λ(t) for the
case of a periodically driven refrigerator. The equation which
describes the cooling process reads

cV [Tc(t)]
dTc(t)

dt
= −Jc[ωc(t),Tc(t)], t � 0. (34)

The third law would be violated if the solution Tc(t) reached
zero at finite time t0. Now we can consider two generic models
of the cold heat bath.

A. Harmonic oscillator cold heat bath

This is a generic type of quantum bath including, for
example, an electromagnetic field in a large cavity or a finite
but macroscopic piece of solid described in the thermodynamic
limit. We assume the linear coupling to the bath and the
standard form of the bath’s Hamiltonian,

Hint = (b + b†)

(∑
k

[g(k)a(k) + ḡ(k)a†(k)]

)
,

HB =
∑

k

ω(k)a†(k)a(k), (35)

where a(k),a†(k) are annihilation and creation operators for
mode k. For this model, the weak-coupling limit procedure
leads to the generator (7) with the cold bath relaxation rate

γc ≡ γc(ωc) = π
∑

k

|g(k)|2δ(ω(k) − ωc)[1 − e−ω(k)/kBTc ]−1.

(36)

For the bosonic field in d-dimensional space, where k is a
wave vector, and with the linear low-frequency dispersion law
[ω(k) ∼ |k|], we obtain the following scaling properties at low
frequencies (compare Appendix D):

γc ∼ ωκ
c ω

d−1
c [1 − e−ωc/kBTc ]−1, (37)

where ωκ
c represents scaling of the coupling strength |g(ω)|2,

and ωd−1
c is the density of modes scaling. This implies the
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following scaling of the cold current:

Jc ∼ T d+κ
c

[
ωc

Tc

]d+κ 1

eωc/Tc − 1
. (38)

Optimization of Eq. (38) with respect to ωc leads to the
frequency tuning ωc ∼ Tc and the final current scaling,

J opt
c ∼ T d+κ

c . (39)

Consider that for low temperatures the heat capacity of the
bosonic systems scales like

cV (Tc) ∼ T d
c , (40)

which finally produces the following scaling of the dynamical
equation (34):

dTc(t)

dt
∼ −(Tc)κ . (41)

Notice that in a similar way the same scaling (41) is
achieved for the periodically driven refrigerator (33), with the
optimization tuning ωc,λ ∼ Tc. As a consequence, the third
law implies a rather unexpected constraint on the form of
interaction with a bosonic bath,

κ � 1. (42)

For standard systems such as electromagnetic fields or acoustic
phonons with the linear dispersion law ω(k) = v|k| and the
form factor g(k) ∼ |k|/√ω(k), the parameter κ = 1, as for low
ω, |g(ω)|2 ∼ |k|. However, the condition (42) excludes exotic
dispersion laws ω(k) ∼ |k|α with α < 1, which nevertheless
produce the infinite group velocity forbidden by the relativity
theory. Moreover, the popular choice of Ohmic coupling is
excluded for systems in dimension d > 1. The condition (42)
can also be compared with the condition

κ > 2 − d, (43)

which is necessary to assure the existence of the ground state
for the bosonic field interacting by means of the Hamiltonian
(35) (see Appendix D).

B. Ideal Bose/Fermi gas cold heat bath

We consider now a model of a cooling process where part B
of the working medium is an (infinitely) heavy particle with the
internal structure approximated (at least at low temperatures)
by a TLS immersed in a low density gas at temperature Tc.
The Markovian dynamics of such a system was rigorously
derived by Dumcke [27] in the low density limit and N -level
internal structure. The form of the corresponding LGKS
generator is presented in Appendix A. For our case of TLS, we
have only one Bohr frequency ωc, because elastic scattering
corresponding to ω = 0 does not influence the cooling process.
Cooling occurs due to the nonelastic scattering, giving the
relaxation rate (Appendix A)

γc = 2πn

∫
d3 �p

∫
d3 �p′δ(E( �p′) − E( �p) − h̄ωc)

× fTc
( �pg)|T ( �p′, �p)|2 (44)

with n the particle density, fTc
( �pg) the probability distribution

of the gas momentum strictly given by the Maxwell distri-
bution, and �p and �p′ the incoming and outgoing gas particle

momentum, respectively. E( �p) = p2/2m denotes the kinetic
energy of gas particle.

At low energies (low temperature), scattering of neutral
gas in three dimensions can be characterized by the s-wave
scattering length as , having a constant transition matrix, |T |2 =
( 4πas

m
)2. For our model, the integral (44) is calculated as

γc = (4π )4

(
βc

2πm

) 1
2

a2
s nωcK1

(
βcωc

2

)
e

βcωc
2 , (45)

where Kp(x) is the modified Bessel function of the second
kind. Note that formula (45) is also valid for a harmonic
oscillator instead of TLS, assuming only linear terms in the
interaction and using the Born approximation for the scattering
matrix.

Optimizing formula (17) with respect to ωc leads to ωc ∼ Tc

and to scaling of the heat current,

J opt
c ∼ n(Tc)

3
2 . (46)

When the Bose gas is above the critical temperature for
the Bose-Einstein condensation, the heat capacity cV and
the density n are constants. Below the critical temperature,
the density n in formula (44) should be replaced by the density
nex of the exited states, having both cV ,nex ∼ (Tc)

3
2 , which

finally implies

dTc(t)

dt
∼ −(Tc)

3
2 . (47)

In the case of Fermi gas at low temperatures, only the small
fraction n ∼ Tc of fermions participates in the scattering
process and contributes to the heat capacity; the rest is “frozen”
in the “Dirac sea” below the Fermi surface. Again, this effect
modifies in the same way both sides of Eq. (34), and therefore
(47) is still valid. Similarly, a possible formation of Cooper
pairs below the critical temperature does not influence the
scaling (47).

V. CONCLUSIONS

We have introduced and analyzed two types of continuous
quantum refrigerators, namely an absorption refrigerator and
a periodically driven refrigerator. The latter required us to
present new definitions for heat flow for periodically driven
open systems. These definitions are in line with the second
law and are applicable for a time-independent Hamiltonian
as well. Unlike the first and second laws, the third law of
thermodynamics does not define a new state function. In
its first formulation (cf. Sec. IV), the third law provides a
reference point for scaling the entropy and becomes intuitive
when thinking in terms of quantum states or levels. The second
formulation, (b′) in Sec. IV, which states that no refrigerator
can cool a system to absolute zero temperature at finite time,
provides information on the characteristic exponent ζ , the
speed of cooling, and gives an insight and restriction on the
properties of realistic systems.

Universal behavior of the final scaling near absolute zero
is obtained. The third law does not depend on the bath
dimension. The type of refrigerator, either absorption or
a periodically driven refrigerator, does not influence the
characteristic exponent, nor does a different medium, i.e., a
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harmonic oscillator and a TLS produce the same scaling. The
characteristic exponent is governed only by the feature of the
heat bath and its interaction with the system. For a harmonic
oscillator heat bath, the third law imposes a restriction on the
form of the interaction between the system and the bath, κ � 1,
allowing only physical coupling and dispersion relations, thus
for phonons with a linear dispersion relation ζ = κ = 1. For an
ideal Bose/Fermi gas heat bath, ζ = 3/2, which implies faster
cooling of the phonon bath than the gas bath. This distinction
between the two baths may occur due to particle conservation
for the gas, indicating a more efficient extraction of heat by
eliminating particles from the system. The key component of a
realistic refrigerator is the heat transport mechanism between
the heat bath and the working medium. This mechanism
determines the third-law scaling. The working medium is a
nonlinear device combining three currents. If it is optimized
properly by adjusting its internal structure, it does not pose a
limit on cooling.
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APPENDIX A: THERMAL GENERATORS FOR A
CONSTANT HAMILTONIAN

Consider a system and a reservoir (bath), with a “bare”
system Hamiltonian H 0 and the bath Hamiltonian HR ,
interacting via the Hamiltonian λHint = λS ⊗ R. Here, S

(R) is a Hermitian system (reservoir) operator and λ is the
coupling strength (a generalization to more complicated Hint

is straightforward). We assume also that

[ρR,HR] = 0, Tr(ρR R) = 0. (A1)

The reduced, system-only dynamics in the interaction
picture is defined as a partial trace,

ρ(t) = �(t,0)ρ ≡ TrR[Uλ(t,0)ρ ⊗ ρRUλ(t,0)†], (A2)

where the unitary propagator in the interaction picture is given
by the ordered exponential,

Uλ(t,0) = T exp

{−iλ

h̄

∫ t

0
S(s) ⊗ R(s) ds

}
, (A3)

where

S(t) = e(i/h̄)HtSe−(i/h̄)Ht , R(t) = e(i/h̄)HRtRe−(i/h̄)HRt . (A4)

Notice that S(t) is defined with respect to the renormalized,
physical, H and not H 0, which can be expressed as

H = H 0 + λ2H corr
1 + · · · . (A5)

The renormalizing terms containing powers of λ are Lamb-
shift corrections due to the interaction with the bath, which
cancel afterward the uncompensated term H − H 0, which, in
principle, should also be present in Eq. (A3). The lowest-order
(Born) approximation with respect to the coupling constant λ

yields H corr
1 , while the higher-order terms (· · · ) require going

beyond the Born approximation.
A convenient, albeit not used in the rigorous derivations,

tool is a cumulant expansion for the reduced dynamics,

�(t,0) = exp
∞∑

n=1

[λnK (n)(t)]. (A6)

One finds that K (1) = 0 and the Born approximation (weak
coupling) consists of terminating the cumulant expansion at
n = 2, hence we denote K (2) ≡ K:

�(t,0) = exp[λ2K(t) + O(λ3)]. (A7)

One obtains

K(t)ρ = 1

h̄2

∫ t

0
ds

∫ t

0
duF (s − u)S(s)ρS(u)†

+ (similar terms), (A8)

where F (s) = Tr[ρRR(s)R]. The similar terms in Eq. (A8) are
of the form ρS(s)S(u)† and S(s)S(u)†ρ.

The Markov approximation (in the interaction picture)
means in all our cases that for long enough time, one can
use the following approximation:

K(t) � tL, (A9)

whereL is a Linblad-Gorini-Kossakowski-Sudarshan (LGKS)
generator. To find its form, we first decompose S(t) into its
Fourier components,

S(t) =
∑
{ω}

eiωtSω,S−ω = S†
ω, (A10)

where the set {ω} contains Bohr frequencies of the Hamiltonian

H =
∑

k

εk|k〉〈k|, ω = εk − εl. (A11)

Then we can rewrite the expression (A8) as

K(t)ρ = 1

h̄2

∑
ω,ω′

SωρS
†
ω′

∫ t

0
ei(ω−ω′)udu

∫ t−u

−u

F (τ )eiωτ dτ

+ (similar terms) (A12)

and use two crucial approximations:∫ t

0
ei(ω−ω′)udu ≈ tδωω′ ,∫ t−u

−u

F (τ )eiωτ dτ ≈ G(ω) =
∫ ∞

−∞
F (τ )eiωτ dτ � 0. (A13)

This makes sense for t � max{1/(ω − ω′)}. Apply-
ing these two approximations, we obtain K(t)ρS =
(t/h̄2)

∑
ω SωρSS

†
ωG(ω) + (similar terms), and hence it fol-

lows from Eq. (A9) that L is a special case of the LGKS
generator derived for the first time by Davies [26]. Returning to
the Schrödinger picture, one obtains the following Markovian
master equation:

dρ

dt
= − i

h̄
[H,ρ] + Lρ,

(A14)

Lρ ≡ λ2

2h̄2

∑
{ω}

G(ω)([Sω,ρS†
ω] + [Sωρ,S†

ω]).
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Several remarks are in order:
(i) The absence of off-diagonal terms in Eq. (A14),

compared to Eq. (A12), is the crucial property of the Davies
generator which can be interpreted as a coarse-graining in time
of fast oscillating terms. It implies also the commutation of L
with the Hamiltonian part [H,·].

(ii) The positivity G(ω) � 0 follows from Bochner’s theo-
rem and is a necessary condition for the complete positivity of
the Markovian master equation.

(iii) The presented derivation showed implicitly that the
notion of bath’s correlation time, often used in the literature,
is not well-defined—Markovian behavior involves a rather
complicated cooperation between system and bath dynamics.
In other words, contrary to what is often done in phe-
nomenological treatments, one cannot combine arbitrary H’s
with a given LGKS generator. This is particularly important
in the context of thermodynamics of controlled quantum
open system, where it is common to assume Markovian
dynamics and apply arbitrary control Hamiltonians. Erroneous
derivations of the quantum master equation can easily lead to
violation of the laws of thermodynamics.

If the reservoir is a quantum system at a thermal equilibrium
state, the additional Kubo-Martin-Schwinger (KMS) condition
holds,

G(−ω) = exp

(
− h̄ω

kBT

)
G(ω), (A15)

where T is the bath’s temperature. As a consequence of
Eq. (A15), the Gibbs state

ρβ = Z−1e−βH , β = 1

kBT
(A16)

is a stationary solution of Eq. (A14). Under mild conditions
(e.g., “the only system operators commuting with H and
S are scalars”), the Gibbs state is a unique stationary state
and any initial state relaxes toward equilibrium (“zeroth law
of thermodynamics”). A convenient parametrization of the
corresponding thermal generator reads

Lρ = 1

2

∑
{ω�0}

γ (ω){([Sω,ρS†
ω] + [Sωρ,S†

ω])

+ e−h̄βω([S†
ω,ρSω] + [S†

ωρ,Sω])}, (A17)

where finally

γ (ω) = λ2

h̄2

∫ +∞

−∞
Tr(ρR eiHRt/h̄ R e−iHRt/h̄R) dt. (A18)

A closer look at the expressions (A17) and (A18) shows that
the transition ratio from the state |k〉 to the state |l〉 is exactly
the same as that computed from the Fermi Golden Rule,

W (|in〉 → |fin〉) = 2π

h̄
|〈in|V |fin〉|2δ(Efin − Ein). (A19)

Namely, one should take as a perturbation V = λS ⊗ R, an ini-
tial state |in〉 = |k〉 ⊗ |E〉, a final state |fin〉 = |l〉 ⊗ |E′〉 (|E〉
denotes the reservoir’s energy eigenstate), and integrate over
the initial reservoir’s states with the equilibrium distribution
and over all the final reservoir’s states.

The above interpretation allows us to justify the extension
of the construction of a thermal generator to the case of a heat

bath consisting of noninteracting particles at low density n

and thermal equilibrium (see [27] for a rigorous derivation). In
this case, a fundamental relaxation process is a scattering of a
single bath particle with the system described by the scattering
matrix T . The scattering matrix can be decomposed as T =∑

{ω} Sω ⊗ Rω, where now Rω are single-particle operators.
Then the structure of the corresponding master equation is
again given by Eq. (A17) with

γ (ω) = 2πn

∫
d3 �p

∫
d3 �p′δ(E( �p′) − E( �p) − h̄ω)M( �p)|

× Tω( �p′, �p)|2 (A20)

resembling a properly averaged expression (A19). Here the
initial (final) state has a structure |k〉 ⊗ | �p〉 (|l〉 ⊗ | �p′〉), M( �p)
is the equilibrium (Maxwell) initial distribution of particle
momenta, with | �p〉 being the particle momentum eigenvector,
and E( �p) is the kinetic energy of a particle. The perturbation
V in Eq. (A19) is replaced by the scattering matrix T (equal
to V for the Born approximation) and finally

Tω( �p′, �p) = 〈 �p′|Rω| �p〉. (A21)

APPENDIX B: THERMAL GENERATORS
FOR PERIODIC DRIVING

In order to construct models of quantum heat engines
or powered refrigerators, we have to extend the presented
derivations of the Markovian master equation to the case of
periodically driven systems. Fortunately, we can essentially
repeat the previous derivation with the following amendments:

(i) The system (physical, renormalized) Hamiltonian is now
periodic,

H (t) = H (t + τ ), U (t,0) ≡ T exp

{
− i

h̄

∫ t

0
H (s) ds

}
,

(B1)

and the role of constant Hamiltonian is played by H defined
as

H =
∑

k

εk|k〉〈k|, U (τ,0) = e−iH t/h̄. (B2)

(ii) The Fourier decomposition (A10) is replaced by the
following one:

U (t,0)† S U (t,0) =
∑
q∈Z

∑
{ω}

ei(ω+q�)t Sωq, (B3)

where � = 2π/τ and {ω} = {εk − εl}. The decomposition of
the above follows from the Floquet theory, however for our
model we can obtain it directly using the manifest expressions
for the propagator U (t,0).

(iii) The generator in the interaction picture has the form

L =
∑
q∈Z

∑
{ω}

= Lωq, (B4)

where

Lωqρ = 1
2γ (ω + q�){([Sωq,ρS

†
ωq] + [Sωqρ,S

†
ωq ])

+ e−h̄β(ω+q�)([S†
ωq,ρSωq ] + [S†

ωqρ,Sωq])}. (B5)
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Returning to the Schrödinger picture, we obtain the following
master equation:

dρ(t)

dt
= − i

h̄
[H (t),ρ(t)] + L(t)ρ(t), t � 0, (B6)

where

L(t) = L(t + τ ) = U(t,0)LU(t,0)†,
(B7)

U(t,0)· = U (t,0) · U (t,0)†.

In particular, one can represent the solution of Eq. (B6) in the
form

ρ(t) = U(t,0)eLt ρ(0), t � 0. (B8)

Any state satisfying Lρ̃ = 0 defines a periodic steady state
(limit cycle),

ρ̃(t) = U(t,0)ρ̃ = ρ̃(t + τ ), t � 0. (B9)

Finally, one should notice that in the case of multiple couplings
and multiple heat baths, the generator L can always be
represented as an appropriate sum of the terms like (A17).

APPENDIX C: HEAT FLOWS AND POWER
FOR PERIODICALLY DRIVEN OPEN SYSTEMS

We consider a periodically driven system coupled to several
heat baths with the additional index j labeling them. Then the
generator in the interaction picture has the form

L =
M∑

j=1

∑
q∈Z

∑
{ω�0}

Lj
ωq, (C1)

where any single Lj
ωq has a structure of Eq. (B5) with the

appropriate γj (ω). Notice that a single component Lj
ωq is also

a LGKS generator and possesses a Gibbs-like stationary state
written in terms of the averaged Hamiltonian H ,

ρ̃j
ωq = Z−1 exp

{
−ω + q�

ω

H

kBTj

}
. (C2)

The corresponding time-dependent objects satisfy

Lj
qω(t)ρ̃j

qω(t) = 0, Lj
qω(t) = U(t,0)Lj

qωU(t,0)†,
(C3)

ρ̃j
qω(t) = U(t,0)ρ̃j

qω = ρ̃j
qω(t + τ ).

Using the decomposition (C1), one can define a local heat
current which corresponds to the exchange of energy ω + q�

with the j th heat bath for any initial state,

J j
qω(t) = ω + q�

ω
Tr

{[
Lj

qω(t)ρ(t)
]
H̃ (t)

}
, H̃ (t) = U(t,0)H,

(C4)

or in the equivalent form,

J j
qω(t) = −kBTj Tr

{[
Lj

qω(t)ρ(t)
]

ln ρ̃j
qω(t)

}
. (C5)

The heat current associated with the j th bath is a sum of
the corresponding local ones,

J j (t) = −kBTj

∑
q∈Z

∑
{ω�0}

Tr
{[
Lj

qω(t)ρ(t)
]

ln ρ̃j
qω(t)

}
. (C6)

In order to prove the second law, we use Spohn’s inequality [3],

Tr([Lρ][ln ρ − ln ρ̃]) � 0, (C7)

which is valid for any LGKS generator L with a stationary
state ρ̃.

Computing now the time derivative of the entropy S(t) =
−kBTrρ(t) ln ρ(t) and applying (C7), one obtains the second
law in the form

d

dt
S(t) −

M∑
j=1

J j (t)

Tj

� 0, (C8)

where S(t) = −kBTr[ρ(t) ln ρ(t)].
The heat currents in the steady state ρ̃(t) are time-

independent and given by

J̃ j = −kBTj

∑
q∈Z

∑
{ω�0}

Tr
[(
Lj

qωρ̃
)

ln ρ̃j
qω

]
. (C9)

They satisfy the second law in the form

M∑
j=1

J̃ j

Tj

� 0 (C10)

while, according to the first law,

−
M∑

j=1

J̃ j = −J̃ = P̄ (C11)

is the averaged power (negative when the system acts as a heat
engine). Notice that in the case of a single heat bath, the heat
current is always strictly positive except for the case of no
driving, when it is equal to zero.

Notice that for the constant Hamiltonian, the above for-
mulas are also applicable after removing the index q, which
implies also that

∑M
j=1 J̃ j = 0.

APPENDIX D: VAN HOVE PHENOMENON

A natural physical stability condition which should be
satisfied by any model of an open quantum system is that its
total Hamiltonian should be bounded from below and should
possess a ground state. In the case of systems coupled linearly
to bosonic heat baths, it implies the existence of the ground
state for the following bosonic Hamiltonian [compare with
Eq. (35)]:

Hbos =
∑

k

{ω(k)a†(k)a(k) + [g(k)a(k) + ḡ(k)a†(k)]}.

(D1)

Introducing a formal transformation to a new set of bosonic
operators,

a(k) �→ b(k) = a(k) + ḡ(k)

ω(k)
, (D2)

we can write

Hbos =
∑

k

ω(k)b†(k)b(k) − E0, E0 =
∑

k

|g(k)|2
ω(k)

(D3)

with the formal ground state |0〉 satisfying

b(k)|0〉 = 0 for all k. (D4)
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For the interesting case of an infinite set of modes {k}, labeled
by the d-dimensional wave vectors, two problems can appear:

(i) The ground state energy E0 can be infinite, i.e., it does
not satisfy ∑

k

|g(k)|2
ω(k)

< ∞. (D5)

(ii) The transformation (D2) can be implemented by a unitary
one, i.e., b(k) = Ua(k)U † if and only if∑

k

|g(k)|2
ω(k)2

< ∞. (D6)

Nonexistence of such a unitary implies nonexistence of the
ground state (D4) (in the Fock space of the bosonic field), and
this is called the van Hove phenomenon [39].

While the divergence of the sums (D5) and (D6) (or
integrals for the infinite volume case) for large |k| can
be avoided by applying the ultraviolet cutoff, the stronger
condition (D6) puts restrictions on the form of g(k) at low
frequencies. Assuming that ω(k) = v|k| and g(k) ≡ g(ω), the
condition (D6) is satisfied for the following low-frequency
scaling in the d-dimesional case:

|g(ω)|2 ∼ ωκ, κ > 2 − d. (D7)
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