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Cuprates show multiphase and multiscale complexity that has hindered physicists search for the mechanism of
high Tc for many years. Recently the interest has been addressed to a possible optimum inhomogeneity of dopants,
defects, and interstitials, and the structural scale invariance of dopants detected by scanning micro-x-ray diffraction
has been reported to promote the critical temperature. In order to shed light on critical phenomena on granular
materials, here we propose a stylized model capturing the essential characteristics of the superconducting-insulator
transition of a highly dynamical, heterogeneous granular material: the random transverse Ising model (RTIM)
on annealed complex network. We show that when the networks encode for high heterogeneity of the expected
degrees described by a power-law distribution, the critical temperature for the onset of the superconducting
phase diverges to infinity as the power-law exponent γ of the expected degree distribution is less than 3, i.e.,
γ < 3. Moreover we investigate the case in which the critical state of the electronic background is triggered
by an external parameter g that determines an exponential cutoff in the power-law expected degree distribution
characterized by an exponent γ . We find that for g = gc the critical temperature for the superconducting-insulator
transition has a maximum if γ > 3 and diverges if γ < 3.
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I. INTRODUCTION

Large attention has been recently addressed to the effects
that different topological properties may induce on the be-
havior of equilibrium and nonequilibrium processes defined
on networks [1,2]. Heterogeneous degree distributions, small
world, and spectral properties, in particular, have been recog-
nized as responsible of novel types of phase transitions and
universality classes in classical processes [1–5]. For instance,
scale-free networks present a complex critical behavior of the
Ising model, of percolation, and of spreading processes, that
explicitly depends on the exponent of the power law in the
degree distributions [1–3]. On the other hand, the existence
of nontrivial spectral properties is crucial for the stability of
synchronization processes and O(n) models [4]. Nevertheless
there are no available results for quantum critical phenomena
[6] defined on complex networks.

The aim of this paper is to investigate the role topological
aspect of the network on the random transverse Ising model.
In the last years there has been increasing interest in the
understanding of the random transverse Ising model [7–10].
This model that includes the disorder of on-site energies has
been used to characterize the insulator-superconducting phase
transition in granular disordered superconductors [8,9]. In
each grain of granular materials the superconducting order
parameter is well defined and the grains are coupled to each
other by the pair transfer term, so the physics is similar
to the superconductivity in Josephson junction arrays [11].
The new results on a quenched Cayley tree have found the
complex phase diagram of the model by the use the quantum
cavity method [8–10]. The solution of the model is able to
reproduce correctly the most important experimental features
on disordered granular films: direct superconductor-insulator
transition, activated behavior close to the quantum critical
point [12] in the insulating phase, strong dependence of the
activation energy near the quantum critical point, and the order
parameter of the superconducting phase variations from site to
site [13].

The cuprate superconductors that keep the record of the
highest critical temperature (160 K) of the phase diagram
for all cuprate perovskite families [14] show a myriad
of mysterious “quantum matter” phenomena making these
systems among the most intriguing puzzles in modern physics.
In these doped Mott insulators the electrons form a poorly
understood, highly collective quantum state. The strange
electron matter of the cuprates strongly diverges from the
standard weakly interacting quantum gas of conventional
metals and superconductors. Here the electron matter is in
a “quantum-critical state,” where the electrons form collective
patterns that look the same regardless of scale. This scale free
topology is present both in space and in time scales, because the
electrons are in a state of perpetual quantum motion [6,15,16].
A key particular feature of the anomalous electronic matter
of cuprates is the heterogeneity of the interactions in different
spots of the k space, going from weakly interacting electrons
the so called “nodal points” to strongly interacting electrons at
the “antinodal points” [17]. These materials show multiphase
complexity (structural, magnetic, and electronic) that has
hindered physicists’ search for the mechanism of high Tc for
many years since the observed phenomenology depends on the
time and spatial sensitivity of the experimental probes. The
heterogeneity of cuprate superconductors has been proposed
to be an essential feature of high Tc mechanism [18,19] and
it has been proposed that above Tc the electronic structure in
the normal state is made of incoherent superconducting grains
[18,20,21]. In fact cuprates show a similar phenomenology
for the essential features of superconductivity in disordered
systems: (i) the spot to spot spatial variation of the super-
conducting gap in cuprates detected by scanning tunneling
microscope (STM) recording the static picture of states pinned
at the dopant sites at the sample surface [22], and (ii) the recent
characterization of the superconductor-insulator transition by
increasing continuously the charge density by gate voltage
when the normal state resistance decreases below the value of
the quantum resistance for pairs RQ = 6.5k� [23].
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The focus is recently addressed on controlling oxygen de-
fects, both interstitials and vacancies, to provide many avenues
to control superconducting functionalities [24]. In fact it has
been shown recently that oxygen defects in heterostructures
control other electronic states, including magnetism and ferro-
electricity [25], a two-dimensional electron gas with universal
sub-bands can arise from the oxygen vacancies confined in
a surface layer at atomic limit in a cleaved SrTiO3 crystals
[26–28], and it could show superconductivity [29]. It has bee
proposed that the defects clustering in cuprates might provide
a form of optimal inhomogeneity for superconductivity [30].
A fingerprint of structural scale invariance of dopants has
been reported recently by Fratini et al. [31] by detecting
the structural scale invariance of dopants using scanning
micro-x-ray diffraction, a mixed k-space and real-space probe,
and confirmed by Poccia et al. [32] using time resolved x-ray
diffraction study of their nucleation and growth. The lattice
complexity has been related with quantum criticality [33].
Both the magnitude and spatial distributions of the dopants’
distribution show power-law behavior with an exponential
cutoff depending on the material and the doping, the unique
fingerprint of scale invariance. Moreover the critical temper-
ature Tc for superconductivity in these materials increases
by a factor of 2.5 from 16 to 40 K with the value of the
exponential cutoff changing by a factor of 3.8 [31] suggesting
that the fractal background favors the superconductive phase.
The scientific interest on this new scenario is rapidly growing
since the control of complex structural organization of dopants
and defects in new functional materials could allow us to
manipulate granular superconductors with many venues for
both science and technology.

In this work we consider a possible scenario [18,20,21]
where at temperatures higher than Tc there are superconducting
grains without phase coherence (that we will call the insulator
phase) and a superconducting coherent phase state below Tc

(that we will call the superconducting phase). We propose that
the RTIM in annealed heterogeneous networks sheds light on
the increase of the high critical temperature for an optimal
heterogeneity in this scenario. Our model will describe the
dynamical nature of networks that rapidly evolve in time by a
rewiring of the links. Moreover a key element of our analysis is
to study the role of heterogeneous degree distribution, focusing
in particular on scale-free degree distribution with an expo-
nential cutoff which indicates the distance from a critical point
which triggers the complexity of the electron background. This
will open a theoretical road map to mimic dynamics occurring
on a complex fractal disorder [31] and will help to contribute
in the general understanding of how dynamical processes are
affected by complex network topologies. We observe a rich
interplay between network structure and quantum dynamical
behavior in annealed complex networks. In particular we have
found that the critical temperature for superconductivity is
modulated by the topology of the underlying networks simi-
larly to what happens in the classical Ising model on scale-free
networks where it has been shown [5] that the phase diagram
depends on the power-law exponent of the degree distribution.
Moreover the critical temperature depends on the power-law
exponent on the degree distribution and on the exponential
cutoff in the degree distribution that mimics the correlation
between dynamical granular patches in cuprates. These re-

sults provide a new perspective showing how complexity
can increase the critical temperature in an unconventional
superconductor [24,32].

II. ANNEALED COMPLEX NETWORKS

We consider networks of N nodes i = 1, . . . ,N . We assign
to each node a hidden variable θi from a p(θ ) distribution
indicating the expected number of neighbors of a node. The
probability (i,j ) that two nodes are linked, pij , is given by

pij = θiθj

〈θ〉N . (1)

In this ensemble the degree ki of a node i is a Poisson random
variable with expected degree ki = θi . Therefore we will have

〈θ〉 = 〈k〉
(2)

〈θ2〉 = 〈k(k − 1)〉.

III. RANDOM TRANSVERSE ISING MODEL ON
ANNEALED COMPLEX NETWORK

We consider a system of spin variables σ z
i , for i = 1, . . . ,N ,

defined on the nodes of a given annealed network with link
probability given by the matrix p and adjacency matrix a. The
random traverse Ising model is defined as in [8,9] as

Ĥ = −J

2

∑
ij

aij σ̂
z
i σ̂ z

j −
∑

i

εi σ̂
x
i − h

∑
i

σ̂ z
i . (3)

This Hamiltonian is a simplification respect to the XY model
Hamiltonian proposed by Ma and Lee [7] to describe the
superconducting-insulator phase transition but to the leading
order the equation for the order parameter is the same, as
widely discussed in [8,9]. The Hamiltonian describes the
superconducting-insulator phase transition as a ferromagnetic
spin 1/2 spin system in a transverse field. We propose to use
this Hamiltonian to describe in a granular superconductor the
transition from a phase of superconducting grains with no
phase coherence (called insulator for granular superconduc-
tors) that we propose to correspond with the electronic matter
in cuprates above Tc to the low temperature superconducting
phase with phase coherence.

The spins σi in Eq. (3) indicate occupied or unoccupied
states by a Cooper pair or a localized pair; the parameter
J indicates the couplings between neighboring spins, εi are
quenched values of on-site energy, and h is an external
auxiliary field. To mimic the randomness of on-site energy
we draw the variables εi from a ρ(ε) distribution with a
finite support. Finally in this model the superconducting phase
corresponds to the existence of a spontaneous magnetization
in the z direction. The partition function for this problem is
given by

Z = Tr e−βĤ (4)

with the Hamiltonian given by Eq. (3) where in order to
account for the dynamics nature of the annealed graph we have
substituted the adjacency matrix aij in Ĥ with the matrix pij

given by Eq. (1). In order to evaluate the partition function we
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apply the Suzuki-Trotter decomposition [34] in a number Ns of
Suzuki-Trotter slices. This formula expresses the exponential
of the sum between two operators in terms of a limit of a
product of exponentials, i.e.,

eA+B = lim
Ns→∞

[eA/Ns eB/Ns ]Ns . (5)

Therefore we have in the limit Ns → ∞ that the partition
function Z can be written as

Z = Tr e−βĤ = Tr
(
e−βÊ/Ns e−β

∑
i εi σ̂

x
i /Ns

)Ns
, (6)

where Ê is given by

Ê = −J

2

∑
ij

pij σ̂
z
i σ̂ z

j − h
∑

i

σ̂ z
i , (7)

where σ̂ z
i are the spin operators. In order to perform the

calculation of the partition function Z we consider for each
spin the sequence σi = {σ 1

i , . . . σ
Ns

i } where each spin σα
i

represents the spin i in the Suzuki-Trotter slice α. The partition
function is then defined as

Z =
∑

{σ i }i=1,...,N

N∏
i=1

w(σi)e
(βh/Ns )

∑Ns
α=1 σα

i

× e
βJ

2Ns 〈θ〉N
∑Ns

α=1

∑
ij θi θj σ

α
i σ α

j , (8)

where we have indicated with

w(σi) =
∏
α

〈
σα

i

∣∣e(βεi/Ns )σx ∣∣σα+1
i

〉
. (9)

In order to disentangle the quadratic terms we use Ns Hubbard-
Stratonovich transformations

Z =
(

βN〈θ〉
2πNS

)Ns/2 ∫
DS exp

[
−N〈θ〉βJ

2Ns

∑
α

(Sα)2

]

× exp

[
N

∑
θ

p(θ )
∫

dερ(ε) ln Tr
∏
α

e(β/Ns )(h+JθSα )σ z

× e(β/Ns )εσ x

]
,

where DS = ∏Ns

α=1 dSα . The free energy f =
− 1

β
limN→∞ limNs→∞ 1

N
ln Z can be evaluated at the

stationary saddle point which is cyclically invariant.
Therefore we get

f = infS
J 〈θ〉

2
S2

− 1

β

∑
θ

p(θ )
∫

dερ(ε) ln[2 cosh(β
√

(h + JSθ )2 + ε2)],

where the value of S which minimizes the free energy is given
by the saddle point equation

S =
∑

θ

θ

〈θ〉p(θ )
∫

dερ(ε)
JSθ + h√

(JSθ + h)2 + ε2

× tanh(β
√

(JSθ + h)2 + ε2). (10)
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FIG. 1. (Color online) Magnetization mz
θ,ε (cyan top surface) mx

θ,ε

(green lower surface) as a function of θ and ε for T = 10, expected
degree distribution p(θ ) ∝ k−γ and γ = 2.5, and distribution of on-
site energies ρ(ε) = 0.5 with ε = (−1,1).

Finally the magnetizations along the axis x and z can be
calculated by evaluating

mz
θ,ε = Tr σ z

i e−βĤ

Z

∣∣∣∣∣
θi=θ,εi=ε

,

(11)

mx
θ,ε = Tr σx

i e−βĤ

Z

∣∣∣∣∣
θi=θ,εi=ε

.

Performing these calculations we get

mz
θ,ε = JSθ + h√

(JSθ + h)2 + ε2
tanh(β

√
(JSθ + h)2 + ε2),

mx
θ,ε = ε√

(JSθ + h)2 + ε2
tanh(β

√
(JSθ + h)2 + ε2).

Therefore the magnetizations mz
θ,ε and mx

θ,ε depend on the
value θ of the expected degree of the node and on the on-site
energy ε.

These magnetization curves are plotted as a function of θ

and ε in Fig. 1 for some parameters values. The order parameter
for the superconducting-insulator phase transition is S given
by Eq. (10).

From the self-consistent equation determining the order
parameter for the transition it is immediate to show that the
superconducting-insulator phase transition occurs for h = 0 at

1 = J
〈θ2〉
〈θ〉

∫
dερ(ε)

tanh(βε)

ε
= J

Jc(β)
, (12)

which implies that for 〈θ2〉 → ∞ then β → 0 for any fixed
value of the coupling J > 0, and the critical temperature for the
paramagnetic ferromagnetic phase transition Tc diverges. This
implies that on annealed scale free networks with p(θ ) ∝ θ−γ

and γ < 3 the random transverse Ising model is always in the
superconducting phase.

In order to mimic the fractal background present in cuprates
[31] we assume that the expected degree distribution of the
network is given by

p(θ ) = θ−γ e−θ/ξ , (13)

where ξ eventually becomes much larger than the lattice
coordination number and diverges as a function of an external
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FIG. 2. (Color online) Left panel: The critical temperature Tc

for the random transverse Ising model with J = 1 ρ(ε) = 0.5 with
ε ∈ (−1,1) as a functional of the external parameter g tuning the ex-
ponential cutoff of the expected degree distribution p(θ ) ∝ θ−γ e−θ/ξ

with ξ = |g − gc|−ν , gc = 1, and ν = 1. The critical temperature
Tc for the superconductor insulator transition has a maximum for
g = gc = 1 if γ > 3 and diverges at g = gc is γ < 3. Right panel:
critical temperature Tc for the random tranverse Ising model with
J = 1 ρ(ε) = 0.5 with ε ∈ (−1,1) as a functional of the exponential
cutoff in the expected degree distribution for different values of the
power-law exponent γ .

parameter g (mimicking doping of the cuprate or strain of the
lattice) with a critical exponent ν, i.e., we assume

ξ = |g − gc|−ν . (14)

In Fig. 2 we show the behavior of the critical temperature
as a function of the external parameter g below and above

the critical point gc. It is shown that as γ > 3 the critical
temperature of the RTIM has a maximum at Tc while for
γ < 3 it diverges at g = gc.

IV. CONCLUSIONS

In this paper we have investigated how topological effects
and heterogeneity in the degree distribution can affect the
critical behavior of the superconductor-insulator transition in
annealed complex networks. In particular, we have shown how
topological effects change significantly the phase diagram
of the critical phenomena. Our analysis points out that a
finite second moment of the degree distribution determines
the critical lines of the transition while when this second
moment diverges the critical temperature for the ferromagnetic
phase diverges. In the future we plan to study how much this
scenario changes if we consider quenched complex networks
by applying the quantum cavity method. Finally our results
open new perspectives for the comprehension of critical
phenomena in complex materials when a structural phase
transition driven by some external parameter g modulates
with an exponential cutoff the scale-free heterogeneities in
the material. We found that in this case two scenarios are
possible: either the superconducting temperature reaches a
maximum at g = gc or the superconducting temperature
diverges at g = gc, depending on the value of the power-law
exponent γ of the degree distribution of the annealed network.
We hope that this work will be of help for the design of
new complex granular high temperature superconductors that
could eventually overcome the limit of 160 K in cuprate
superconductors.
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