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A principle of hierarchical entropy maximization is proposed for generalized superstatistical systems, which
are characterized by the existence of three levels of dynamics. If a generalized superstatistical system comprises
a set of superstatistical subsystems, each made up of a set of cells, then the Boltzmann-Gibbs-Shannon entropy
should be maximized first for each cell, second for each subsystem, and finally for the whole system. Hierarchical
entropy maximization naturally reflects the sufficient time-scale separation between different dynamical levels and
allows one to find the distribution of both the intensive parameter and the control parameter for the corresponding
superstatistics. The hierarchical maximum entropy principle is applied to fluctuations of the photon Bose-Einstein
condensate in a dye microcavity. This principle provides an alternative to the master equation approach recently
applied to this problem. The possibility of constructing generalized superstatistics based on a statistics different
from the Boltzmann-Gibbs statistics is pointed out.
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I. INTRODUCTION

Superstatistics represents a statistics of canonical statistics
and allows one to consider stationary states of nonequilibrium
systems with fluctuations of an intensive parameter β [1].
Though usually considered as an inverse temperature, β can
be interpreted in a more general way [2,3]. A superstatistical
system comprises a set of subsystems, or cells, each having
the Gibbs canonical distribution determined by β. An essential
feature of the superstatistical system is sufficient spatiotempo-
ral scale separation, so that β fluctuates on a much larger time
scale than the typical relaxation time of the local dynamics
in a cell. Superstatistics can be given a basis by the theory of
hyperensembles [4,5].

The distribution of β can be considered as a function
of some additional control parameters [6]. However, in
ordinary superstatistics, the intensive parameter fluctuates,
but the control parameters are constant. Considering the
control parameter fluctuations has led very recently to the
generalization of superstatistics—“statistics of superstatis-
tics,” or “generalized superstatistics” [7]. Generalized su-
perstatistics is the statistics of generalized superstatistical
systems. A generalized superstatistical system comprises a
set of nonequilibrium superstatistical subsystems and can be
associated with a generalized hyperensemble, an ensemble of
hyperensembles. Compared with an ordinary superstatistical
system, a generalized superstatistical system is characterized
by the existence of the third, upper level of dynamics in
addition to the two levels of dynamics existing in each
superstatistical subsystem. This is reflected in the existence
of a fluctuating vector control parameter on which both the
intensive parameter distribution and the density of energy
states depend. Significantly, generalized superstatistics can be
used for nonstationary nonequilibrium systems. It was applied
to branching processes and pair production in a neutron star
magnetosphere [7].
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The main problem of generalized superstatistics is the
determination of the intensive parameter distribution, charac-
terizing the superstatistical dynamics in each subsystem, and
the control parameter distribution, characterizing the dynamics
of the system as a whole. The aim of this paper is to develop
the maximum entropy principle that can be used to solve the
above problem.

The paper is organized as follows: In Sec. II the hierarchical
maximum entropy principle for generalized superstatistical
systems is formulated and the canonical, intensive parameter,
and control parameter distributions are consecutively deter-
mined. In Sec. III this principle is applied to Bose-Einstein
condensation of light and fluctuations of the number of
ground-mode photons are considered. In Sec. IV the main
conclusions are given.

II. HIERARCHICAL MAXIMUM ENTROPY

A generalized superstatistical system is conveniently
thought of as a set of superstatistical subsystems, each in turn
made up of a set of cells. There are three levels of dynamics
in this system: the first, lower level of fast dynamics in a
cell, the second, middle level of superstatistical dynamics in
a subsystem, and the third, upper level of global dynamics
in the whole system. The levels are arranged in increasing
order of dynamical time scale so that the shortest time scale
corresponds to the lower level. The local dynamics in a cell is
characterized by an energy E, the superstatistical dynamics in
a subsystem is characterized by an intensive parameter β, and
the global dynamics in the whole system is characterized by a
control parameter ξ , which may be a multidimensional vector.

The system hierarchy is formed as a result of the sufficient
time-scale separation between different levels of dynamics.
This allows us to formulate the maximum entropy principle
for the generalized superstatistical system as a principle
of hierarchical entropy maximization. More specifically, the
entropy should be maximized first for each cell, second for
each subsystem, and finally for the whole system.
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A. Local dynamics

Though the existence of the Gibbs canonical distribution
at the lower dynamical level is postulated in superstatistics,
it is reasonable to explicitly obtain this distribution from the
maximum entropy principle. This trivial derivation will allow
us to readily observe an analogy between the dynamics at
different hierarchical levels of a generalized superstatistical
system.

Choose a superstatistical subsystem of the generalized
superstatistical system. A fixed value of the control parameter
ξ corresponds to this subsystem, but the intensive parameter
β may still fluctuate. Choosing the subsystem also fixes the
density of energy states:

g(E|ξ ) = ∂�(E|ξ )

∂E
, (1)

where �(E|ξ ) is the number of states with energy less than
E. In integrals with d�(E|ξ ), integration over E will be
performed, d�(E|ξ ) = g(E|ξ )dE.

To consider the local dynamics, choose a cell of the
subsystem. Then β also becomes fixed, but the energy E is
not fixed and is characterized by a probability distribution
ρ(E|β,ξ ). To find the distribution maximizing the Boltzmann-
Gibbs-Shannon entropy

S[E](β|ξ ) = −
∫

ρ(E|β,ξ ) ln ρ(E|β,ξ )d�(E|ξ )

under the normalization condition N [E](β|ξ ) = 1 and the
mean energy constraint U [E](β|ξ ) = U (β|ξ ), where

N [E](β|ξ ) =
∫

ρ(E|β,ξ )d�(E|ξ ),

U [E](β|ξ ) =
∫

Eρ(E|β,ξ )d�(E|ξ ),

we should consider the condition of zero variation, δL1 = 0,
for the Lagrange function

L1(ν1,β,ξ )=S[E](β|ξ )−(ν1−1)N [E](β|ξ )−βU [E](β|ξ ).

Then we arrive at the Gibbs canonical distribution

ρG(E|β,ξ ) = e−βE

Z(β|ξ )
,

where

Z(β|ξ ) =
∫

e−βEd�(E|ξ ) (2)

is the partition function. The entropy is

S[E](β|ξ ) = ν1(β|ξ ) + βU (β|ξ ), (3)

where the mean energy

U (β|ξ ) = −∂ν1(β|ξ )

∂β
(4)

is expressed via the Massieu function

ν1(β|ξ ) = ln Z(β|ξ ). (5)

B. Superstatistical dynamics

Now consider the superstatistical dynamics of the chosen
subsystem. This dynamics is characterized by the fluctuating
intensive parameter β that determines the properties of cells
of the subsystem. To find the intensive parameter distribution
f (β|ξ ), we should maximize the entropy of the joint proba-
bility distribution of E and β, given ξ . It is written as [5,8]

S[E,β](ξ ) = S[β](ξ ) +
∫

S[E](β|ξ )f (β|ξ )dβ, (6)

where

S[β](ξ ) = −
∫

f (β|ξ ) ln f (β|ξ )dβ (7)

is the entropy associated with f (β|ξ ), and S[E](β|ξ ) is
given by Eq. (3). The normalization condition for f (β|ξ ) is
N [β](ξ ) = 1, where

N [β](ξ ) =
∫

f (β|ξ )dβ.

In addition, we may impose a set of n constraints given by an
n-dimensional vector equality

M[β](ξ ) = M(ξ ), (8)

where

M[β](ξ ) =
∫

m(β|ξ )f (β|ξ )dβ, (9)

and m(β|ξ ) = [m1(β|ξ ), . . . , mn(β|ξ )] and M(ξ ) =
[M1(ξ ), . . . ,Mn(ξ )] are n-dimensional vectors specifying,
respectively, the form and values of the constraints. Each
Mi(ξ ) is the mean of mi(β|ξ ) over the fluctuating β, given
ξ . We consider M[β](ξ ) as some general constraint vector,
but it may be composed of the constraints used in ordinary
superstatistics, e.g., the mean values of energy, entropy, square
of entropy, energy divided by temperature, or logarithm of the
partition function [4,6,9,10].

Also define an n-dimensional vector Lagrange multiplier
μ = (μ1, . . . ,μn), where each μi is the Lagrange multiplier
corresponding to the constraint Mi[β](ξ ) = Mi(ξ ). We then
have the following Lagrange function:

L2(ν2,μ,ξ ) = S[E,β](ξ ) − (ν2 − 1)N [β](ξ ) − μ · M[β](ξ ).

By a · b = ∑
aibi , we denote the scalar product of some

vectors a and b. The condition δL2 = 0 yields the intensive
parameter distribution

f̃ (β|μ,ξ ) = Z(β|ξ )

Ỹ (μ,ξ )
exp[−μ · m(β|ξ ) + βU (β|ξ )], (10)

where the partition function

Ỹ (μ,ξ ) =
∫

Z(β|ξ ) exp[−μ · m(β|ξ ) + βU (β|ξ )]dβ (11)

is determined from the normalization condition for f̃ (β|μ,ξ ).
Note that f̃ (β|μ,ξ ) and Ỹ (μ,ξ ) still depend on the

Lagrange multiplier μ. The implicit dependence of μ on the
control parameter ξ ,

μ = μ(ξ ), (12)
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is determined from

M(ξ ) = −∂ν̃2(μ,ξ )

∂μ
, (13)

where

ν̃2(μ,ξ ) = ln Ỹ (μ,ξ ) (14)

is the Massieu function, and ∂/∂μ = (∂/∂μ1, . . . ,∂/∂μn) is
the n-dimensional gradient operator. Equations (13) and (14)
are analogous to Eqs. (4) and (5), respectively. Thus, given
the constraints (8), the intensive parameter distribution (10),
partition function (11), and Massieu function (14) depend only
on β and ξ :

f (β|ξ ) = f̃ (β|μ(ξ ),ξ ), (15)

Y (ξ ) = Ỹ (μ(ξ ),ξ ), ν2(ξ ) = ν̃2(μ(ξ ),ξ ). (16)

We may either first set the constraint vector M(ξ ) and then
find μ(ξ ) from the maximum entropy principle, or vice versa.
This is in full analogy with the case of the dynamics in a cell,
when we may first set the mean energy U (β) and then find the
corresponding intensive parameter β, or set β and then find
U (β), which is more common. Incidentally, this duality allows
one to alternatively formulate superstatistics by introducing the
fluctuations of U (β) instead of those of β [11]. Note that the
control parameter ξ has a more general nature than β, since β is
exactly a Lagrange multiplier, while ξ , though controlling the
Lagrange multiplier μ, may not coincide with μ. The analogy
between β and ξ will be complete if we choose μ(ξ ) = ξ .

It follows from Eqs. (3), (5)–(10), (12), and (14)–(16) that
the entropy associated with the superstatistical subsystem is

S[E,β](ξ ) = ν2(ξ ) + μ(ξ ) · M(ξ ). (17)

It is analogous to Eq. (3).
Thus, the intensive parameter distribution for the supersta-

tistical subsystem is given by Eq. (15). The superstatistical
distribution

ρ(E|ξ ) =
∫

ρG(E|β,ξ )f (β|ξ )dβ

has the form

ρ(E|ξ )= 1

Y (ξ )

∫
exp{−β[E − U (β|ξ )] − μ(ξ ) · m(β|ξ )}dβ,

(18)

with the normalization condition
∫

ρ(E|ξ )d�(E|ξ ) = 1.
Ordinary superstatistics is a special case of generalized

superstatistics: an ordinary superstatistical system is a general-
ized superstatistical system without fluctuations of the control
parameter ξ . Therefore, we can easily obtain the intensive
parameter distribution f = f (β|μ) for this system by formally
removing ξ from Eq. (10) and from subsidiary Eqs. (1), (2),
(4), (5), (8), (9), (11), (13), and (14). It is consistent with the
distributions obtained earlier [6,8,10].

C. Global dynamics

Consider the third level of dynamics. We should find
the probability distribution c(ξ ) of the fluctuating control

parameter ξ . This distribution is normalized, N [ξ ] = 1, where

N [ξ ] =
∫

c(ξ )dξ.

The entropy of the joint probability distribution of E, β, and
ξ is determined by analogy with the entropy associated with a
superstatistical subsystem [cf. Eq. (6)]:

S[E,β,ξ ] = S[ξ ] +
∫

S[E,β](ξ )c(ξ )dξ, (19)

where

S[ξ ] = −
∫

c(ξ ) ln c(ξ )dξ (20)

is the entropy associated with the control parameter distribu-
tion c(ξ ), and S[E,β](ξ ) is given by Eq. (17). We may impose
a set of m additional constraints by analogy with Eqs. (8)
and (9):

K[ξ ] = K, (21)

where

K[ξ ] =
∫

k(ξ )c(ξ )dξ,

and k(ξ ) = [k1(ξ ), . . . ,km(ξ )] and K = (K1, . . . ,Km) are m-
dimensional vectors specifying, respectively, the form and
values of the constraints. Each Ki is the mean of ki(ξ ) over the
fluctuating ξ .

The Lagrange function is

L3(ν3,κ) = S[E,β,ξ ] − (ν3 − 1)N [ξ ] − κ · K[ξ ],

where we have defined an m-dimensional vector Lagrange
multiplier κ = (κ1, . . . ,κm), where each κi is the Lagrange
multiplier corresponding to the constraint Ki[ξ ] = Ki . The
condition δL3 = 0 yields the control parameter distribution

c(ξ,κ) = Y (ξ )

X(κ)
exp[−κ · k(ξ ) + μ(ξ ) · M(ξ )], (22)

where the partition function is

X(κ) =
∫

Y (ξ ) exp[−κ · k(ξ ) + μ(ξ ) · M(ξ )]dξ,

and Y (ξ ) is defined by Eq. (16). By analogy with Eq. (13), we
can rewrite the constraints (21) as follows:

K = −∂ν3(κ)

∂κ
, (23)

where

ν3(κ) = ln X(κ)

is the Massieu function, and ∂/∂κ = (∂/∂κ1, . . . ,∂/∂κm) is the
m-dimensional gradient operator. It remains to find the entropy
(19) at the maximum point [cf. Eqs. (3) and (17)]:

S[E,β,ξ ] = ν3(κ) + κ · K.

Thus, the intensive parameter distribution c(ξ ) ≡ c(ξ,κ) is
given by Eq. (22), with the Lagrange multiplier κ determined
from Eq. (23). By Eqs. (18) and (22), we get that the
generalized superstatistical distribution

σ (E) =
∫

ρ(E|ξ )g(E|ξ )c(ξ )dξ
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has the form

σ (E) = 1

X(κ)

∫
exp{−β[E − U (β|ξ )]

−μ(ξ ) · [m(β|ξ ) − M(ξ )] − κ · k(ξ )}g(E|ξ )dβdξ,

with the normalization condition
∫

σ (E)dE = 1.

III. BOSE-EINSTEIN CONDENSATION OF LIGHT

Recently, thermalization of light in a dye microcavity has
been observed [12]. In this experiment, photons are confined
in a curved-mirror optical microresonator filled with a dye
solution. In the microresonator, absorption and reemission
of photons by dye molecules results in thermalization of the
photon gas. Since the free spectral range of the microresonator
is comparable to the spectral width of the dye, the emission
of photons with a fixed longitudinal number dominates.
Therefore, the photon gas is effectively two dimensional, and
thermalization of transverse photon states occurs. Moreover,
Bose-Einstein condensation (BEC) of light has been exper-
imentally observed in the described system [13,14]. This
reflects the fact that a two-dimensional harmonically trapped
ideal gas of massive bosons can undergo BEC [15–19]. In the
case of the light BEC, the curvature of the mirrors provides
a nonvanishing effective photon mass and at the same time
induces a harmonic trapping potential for photons.

The problem of thermalization and fluctuations of the
photon Bose-Einstein condensate has been considered very
recently in Ref. [20]. The condensate exchanges excitations
with a reservoir consisting of M dye molecules. The authors
assume that the ground-state photon mode is coupled to the
electronic transitions of a given number of dye molecules. This
means that the sum X of the number of ground-mode photons,
n, and that of excited dye molecules, X − n, is constant.
To analyze this system, the authors use the master equation
approach.

Note that if we are interested in the behavior of the
fluctuating photon BEC after thermalization has occurred, we
can obtain the corresponding probability distribution merely
using the thermodynamic consideration. The population of
the electronic states of dye molecules is quickly thermalized,
with the characteristic time ∼1 ps at room temperature (see
Refs. [21–25] for details). Since the typical fluorescence
lifetime is ∼1–10 ns, the emission of photons occurs from
thermally equilibrated excited states. This apparent time-scale
separation allows us to consider the above system as a
generalized superstatistical system. Therefore, we can find
the limiting probability distribution of the number of ground-
mode photons by directly applying the hierarchical maximum
entropy principle to this system.

For simplicity, consider the case of the ground-mode
coupling and neglect the twofold polarization degeneracy by
analogy with Ref. [20]. The whole system is then composed
of two subsystems: the subsystem of the dye solution and the
subsystem of the photon BEC. The control parameter char-
acterizing the interaction of the subsystems is the fluctuating
number of ground-mode photons, n. The subsystem of the
dye solution in turn consists of M dye molecules, among
which there are X − n excited molecules and M − X + n

ground-state molecules. Obviously, 0 � n � X � M . Each

molecule is in contact with a solvent, which plays the role
of thermostat. In this sense, dye molecules resemble cells,
but the inverse temperature β does not fluctuate. For f (β),
this formally corresponds to the conditions of normalization,
a given mean, and zero variance. In what follows, we will not
explicitly indicate the dependence of functions on β.

Let D0(ε0) and D1(ε1) be the density of rovibrational states
for the ground, S0, and first excited, S1, singlet electronic state,
respectively. Note that εi = E − Ei , where Ei is the lowest-
energy substate of Si , where i = 0,1. Hence, Di(ε) = 0 for
any ε < 0. The partition functions Z0 and Z1 corresponding,
respectively, to the ground-state and excited dye molecules are

Zi = e−βEi wi, (24)

where

wi =
∫ ∞

0
e−βεDi(ε)dε, i = 0,1.

It follows from Eqs. (3)–(5) and (24) that the entropy for a
ground-state molecule, s0, and for an excited molecule, s1, is

si = ln wi + β(ui − Ei),

where

ui = Ei − 1

wi

dwi

dβ
(25)

is the corresponding mean energy.
Now consider the subsystem of all dye molecules. After

enumerating them and denoting a ground-state molecule by
0 and an excited molecule by 1, we can write an M-digit
binary number η = (η1η2 . . . ηM ) with M − X + n zeros and
X − n unities such that the state of the kth dye molecule is
given by the kth digit ηk . For any given η, the entropy of the
corresponding combination of dye molecules is

sη|n = (M − X + n)s0 + (X − n)s1.

The probability that η takes on a fixed value is

pη|n =
(

M

X − n

)−1

= (X − n)!(M − X + n)!

M!
.

The entropy sd
n of the subsystem of dye molecules is calculated

using the discrete analogs of Eqs. (6) and (7), with S[E](β|ξ )
and f (β|ξ ) replaced by sη|n and pη|n, respectively:

sd
n = sη|n + ln

(
M

X − n

)
.

The mean energy of the subsystem is

ud
n = (M − X + n)u0 + (X − n)u1,

where u0 and u1 are defined by Eq. (25).
The entropy of the photon BEC is zero, s

ph
n = 0, since the

absence of the polarization degeneracy is assumed. The total
energy of the condensate is

uph
n = nh̄ω,

where h̄ω is the energy of a ground-mode photon.
Finally, consider the system as a whole. The control

parameter n corresponding to the number of ground-mode
photons is characterized by a normalized discrete probability
distribution (π0, . . . ,πX), where πn is the probability of n
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photons. For a fixed n, the energy and entropy of the system
are given by Un = ud

n + u
ph
n and Sn = sd

n + s
ph
n , respectively.

Maximizing the entropy [see Eqs. (19) and (20)]

S = −
X∑

n=0

πn ln πn +
X∑

n=0

πnSn

under the normalization condition
X∑

n=0

πn = 1 (26)

and the mean energy constraint
∑

πnUn = U yields

πn = 1

Z

(
M

X − n

)
wM−X+n

0 wX−n
1

× exp{−β[(M − X + n)E0 + (X − n)E1 + nh̄ω]},
(27)

where Z is determined from Eq. (26). Dividing Eq. (27) by
π0 and writing h̄ω0 = E1 − E0, we obtain the probability
distribution of the number of ground-mode photons in the
form

πn

π0
= X!(M − X)!

(X − n)!(M − X + n)!

(
w0

w1

)n

e−βnh̄(ω−ω0). (28)

This equation allows us to find π0 = (
∑

πn/π0)−1 and then
calculate πn for all positive n � X.

Thus, the long-run behavior of the photon BEC, when
the probability distribution (π0, . . . ,πX) becomes stationary,
can be investigated using the hierarchical maximum entropy
principle. The link with the result of the master equation
approach can be readily observed via the Kennard-Stepanov
law [20,26–30],

B10(ω)

B01(ω)
= w0

w1
e−βh̄(ω−ω0), (29)

which relates the Einstein coefficients for stimulated emission,
B10(ω), and absorption, B01(ω). Equation (29) allows us to
rewrite Eq. (28) as

πn

π0
= X!(M − X)!

(X − n)!(M − X + n)!

[
B10(ω)

B01(ω)

]n

,

which is identical to Eq. (10) of Ref. [20].

It seems interesting to use the described approach
for studying the photon BEC fluctuations in more de-
tail, e.g., for considering a more realistic situation of the
polarization degeneracy and additional fluctuations of M

and X.

IV. CONCLUSION

I have formulated the hierarchical maximum entropy prin-
ciple for generalized superstatistical systems. Such systems
comprise a set of nonequilibrium superstatistical subsystems,
where each subsystem is made up of many cells, and are
characterized by the three-level dynamical hierarchy formed as
a result of the sufficient time-scale separation between different
dynamical levels. By arranging these levels in increasing order
of dynamical time scale and consecutively maximizing the
entropy at each level, I have obtained first the Gibbs canonical
distribution for each cell, second the intensive parameter dis-
tribution for each subsystem, and finally the control parameter
distribution for the whole system. From these distributions,
I have also found the superstatistical distribution for each
subsystem and the generalized superstatistical distribution for
the whole system.

I have applied this principle to Bose-Einstein condensation
of light in a dye microcavity. Assuming the ground-mode
coupling and neglecting the polarization degeneracy, I have
obtained the long-run probability distribution of the fluctu-
ating number of ground-mode photons. This distribution is
consistent with the analogous result of the master equation
approach.

Note that when the hierarchical maximum entropy principle
is applied to a generalized superstatistical system, certain
constraints should be imposed on a normalized distribution to
obtain the canonical distribution at the lower dynamical level.
However, the constraints imposed on the intensive and control
parameter distributions may be quite general. I propose erasing
such a distinction, viz., choosing some general constraints
at the lower dynamical level and additionally considering a
vector intensive parameter. This will result in the generalized
superstatistics the local dynamics of which is described by
a more general statistics than the usual Boltzmann-Gibbs
statistics. Grand canonical statistics may be the simplest
alternative.
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