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Geometrical frustration of an extended Hubbard diamond chain in the quasiatomic limit
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We study the geometrical frustration of an extended Hubbard model on a diamond chain, where vertical
lines correspond to the hopping and repulsive Coulomb interaction terms between sites while the remaining
lines represent only the Coulomb repulsion term. The phase diagrams at zero temperature show quite curious
phases: five types of frustrated states and four types of nonfrustrated states, ordered antiferromagnetically.
Although a decoration transformation was derived for spin-coupling systems, this approach can be applied to
electron-coupling systems. Thus the extended Hubbard model can be mapped onto another effective extended
Hubbard model in the atomic limit with additional three- and four-body couplings. This effective model is solved
exactly using the transfer-matrix method. In addition, using the exact solution of this model, we discuss several
thermodynamic properties away from the half-filled band, such as chemical potential behavior, electronic density,
and entropy, for which we study geometrical frustration. Consequently, we investigate the specific heat as well.
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I. INTRODUCTION

The Hubbard model is one of the simplest models for
strongly interacting electron systems. In general, it is difficult
to perform a rigorous analysis of the model, and exact results
have only been obtained in particular cases [1]. On the other
hand, geometrical frustration in strongly correlated electron
systems has attracted a great deal of interest over the past
decades [2,3]. Due to the competition between nearest and
next-nearest exchange coupling, the inorganic spin-Peierls
compound exhibits a transition from a gapless phase to
a gapped dimerized ground state [4]. The quantum phase
transition point from the gapless phase to the gapped dimerized
phase of this model was first determined by Okamoto and
Nomura [5].

The interplay between geometrical frustration and strong
electron correlation results in a complicated phase diagram
containing many interesting phases, including the spin-gapped
metallic phase, the disorder magnetic insulation phase, and the
Heisenberg insulator [6]. The Hubbard model on the triangular
lattice exhibits a transition from a paramagnetic metal to an
antiferromagnetic insulator as the Hubbard on-site repulsion
gradually grows [7].

In a pioneering theoretical paper [8], Hida predicted the
appearance of the magnetization plateau using the numer-
ical diagonalization of a finite-size system. In the frame-
work of the transfer-matrix and dynamical recursive ap-
proaches, the frustrated magnetization plateaus were obtained
for ferromagnetic-ferromagnetic-antiferromagnetic kagome
chains as well as a zigzag ladder with multispin exchanges
[9–11]. Magnetization plateaus via the chemical potential or
a magnetic field have been studied in the Hubbard model for
small nanoclusters using exact numerical diagonalization of
the average electron density [12,13].

Recently, geometrical frustration of the Hubbard model
was widely studied. In particular, the diamond chain structure
was considered by Derzhko et al. [14,15], and they discussed
the frustration for a special class of lattice. Montenegro-
Filho and Coutinho-Filho [16] also considered the doped
AB2 Hubbard chain, both in the weak-coupling and the

infinite-U limit (atomic limit). They studied interesting phases
as a function of hole doping away from half-filled band.
Mancini [17,18] presented the exact solution of an extended
one-dimensional Hubbard model in the atomic limit. He
obtained the chemical potential plateaus of the particle density,
of the on-site potential at zero temperature, and he studied
the thermodynamic charge susceptibility, compressibility at
finite temperature, as well as other physical quantities. Vidal
et al. [19] also discussed two interacting particles evolving
in a diamond chain structure embedded in a magnetic field.
The interaction of the particles leads to the strong localization
induced by the magnetic field for the particular value of a
flux. An analogous model was also studied by Rossler and
Mainemer [20]. The Hubbard model in another quasi-one-
dimensional triangular structure was studied by Wang [21].
The latter indicated that for a small hopping term, the system
exhibits short-range antiferromagnetic correlation, whereas
when the hopping terms become greater than the critical
point, there is a transition from an antiferromagnetic state
to a frustrated one. Moreover, the insulator-metal transition
takes place at a hopping interaction that is even greater
than another critical point. In addition, Gulacsi et al. [22,23]
discussed the diamond Hubbard chain in a magnetic field and
a wide range of properties, such as flat-band ferromagnetism
and the correlation-induced metallic, half-metallic process.
The spinless versions of the Hubbard model on a diamond
chain were also recently investigated through exact analytical
solution [24], and Lopes and Dias [25] performed a detailed
investigation using the exact diagonalization approach.

In the past decade, several diamond chain structures were
discussed. Some of them were motivated by real materials
such as Cu3(CO3)2(OH)2, known as azurite, which is an
interesting quantum antiferromagnetic model described by the
Heisenberg model on a generalized diamond chain. Honecker
et al. [26] studied the dynamic and thermodynamic properties
for this model. In addition, Pereira et al. [27] investigated
the magnetization plateau of delocalized interstitial spins on
a diamond chain, and they detected the magnetocaloric effect
in a kinetically frustrated diamond chain [28]. Quite recently,
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Lisnii [29] studied a distorted diamond Ising-Hubbard chain,
and that model exhibited geometrical frustration also. A
further investigation regarding exact evidence for spontaneous
antiferromagnetic long-range order in the two-dimensional
hybrid model of localized Ising spins and itinerant electrons
was discussed by Strečka et al. [30,31]. Moreover, the ther-
modynamics of the Ising-Heisenberg model on a diamondlike
chain was widely discussed in Refs. [32–35], and thermal
entanglement was considered by Ananikian et al. [36].

On the other hand, the analytical exact solution is rather
amazing because the exact result is always useful to manipulate
the numerical results. Therefore, the exact solutions of the
models are of great importance, so our main goal is to obtain an
exact solution for the extended Hubbard model on a diamond
chain in the quasiatomic limit. Research on the extended Hub-
bard diamond chain model without the hopping of electrons
between the nodal sites is based on three main points.

First of all, the 1/3 magnetization plateau—the double
peaks both in the magnetic susceptibility and the specific
heat—was observed in the experimental measurements [37,38]
according to the experiments of the natural mineral azurite.
Theoretical calculations of the one-dimensional Hubbard
model, as well as the experimental results of the exchange
dimer (interstitial sites) parameter and their descriptions of the
various theoretical models, are presented. It should be noted
that the dimers (interstitial sites) exchange much more strongly
than those nodal sites. Various types of theoretical Heisenberg
approximate methods were proposed. The renormalization of
the density matrix renormalization group of the transfer matrix,
the density functional theory, the high-temperature expansion,
and Lanczos diagonalization on a diamond chain are all
intended to explain the experimental measurements (magne-
tization plateau and the double top) in the natural mineral
azurite [39]. All of these theoretical studies are approximate.
There is another possibility. Since dimer interaction is much
higher than the rest, it can be represented as an exactly solvable
Ising-Heisenberg model. In addition, experimental data on
the magnetization plateau coincide with the approximation
of the Ising-Heisenberg model [27,32,36,40] and the extended
Hubbard model without the hopping of electrons between the
nodal sites [24] on a diamond chain.

The second point is quantum block-block entanglement.
This is carried out by the exact diagonalization technique
in the one-dimensional extended Hubbard model, and it is
calculated for finite size (L = 10) [41]. When the absolute
value of nearest-neighbor Coulomb interactions (our case)
becomes smaller, the effect of the hopping term and the on-site
interaction cannot be neglected. Finally, we would like to point
out that although the results obtained in this paper are for the
two-site (dimer) system, their qualitative features are the same
as those of larger systems.

The third point is the experimental observation of the
double peaks both in the magnetic susceptibility and the
specific heat [27,39,42]. It may be described exactly by
the extended Hubbard diamond chain model without the
hopping of electrons or holes between the nodal sites. This
phenomenon is particularly important in the quantum case.

This paper is organized as follows. In Sec. II, we present the
extended Hubbard model on a diamond chain. We discuss the

phase diagram at zero temperature in Sec. III. In Sec. IV, we
present the exact solution of the model. In Sec. V, we discuss
the thermodynamic properties of the model, such as electronic
density, internal energy, compressibility, entropy, and specific
heat away from the half-filled band. Finally, Sec. VI contains
concluding remarks.

II. THE EXTENDED HUBBARD MODEL

In this paper, we will consider the extended Hubbard
model on a diamond chain, as represented schematically in
Fig. 1. In the present model, we consider the hopping term
t between sites a and b. In addition, there is the on-site
Coulomb repulsion interaction term denoted by U and the
nearest-neighbor repulsion interaction term denoted by V . We
assume also that this model has an arbitrary particle density,
so we will include a chemical potential term denoted by μ.
Therefore, the Hamiltonian of this model can be expressed by

H =
N∑

i=1

H i,i+1, (1)

with N being the number of cells (sites a, b, and c), whereas
H i,i+1 is given by

H i,i+1

= −t
∑

σ=↓,↑
(a†

i,σ bi,σ + ai,σ b†i,σ )

− μ

[
na

i + nb
i + 1

2

(
nc

i + nc
i+1

)]

+ U

[
na

i,↑na
i,↓ + nb

i,↑nb
i,↓ + 1

2

(
nc

i,↑nc
i,↓ + nc

i+1,↑nc
i+1,↓

)]

+ V

[
na

i nb
i + 1

2

(
na

i + nb
i

)(
nc

i + nc
i+1

)]
, (2)

where ai,σ and bi,σ (a†
i,σ and b†i,σ ) represent the Fermi

annihilation (creation) operator for the Hubbard model, σ

denotes the electron spin, and nα
i,σ indicates the number

operator, with α = {a,b,c}. Using this number operator, we
define also the operators nα

i = nα
i,↑ + nα

i,↓.
In order to write the Hamiltonian (2) in a more compact

form, we can define the following operators:

pi,i+1 = 1
2

(
nc

i + nc
i+1

)
, qi,i+1 = 1

2

(
nc

i,↑nc
i,↓+nc

i+1,↑nc
i+1,↓

)
.

(3)

site-

FIG. 1. (Color online) Schematic representation of the extended
Hubbard model on a diamond chain.
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Using these operators, we can rewrite the Hamiltonian
(2) as follows:

H i,i+1 = −t
∑

σ=↓,↑
(a†

i,σ bi,σ + ai,σ b†i,σ )

−(μ − V pi,i+1)
(
na

i + nb
i

) + U
(
na

i,↑na
i,↓ + nb

i,↑nb
i,↓

)
+V na

i nb
i − μ pi,i+1 + Uqi,i+1. (4)

The particle-hole symmetry can be analyzed in a similar
way, as discussed in Ref. [24]. The phase diagram in the half-
filled band can be obtained using the following restriction for
the chemical potential: μ = U/2 + 2V . This relation could be
obtained by using the particle-hole symmetry in a similar way,
as discussed in Ref. [24].

III. THE PHASE DIAGRAM

In order to study the phase diagram at zero temperature, first
we need to diagonalize the Hamiltonian (4) at sites a and b. We
will use m = {0, . . . ,4} to denote the total number of mobile
electrons per unit cell at sites a and b, while nc will indicate
the number of electrons per unit cell at site c. The Hamiltonian
at sites a and b can be written as a 16 × 16 matrix, but this
matrix can be constructed as a block matrix. In the largest
block matrix we have 4 × 4, therefore the eigenvalues and
eigenvectors of this matrix are expressed below as follows:

(a) For a state with m = 0 particles,

λ0 = D0, |S0〉 = |0,0〉, (5)

where Dm = −(μ − V pi,i+1)m − μ pi,i+1 + Uqi,i+1, while
the state |S0〉 = |0,0〉 means there are no particles at sites
a and b, respectively.

(b) For a state with m = 1 particle,

λ(±)
σ = D1 ± t, |S(±)

σ 〉 = 1√
2

(|0,σ 〉 ∓ |σ,0〉) , (6)

where |S(±)
σ 〉 means there is one particle at site a or b with

either spin up or down.
(c) For a state with m = 2 particles,

λ2σ = D2 + V, |S2σ 〉 = |σ,σ 〉, (7)

λ
(1)
↓↑ = D2 + U, |S(1)

↓↑〉 = 1√
2

(|↓↑,0〉 − |0,↓↑〉), (8)

λ
(±)
↓↑ = D2 + V + θ±t

2
, (9)

|S(±)
↓↑ 〉 = 1

ζ∓
[|↓↑,0〉 + |0,↓↑〉 + θ∓(|↑,↓〉 + |↓ ,↑〉)],

(10)

λ
(2)
↓↑ = D2 + V, |S(2)

↓↑〉 = 1√
2

(|↑,↓〉 − |↓,↑〉), (11)

where

ζ± =
√

2 + θ2±
8

, (12)

θ± = U − V ±
√

(U − V )2 + 16t2

t
. (13)

TABLE I. The first column (nt ) represents the number of particles
per unit cell. The second and third columns show the ground-state
energy per unit cell and its corresponding ground state, respectively.

nt Ground-state energy Ground state

0 0 |S0〉 = |Vac〉 = ∏
i |S0〉i ⊗ |0〉i

1 −μ − t |S1〉 = |FRU1〉 = ∏
i |S(−)

σ 〉i ⊗ |0〉i

2 −2μ + V + θ−t

2 |S2〉 = |AFM2〉 = ∏
i |S(−)

↓↑ 〉i ⊗ |0〉i

2 −2μ − t + V |S̄2〉 = |FRU2〉 = ∏
i |S(−)

σ 〉i ⊗ |1〉i

3 −3μ + 3V + θ− t

2 |S3〉 = |FRU3〉 = ∏
i |S(−)

↓↑ 〉i ⊗ |1〉i

4 −4μ + 5V + U + θ−t

2 |S4〉 = |AFM4〉 = ∏
i |S(−)

↓↑ 〉i ⊗ |2〉i

4 −4μ − t + 5V + U |S̄4〉 = |FRU4〉 = ∏
i |S(−)

↓↑σ 〉i ⊗ |1〉i

5 −5μ + 8V + 2U − t |S5〉 = |FRU5〉 = ∏
i |S(−)

↓↑σ 〉i ⊗ |2〉i

6 −6μ + 12V + 3U |S6〉 = |Full〉 = ∏
i |S↓↑↓↑〉i ⊗ |2〉i

The states |S2σ 〉 and |S(±)
↓↑ 〉 are defined in a similar way as in

the previous case, with two particles both with spin up or down
and two particles with opposite spins.

(d) For a state with m = 3 particles,

λ
(±)
↓↑σ = D3 + U + 2V ± t,

(14)

|S(±)
↓↑σ 〉 = 1√

2
(|↓↑ ,σ 〉 ∓ |σ,↓↑〉).

The states |S(±)
↓↑σ 〉 correspond to two particles with opposite

spin and one spin.
(e) For a state with m = 4 particles,

λ↓↑↓↑ = D4 + 2U + 4V, |S↓↑↓↑〉 = |↓↑,↓↑〉. (15)

The state |S↓↑↓↑〉 means there are two spins at each site with
opposite spins.

It is worth noting that the Hamiltonian (2) has 256
eigenvalues per diamond plaquette.

From hereon, to make our discussion more realistic, we will
only consider the repulsive on-site Coulomb interaction (U >

0) and the repulsive Coulomb interaction between nearest
neighbors (V > 0). Afterward, we will discuss the phase
diagram at zero temperature.

The present model exhibits nine states, which are tabulated
in Table I, for all possible numbers of particles available in the
chain. For the empty particle and the fully filled particles, we
have the states |S0〉 = |Vac〉 and |S6〉 = |Full〉, respectively.
For one particle per unit cell and five particles per unit cell, we
also have one corresponding frustrated state |S1〉 = |FRU1〉
and the state |S5〉 = |FRU5〉, respectively. However, for two
particles per unit cell, we have two states. One configuration
is an antiferromagnetic state (|S2〉 = |AFM2〉), whereas the
other configuration is a frustrated state (|S̄2〉 = |FRU2〉). Due
to particle-hole symmetry, the analysis for the case of four
particles (or two holes) becomes analogous for the case
of two particles, hence we have one antiferromagnetically
ordered state (|S4〉 = |AFM4〉) and another frustrated state
(|S̄4〉 = |FRU4〉). Furthermore, for the special case of half-
filled particles (with three particles or holes per unit cell),
we could also have two possible states: one frustrated state
|S3〉 = |FRU3〉 and another antiferromagnetically ordered
state (|S̄3〉 = |AFM3〉). However, the case |AFM3〉 occurs only

061123-3



ONOFRE ROJAS, S. M. DE SOUZA, AND N. S. ANANIKIAN PHYSICAL REVIEW E 85, 061123 (2012)

0 0.2 0.4 0.6 0.8 1
V/U

-2

-1

0

1

2

3

4

µ/
U

0 0.2 0.4 0.6 0.8 1
t/U

-1

0

1

2

µ/
U

S4

S3

S5

S6

S2

S1

S0

S2

S4

S6 S5

S4

S3

S2

S1

S0

(a) (b)

FIG. 2. Phase diagrams at zero temperature: (a) the phase diagram
of V/U vs μ/U for a fixed value of t/U = 1; (b) the phase diagram
of t/U vs μ/U for a fixed value of V/U = 0.25.

when V > U . We ignore this case since it is too artificial. In
Fig. 2, we illustrate the phase transition of these states at zero
temperature. In Fig. 2(a), we illustrate the phase diagram of
V/U versus μ/U for a fixed value of t/U = 1, where we
display seven states Si (i = 0, . . . ,6). In Fig. 2(b), we display
the phase diagram of t/U versus μ/U for a fixed value of
V/U = 0.25. This phase diagram illustrates nine states: the
seven states already shown in Fig. 2(a) and two additional ones,
|FRU2〉 and |FRU4〉. The full transition boundary functions
between states are tabulated in Table II. The first and third
columns correspond to the boundary states, while the second
and fourth columns correspond to the boundary functions.

In Fig. 2, a dashed line represents the half-filled band curve
of the extended Hubbard model on a diamond chain.

Other variants of the phase diagram at zero temperature
could also be discussed, although the main properties have
already been shown in Fig. 2.

TABLE II. The first and third columns represent the boundary
between two states tabulated in Table I, while the second and fourth
columns denote the function of the boundaries. For simplicity, we use
the notation V ′ = V/U and t ′ = t/U .

State V ′ × μ/U [Fig. 2(a)] State t ′ × μ/U [Fig. 2(b)]

S0,S1 −1 S0,S1 −t ′

S1,S2
3+V ′−

√
(V ′−1)2+16
2 S1,S2

11−10
√

0.81+16t ′2+20t ′
20

S2,S3 2V ′ S2,S3
1
5

S3,S4 2V ′ + 1 S3,S4
6
5

S4,S5
−1+7V ′−

√
(V ′−1)2+16

2 S4,S5
17−20t ′+5

√
0.81+16t ′2

20

S5,S6 4V ′ + 2 S5,S6 t ′ + 7
5

S5,S̄4
13
10

S̄4,S3
−4t ′+3+2

√
0.81+16t ′2

4

S3,S̄2
20t ′+13−10

√
0.81+16t ′2

20

S̄2,S1
1
10

IV. EXACT SOLUTION

The method we will use will be the decoration transfor-
mation proposed earlier by Syozi [43] and Fisher [44]. This
approach was the subject of a later study by Rojas et al. [45]
for the case of multispins, and by Strečka [46] for the hybrid
system (e.g., Ising-Heisenberg). Another interesting variant
of this approach is also discussed by us, where we propose a
direct transformation instead of several step-by-step ones [47].
An illustrative successful application of this last approach
was performed in Ref. [48]. The decoration transformation
approach is widely used to solve spin models, however it can
also be applied to the electron coupling system. This was done
by the authors of Ref. [24] for the case of a spinless fermion
on a diamond structure.

In order to use the decoration transformation approach, we
write the Boltzmann factor for the extended Hubbard model
on a diamond chain as follows:

wnc
i ,n

c
i+1

= e−β D0 + 4(e−β D1 + e−β(D3+U+2V )) cosh(βt)

+ e−β D2 (e−βU + 3e−βV ) + e−β(D4+2U+4V )

+ e−β(D2+V )(e−βθ+t/2 + e−βθ−t/2), (16)

where the θ± were already defined in Eq. (13).
The extended Hubbard model on a diamond chain can be

mapped onto an effective extended Hubbard-like model in the
atomic limit, where it involves additional three-body and four-
body interactions. Therefore, the effective extended Hubbard
model becomes

H̃ i,i+1

= −μ̃nc
i + Ũnc

i,↑nc
i,↓ + Ṽ

(
nc

i,↑ + nc
i,↓

)(
nc

i+1,↑ + nc
i+1,↓

)
+W̃3nc

i,↑nc
i,↓

(
nc

i+1,↑ + nc
i+1,↓

)+W̃4nc
i,↑nc

i,↓nc
i+1,↑nc

i+1,↓,

(17)

where μ̃ could be interpreted as an effective chemical
potential. In a similar way, Ũ denotes the on-site Coulomb

FIG. 3. Electronic density per site for T/U = 0.01 and V/U =
0.1 as a function of t/U and μ/U . The black region corresponds to
empty particles while the white region corresponds to fully filled
electrons or empty holes. Different levels of gray represent the
intermediate electronic density.
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FIG. 4. (Color online) Electronic density as a function of chem-
ical potential for a fixed value of V/U = 0.1. (a) t/U = 0.5 and
(b) t/U = 2.0

repulsion coupling while Ṽ corresponds to the nearest-
neighbor repulsion coupling. The term W̃3 will be interpreted
as a three-body interaction term and W4 will be a four-body
coupling term. All of the above parameters could be obtained
as a function of the Hamiltonian (2) parameters when the
decoration transformation is performed

The Boltzmann factor for the effective Hubbard model in
the atomic limit becomes

w̃nc
i ,n

c
i+1

= Ae−β H̃ i,i+1 , (18)

where the factor A is an additional variable to be determined
in terms of the original Hamiltonian (2). With use of the dec-
oration transformation [43–45], we will impose the following
condition:

wnc
i ,n

c
i+1

= w̃nc
i ,n

c
i+1

. (19)

Using Eq. (19), we can find all the parameters of the effective
Hamiltonian (17) and the factor A.

FIG. 5. (Color online) Internal energy E (ρ) as a function of
electronic density ρ for a given value of V/U = 0.1. (a) t/U = 0.2
and (b) t/U = 0.5

To solve the effective Hubbard model with up to four-body
coupling, we can use the transfer-matrix method [49], which is
similar to that used in Refs. [24,50]. Therefore, we symmetrize
the Hamiltonian by exchanging i → i + 1 and i + 1 → i, thus
the transfer matrix becomes symmetric. For our case, this
transfer matrix can be expressed by

T =

⎡
⎢⎢⎢⎣

w0,0 w0,1 w0,1 w0,2

w0,1 w1,1 w1,1 w1,2

w0,1 w1,1 w1,1 w1,2

w0,2 w1,2 w1,2 w2,2

⎤
⎥⎥⎥⎦ , (20)

where the Boltzmann factor is given by Eq. (16), and we use a
convenient notation, such as

w0,0(x) = 1 + 2x

(
1 + x2

z4y2

) (
1

γ 2
+ γ 2

)

+ x2

(
3

z2
+ 1

y2
+ 1

yzς
+ ς

yz

)
+ x4

y4z8
, (21)
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with x = e2βμ, y = e
1
2 βU , z = e

1
2 βV , γ = e

1
2 βt , and ς =

e
1
2 β

√
(U−V )2+16t2

. The remaining Boltzmann factors could
be expressed easily through the function w0,0(x) defined in
Eq. (21) as follows:

wn1,n2 (x) = x(n1+n2)/2

y[n1/2]+[n2/2]
w0,0

(
x

zn1+n2

)
, (22)

where [· · ·] indicates the lowest integer of any real number.
Thereafter, all elements of matrix (20) are well expressed just
in terms of w0,0(x).

The Boltzmann factors for the effective Hubbard model
(18) with three- and four-body terms are given by

w̃0,0 = A,

w̃0,1 = Ar, r = eβμ̃/2,

w̃0,2 = Ars, s = e−βŨ/2,
(23)

w̃1,1 = Ar2t, t = e−βṼ ,

w̃1,2 = Ar3st2u, u = e−βW̃3/2,

w̃2,2 = Ar4s2t4u4v.

The determinant of the transfer matrix becomes a quartic
equation of the form det(T − �) = �4 + a3�

3 + a2�
2 +

a1�, where the coefficients become

a1 = − 2w0,0w1,1w2,2 + 2w2
0,2w1,1 + 2w2

0,1w2,2

+ 2w0,0w
2
1,2 − 4w0,2w0,1w1,2,

a2 = −2w2
0,1 + 2w0,0w1,1 + w0,0w2,2 (24)

+ 2w1,1w2,2 − w2
0,2 − 2w2

1,2,

a3 = −w0,0 − w2,2 − 2w1,1,

The coefficients can also be expressed using the effective
Hamiltonian parameters, thus the coefficients of the quartic
equation are given by

a1 = A(−2r6t5s2u4v + 2r6s2t + 2r6s2t4u4v

+ 2r6s2t4u2 − 4r6s2t2u),

a2 = A(−2r2 + 2r2t + r4s2t4u4v + 2r6t5s2u4v (25)

− r4s2 − 2r6s2t4u2),

a3 = −A(1 + r4s2t4u4v + 2r2t).

Therefore, the roots of the algebraic quartic equation may
be reduced to a cubic equation, the solutions of which are given
as follows:

�j = 2
√

Q cos

(
φ + 2πj

3

)
− 1

3
a3, j = 0,1,2, (26)

with

φ = arccos

(
R√
Q3

)
, Q = a2

3 − 3a2

9
,

(27)

R = 9a2a3 − 27a1 − 2a3
3

54
.

Furthermore, we also have an additional trivial solution �3 =
0 of the algebraic quartic equation.

FIG. 6. (Color online) The compressibility κ(ρ) as a function of
electronic density ρ for a fixed value of V/U = 0.1. (a) t/U = 0.2
and (b) t/U = 0.5.

Hence, the largest eigenvalue of the transfer matrix will
be �0, which is expressed by Eq. (26). Once the largest
eigenvalue of the transfer matrix is known, we are able to
obtain the partition function straightforwardly, and thereafter
the free energy is given by f = − 1

β
ln(�0). Using the free

energy per unit cell, we may obtain the thermodynamic
properties and how the model behaves when the number
particles are changing away from the half-filled band.

V. THERMODYNAMIC PROPERTIES

In order to study the thermodynamic properties, we will
use the exact free energy f = − 1

β
ln(�0) as a starting point.

Therefore, we will proceed to discuss the thermodynamic
properties as a function of temperature, chemical potential, and
electronic density. To make our discussion more realistic, we
will assume that we are considering only the repulsive on-site
Coulomb interaction (U > 0) and the repulsive Coulomb
interaction between nearest neighbors (V > 0).
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FIG. 7. Entropy as a function of t/U and μ/U for a fixed
value of U/V = 0.1. The black region corresponds to nonfrustrated
entropy while the white region corresponds to the higher residual
entropy effect. Gray areas correspond to the intermediate residual
entropy effect.

A. The electronic density

We will explore the electronic density ρ = − ∂f

∂μ
as a

function of chemical potential as well as the hopping term.
In Fig. 3, we plot the chemical potential μ/U versus t/U

for a fixed value of temperature T/U = 0.01 and nearest-
neighbor coupling V/U = 0.1. Gray scale indicates electronic
density between 0 < ρ < 2. The darkest region corresponds
to the lowest electronic density while the brightest region
corresponds to fully filled electrons.

In Fig. 4(a), we plot the electronic density as a function
of chemical potential at low temperature for a fixed value of
the hopping term t/U = 0.5 and V/U = 0.1. Six plateaus
are visible at ρ = 0, 1/3, 2/3, 1, 4/3, 5/3, and 2, and this
phenomenon vanishes as soon as the temperature increases. In
Fig. 4(b), we plot the same quantity but for a large hopping term
t/U = 2 and V/U = 0.1. In this case, the plateaus correspond
to electronic densities ρ = 1/3, 2/3, 4/3, and 5/3, which turn
away from the half-filled band ρ = 1. Moreover, the plateaus

FIG. 8. (Color online) Entropy S against μ at low temperature
assuming a fixed value of V/U = 0.25. (a) t/U = 0.2 and (b) t/U =
0.5.

for densities 2/3 and 4/3 become larger, as we can see in
Fig. 4, which is also in agreement with Fig. 3.

B. The internal energy

The internal energy E = − ∂ ln(�0)
∂β

for the extended Hubbard
model will be discussed as a function of electronic density.
In Fig. 5(a), the internal energy is plotted for a small hopping
term t/U = 0.2 and V/U = 0.1. This internal energy exhibits
a gap energy (steplike function) at zero temperature when the
electronic density changes, but when temperature increases the
steplike function becomes smoother. In Fig. 5(b), the internal
energy is plotted for a hopping term t/U = 0.5 and V/U =
0.1, and the shape of the curves is basically similar to that at
t/U = 0.2. In summary, Fig. 5 displays the electronic density
dependence as well as the temperature dependence. We can see
that the larger the electronic density is, the lower the energy
becomes, although for low density around ρ = 0.5 there is a
maximum of internal energy. We also notice for several fixed
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FIG. 9. (Color online) Entropy against electronic density as-
suming fixed Coulomb coupling V/U = 0.1. (a) t/U = 0.2 and
(b) t/U = 0.5.

values of temperature that the plot for the internal energy
becomes smooth for sufficiently high temperature.

C. Compressibility

Another interesting amount that we could discuss is the
compressibility defined by κ(ρ) ≡ ∂ρ

∂μ
. This value makes it

more convenient to study electron particles, rather than the
compressibility sometimes known as total compressibility
[49], κT = − 1

ρ2
∂2f

∂μ2 = κ
ρ2 . Therefore, compressibility will be

discussed as a function of Hamiltonian parameters, tem-
perature, and electronic density. In Fig. 6, we display the
compressibility behavior as a function of the electronic density
on the diamond chain for a fixed value of V/U = 0.1. In
Fig. 6(a), we fixed the hopping term at t/U = 0.2. This is
roughly below the phase transition that occurs at t/U = 0.3,
where we display how the compressibility behaves at low
temperature. The compressibility becomes minimum (harder)
close to the fractional electronic densities 0, 1/3, 2/3, 1, 4/3,
5/3, and 2. In contrast, there are six local maxima (softer)

FIG. 10. (Color online) The specific heat vs the chemical
potential for low temperature for a fixed value of V/U = 0.25.
(a) t/U = 0.2 and (b) t/U = 0.5.

between fractional densities 1/3, 2/3, 1, 4/3, 5/3, and 2 for
temperature lower than T/U � 0.05. For 0.05 � T/U � 0.5,
there is just one minimum at ρ = 1 in addition to the minima at
ρ = 0 and 2. Furthermore, for higher temperature T/U � 0.5,
the compressibility exhibits just one maximum at electronic
density ρ = 1. Figure 6(b) is illustrated for t/U = 0.5, roughly
above the phase transition. In principle, the behavior is quite
similar to that shown in Fig. 6(a), i.e., a low compressibility
survives for higher temperature t/U = 0.1 at the half-filled
band ρ = 1. However, when the temperature is sufficiently
high (0.3 � T/U � 0.5), there is only one minimum at ρ = 1
in addition to empty (full) electrons (holes), whereas for
T/U � 0.5, just a simple maximum is shown at ρ = 1.

D. The entropy

We will study another interesting quantity, namely the
entropy S = − ∂f

∂T
, and how it behaves when the Hamiltonian

parameters, the temperature, or even the electronic density
change. In Fig. 7, we illustrate the magnitude of entropy
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FIG. 11. (Color online) The specific heat vs temperature for a
given value of V/U = 0.25 and different values of chemical potential.
(a) t/U = 0.2 and (b) t/U = 0.5.

as a function of t/U and μ/U , assuming a fixed value
of V/U = 0.1. Different levels of gray scale represent the
magnitude of entropy; the darkest region corresponds to the
lowest entropy while the brightest region corresponds to higher
entropy. At low temperature, the large value of entropy is
related to the influence of the residual entropy. When the
temperature increases, the entropy curves become softer, as
displayed in Fig. 7(a) for T/U = 0.01 and in Fig. 7(b) for
T/U = 0.05.

In Fig. 8, we display the entropy S(μ) as a function of
chemical potential, assuming a fixed value of V/U = 0.25,
where we are able to illustrate the residual entropy effect in
agreement with Fig. 7. The entropy indicates several peaks
via the chemical potential. Figure 8(a) is plotted for t/U =
0.2, where the influence of two types of residual entropy is
shown around of S = ln(2) and ln(3). Figure 8(b) is plotted
for t/U = 0.5. In this case, we only display the influence of the
residual entropy ofS = ln(2). It is clear that as the temperature
increases we have an increase of entropy as well, however for
large |μ| the entropy is smaller than for small μ ≈ 1.

In Fig. 9, we display the entropy as a function of electronic
density assuming a given parameter V/U = 0.1 for a fixed
value of parameter V/U = 0.1. For high temperature T � 2,

the entropy reaches its highest point at ρ = 1. We can see
that the residual entropy is strongly related to the electronic
density. We also indicate that there is no residual entropy for a
fully electronic density, therefore the entropy becomes lower
even for high temperature.

For electronic density ρ = 1/3 and 2/3, the residual
entropy is S = ln(2), while for ρ = 4/3 and 5/3, larger
residual entropy is displayed, S = ln(4).

E. The specific heat

Finally, we will discuss the behavior of the specific heat,
C = −T

∂2f

∂T 2 , for the extended Hubbard model in the quasi-
atomic limit. Thus, let us start by displaying the specific heat as
a function of chemical potential, which is illustrated in Fig. 10
for a fixed value of V/U = 0.25. In the low-temperature limit,
we can see the effect of the phase transition at zero temperature
with very sharp peaks when the temperature decreases. In
particular, in Fig. 10(a) we display the specific heat as a
function of μ/U for t/U = 0.2, while in Fig. 10(b) we show
the specific heat as a function of μ/U for t/U = 0.5.

Lastly, in Fig. 11 we display the specific heat as a function
of temperature assuming the nearest-neighbor Coulomb inter-
action V/U = 0.25. Figure 11(a) is plotted for t/U = 0.2,
while in Fig. 11(b) we assume t/U = 0.5. We can see very
sharp peaks as the temperature decreases. These anomalous
peaks appear due to low-lying energy around the first-order
phase transition at zero temperature.

VI. CONCLUSIONS

The proposed Hubbard model on a diamond chain was
discussed at zero temperature as well as at finite temperature.
The phase diagram at zero temperature displays four frustrated
states and five nonfrustrated states that are ordered antiferro-
magnetically. With regard to finite-temperature properties, this
model can be solved exactly through decoration transformation
[43–45,47]. The transfer-matrix technique [49] enables us to
map the proposed model onto an exact Hubbard model in the
atomic limit with three- and four-body couplings. Therefore,
detailed thermodynamic properties were discussed, including
the density as a function of chemical potential, illustrating six
plateaus. Internal energy was also considered as a function of
electronic density far away from the half-filled band for several
fixed temperatures. We also studied compressibility. Once
again, we illustrated this amount as a function of electronic
density, and so we can conclude that the diamond chain is
more compressible at low temperature when the electronic
density is between 1/3, 2/3, 1, 4/3, and 5/3, respectively.
As soon as the temperature increases, the compressibility
decreases, becoming a simple decreasing curve as a function of
density. We also considered the entropy as another interesting
amount. This amount was studied as a function of chemical
potential as well as electronic density, where we clearly
observed the residual entropy contribution due to geometrical
frustration. Finally, we discussed the specific heat as a function
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of chemical potential and temperature. In the near future,
we plan to study the Coulomb interaction between the nodal
(monomer-monomer) sites and a different type of interaction
between the nodal-interstitial (dimer-monomer) sites, both
positive and negative, at the quantum level. This explains the
wide range of experiments on the diamond chain.
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