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In this work, we present a supersymmetric extension of the quantum spherical model, both in components
and also in the superspace formalisms. We find the solution for short- and long-range interactions through the
imaginary time formalism path integral approach. The existence of critical points (classical and quantum) is
analyzed and the corresponding critical dimensions are determined.
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I. INTRODUCTION

It is a common fact that the methods and ideas of a given
area of theoretical physics may be useful in another completely
distinct context. Besides the technical utility that this sharing
of knowledge may offer, it provides different views of the
problem yielding profound implications. A classical example
of this sort of situation is the junction of ideas coming from
Gell-Mann-Low quantum electrodynamics and Kadanoff’s
block spin ultimately leading to the renormalization group,
useful both in quantum field theory and statistical mechanics
[1]. Proceeding along these lines of thinking, in this paper we
consider the supersymmetric extension of a quantum version
of a traditional model in statistical mechanics, namely, the
spherical model [2]. Supersymmetry, by nontrivially combin-
ing internal and space-time symmetries in a way impossible
in the traditional Lie algebraic approach, has produced new
relevant insights in the context of quantum field theory [3] and
even in condensed matter physics [4–6]. In the nonrelativistic
context, supersymmetry was introduced by Nicolai [7,8] and
applied to the study of spin systems.

In quantum mechanics, supersymmetry requires the ex-
istence of supercharges Q and Q̄, such that {Q,Q̄} = H,
where H is the Hamiltonian of the system, and furthermore
satisfy [Q,H] = [Q̄,H] = 0; these supercharges realize the
transmutation of bosonic states into fermionic ones and vice
versa so that the ground state is left invariant. Thus, a
supersymmetric theory is characterized by a bosonic ground
state |0〉B with energy equal to zero (i.e., annihilated by the
supercharges and by the Hamiltonian):

Q|0〉B = Q̄|0〉B = H|0〉B = 0. (1)

On the other hand, if the supersymmetry is broken, then, at
least one of the supercharges does not annihilate the ground
state any longer. Instead, there is a pair of degenerated ground
states bosonic and fermionic, |0〉B and |0〉F , with energy E0,
such that

|0〉F ≡ 1√
E0

Q̄|0〉B and |0〉B ≡ 1√
E0

Q|0〉F . (2)

In contrast with phase transitions at finite temperature,
driven by thermal fluctuations and denoted as a classical phase
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transition, a quantum phase transition occurs at zero temper-
ature and is caused by quantum fluctuations connected with
Heisenberg’s uncertainty relations. Thus, at zero temperature,
a phase transition may occur in a broken supersymmetric
situation when the ground-state energy E0 is nonvanishing;
it is characterized by some nonthermal coupling parameter g,
that assumes the value gc at the critical point. So, near the
critical point,

E0 ∼ |g − gc|zν, (3)

where z and ν are the dynamical and correlation length critical
exponents, respectively. This suggests that in a situation where
supersymmetry holds, the system will not exhibit a critical
point because of the vanishing of the ground-state energy
independently of the value of g. On the contrary, it may display
a critical behavior if supersymmetry is broken. It should be
noticed that, essentially because the differences in the bosonic
and fermionic distribution functions, supersymmetry is always
broken at finite temperature [9–11].

The classical spherical model was initially proposed by
Berlin and Kac [2], as a simplified continuous version of the
Ising model. Since it is exactly soluble, it has been used to
study the critical behavior in a variety of situations [12–19].
Typically, the classical solution exhibits an anomaly at low
temperature, concerning to the third law of the thermodynam-
ics. It was suggested that such pathological behavior could be
corrected by introducing quantum fluctuations, which were not
taken into account in the classical case [20]. The extension to
the quantum domains has been considered by various authors
and has raised much attention in the context of quantum phase
transitions [21–23]. In particular, we mention studies in some
quantum versions of the spherical model [20,24–29], and also
including some ingredients of the statistical mechanics, such
as the influence of random fields [30], spin glasses [31–35],
frustration [36], competing interactions [37], and the quantum
Lifshitz point [38]. In this work we extend these studies by
considering a supersymmetric version of the spherical model
with special attention to the existence of critical points and
the determination of critical dimensions. The supersymmetric
constraints are implemented through delta functions in the
partition function and by the saddle point evaluation we
obtained the conditions to which the action is stationary. The
critical behavior analysis follows from the study of these
equations in some simple cases, according to the values of
the saddle point parameters. For a certain situation, where
the bosonic and fermionic degrees of freedom are decoupled,
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we found that the critical behavior of the supersymmetrical
model reduces to that of the quantum spherical model. On
the other hand, when the bosonic and fermionic degrees of
freedom are coupled, corresponding to another choice of the
saddle point parameters, the model exhibits a distinct critical
behavior. We also discussed some issues in connection with
the supersymmetry breaking.

Our work is organized as follows. In Sec. II, we review the
bosonic quantum spherical model and evaluate the partition
function through the imaginary time formalism. In Sec. III, we
present the supersymmetric extension, both in components and
also in the superspace formalisms. The partition function of the
supersymmetric model is evaluated in Sec. IV and its critical
behavior is discussed in Sec. V. A summary and additional
remarks are presented in the Conclusions. One Appendix to
study the canonical quantization of the model is included.

II. THE QUANTUM SPHERICAL MODEL

In this section, we discuss the quantum spherical model
subject to the strict spherical constraint, corresponding to a
canonical ensemble. The quantum version of the model, by
implementing the mean spherical constraint, was studied by
Vojta [27]. The classical Hamiltonian of the spherical model
is given by

Hc = 1

2

∑
r,r′

Jr,r′SrSr′ + h
∑

r

Sr, (4)

where r and r′ are lattice vectors, {Sr} is a set of spin variables
that can assume continuous values, −∞ < Sr < ∞, in a
D-dimensional hypercubic lattice; Jr,r′ is the interaction
energy that depends only on the distance between the sites
r and r′, Jr,r′ ≡ J (|r − r′|), and h is the external field. We
assume that the Sr variables are subject to the spherical
constraint, ∑

r

S2
r = N, (5)

where N is the total number of lattice sites. On the other
hand, the mean spherical constraint is defined as

∑
r〈S2

r 〉 = N ,
where 〈· · ·〉 designates a thermal average. Of course, in the
thermodynamic limit, N → ∞, these two constraints yield
the same results, as we shall see shortly. A discussion about
the properties of spherical and mean spherical models in the
classical context is found in Ref. [12].

In order to construct the quantum model we need to add
to the Hamiltonian a kinetic term involving the conjugate
momentum variable to Sr, denoted by Pr, and then promote
such variables to operators satisfying the usual canonical
commutation relations,

[Sr,Sr′ ] = 0, [Pr,Pr′ ] = 0 and [Sr,Pr′ ] = iδr,r′ . (6)

Including then a kinetic term quadratic in the momenta, the
quantum Hamiltonian becomes

H = 1

2
g

∑
r

P 2
r + 1

2

∑
r,r′

Jr,r′SrSr′ + h
∑

r

Sr. (7)

The coupling constant g measures the relevance of the
quantum fluctuations and the limit g → 0 corresponds to the

classical regime. To construct the supersymmetric version it is
convenient to use the Lagrangian formulation. Moreover, it is
also useful for the evaluation of the quantum partition function
through the imaginary time formalism, as we will explicitly
show in the next subsection. After a Legendre transformation,
we obtain the Lagrangian,

L = 1

2g

∑
r

Ṡ2
r − 1

2

∑
r,r′

Jr,r′SrSr′ − h
∑

r

Sr, (8)

where the dot means a derivative with respect to the time. For
simplicity, in the remainder of this paper, we will take the
external field equal to zero, h = 0. It must be clear that we can
consider the external field dependence without difficulties.

A. Imaginary time formalism

Let us evaluate the partition function through the path
integral imaginary time formalism approach [39]. Thus, we
need to pass to the Euclidean imaginary time τ = it , with
τ ∈ [0,β] and β the inverse of the temperature. Furthermore,
the bosonic variables are required to satisfy the periodic
boundary condition Sr(0) = Sr(β), which gives rise to the
discrete spectrum Matsubara frequencies ωn = 2nπ/β, with
n ∈ Z. The partition function is given by

Z =
∫

DSr δ

( ∑
r

S2
r − N

)
e− ∫ β

0 dτLE , (9)

where the Euclidean Lagrangian is

LE = 1

2g

∑
r

(
∂Sr(τ )

∂τ

)2

+ 1

2

∑
r,r′

Jr,r′SrSr′ . (10)

The integration measure DSr symbolically stands for func-
tional integration over the spin variable of all sites of
the lattice (i.e., DSr ≡ ∏

r DSr). Employing the functional
integral representation for the delta function,

δ

( ∑
r

S2
r − N

)
=

∫
Dλ e− ∫ β

0 dτλ(
∑

r S2
r −N), (11)

we can write

Z =
∫

DSrDλ exp

{
−

∫ β

0
dτ

[
1

2g

∑
r

(
∂Sr(τ )

∂τ

)2

+ 1

2

∑
r,r′

Jr,r′SrSr′ + λ
∑

r

S2
r − λN

]}
. (12)

This is an appropriate representation, since the integral on
Sr becomes Gaussian and can be integrated out. Before
continuing, however, it is convenient to introduce the Fourier
transformation of Sr,

Sr(τ ) = 1√
N

∑
q

eiq·rSq(τ ). (13)
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With this, the Euclidean action acquires a simple form and the
partition function becomes

Z =
∫

DSqDλ exp

{
−

∫ β

0
dτ

[ ∑
q

Sq

(
− 1

2g

∂2

∂τ 2

+ 1

2
J (q) + λ

)
S−q − λN

]}
. (14)

Here, we have identified J (q) as the Fourier transformation of
the interaction energy Jr,r′ ,

J (q) =
∑

h

J (|h|)eiq·h, with h = r − r′. (15)

After the Gaussian integration and using the identity det A =
eTr ln A, we get

Z =
∫

Dλ e−NSeff , (16)

where we defined

Seff ≡ −
∫ β

0
dτ λ + 1

2N
Tr

[ ∑
q

ln

(
− 1

2g

∂2

∂τ 2

+ 1

2
J (q) + λ

)]
. (17)

In the thermodynamic limit, N → ∞, we may use the saddle
point functional method to evaluate the partition function. The
saddle point condition corresponds to the condition that the
effective action above be stationary:

δSeff

δλ(τ )
= 0. (18)

We will suppose that the saddle point λ is time independent,
and defined as λ ≡ μ. By means of the identity δTr ln A =
TrA−1δA, we can obtain

1 − 1

2Nβ

∑
q

∞∑
n=−∞

1
ω2

n

2g
+ 1

2J (q) + μ
= 0. (19)

The sum on integers can be calculated thanks to the identity,
∞∑

n=−∞

1

n2 + y2
= π

y
coth(πy), y > 0. (20)

The final result is

1 − 1

N

∑
q

g

2ωq
coth

(
βωq

2

)
= 0, (21)

where ω2
q ≡ 2g(μ + J (q)/2). This result is exactly that ob-

tained with the mean spherical constraint [27]. From this
expression, we can determine the critical properties of the
model at finite temperature as well as at T = 0. The analysis
of the critical behavior can be done by considering the
system near the critical point, with μ → 0 and the interaction
parametrized as J (q) ∼ qx , q ≡ |q|, for small momenta. The
parameter x determines the short- or long-range character of
the interaction. Typically, for short-range interactions we have
x = 2. Despite being described quantum mechanically, for any
finite temperature the system shows a classical critical behavior

similar to that obtained from the classical version of the model.
Essentially, this is because the thermal fluctuations generally
dominate quantum fluctuations at macroscopic scales. At zero
temperature, however, there is a quantum phase transition
characterized by new critical exponents [27].

III. SUPERSYMMETRIC EXTENSION

In this section, we shall construct the supersymmetric
version of the spherical model in terms of the component field
formulation as well as in the superspace. The fundamental
ingredient in this extension is the introduction of additional
fermionic degrees of freedom at each lattice site to balance
the bosonic ones. Namely, at each site of the lattice, besides
the bosonic variable Sr, we will associate the fermionic
counterparts ψr and ψ̄r (ψ̄r ≡ ψ

†
r ), that in the quantum case

satisfy the anticommutation relations,

{ψr,ψr′ } = 0, {ψ̄r,ψ̄r′ } = 0 and {ψr,ψ̄r′ } = δr,r′ . (22)

A. Components formulation

The natural form for the supersymmetric Lagrangian is

LSusy = 1

2g

∑
r

Ṡ2
r − 1

2

∑
r,r′

Jr,r′SrSr′

+ i√
g

∑
r

ψ̄rψ̇r −
∑
r,r′

Ur,r′ψ̄rψr′ . (23)

Of course, the requirement of invariance under supersymmetry
transformations will imply a relation between the interactions
Jr,r′ and Ur,r′ . We are supposing that the interaction Ur,r′ also
depends only on the distance between the sites r and r′. In
addition, the constraint on the bosonic variable will imply
other constraints involving the fermionic variables, which will
be discussed shortly.

Now, it is easy to verify that the set of transformations,

δεSr = ψ̄rε, δεψr = − i√
g

Ṡrε −
∑

r′
Ur,r′Sr′ε and

δεψ̄r = 0, (24)

and

δε̄Sr = ε̄ψr, δε̄ψr = 0 and

δε̄ψ̄r = i√
g

Ṡrε̄ −
∑

r′
Ur,r′Sr′ ε̄, (25)

leave the Lagrangian (23) invariant up to surface terms (i.e.,
up to a total derivative), provided that∑

s

Ur,sUs,r′ ≡ Jr,r′ . (26)

Notice that the Fourier transformation of this relation furnishes
[U (q)]2 = J (q). The parameters of transformations ε and ε̄

are anticommuting infinitesimal quantities. Equations (24) and
(25) are the supersymmetry transformations that relate the
bosonic degrees of freedom to the fermionic ones.

The next step is to investigate the consistency of the con-
straints. More precisely, the implications of the supersymmetry
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transformations on the spherical constraint,∑
r

S2
r = N. (27)

It can be verified that, under the transformations (24) and (25),
we are led to the additional constraints,∑

r

ψ̄rSr = 0,
∑

r

ψrSr = 0, and

∑
r

ψ̄rψr = −
∑
r,r′

Ur,r′SrSr′ . (28)

In the last relation, we have discarded a surface term. In
summary, to have a consistent supersymmetric formulation
of the spherical model we need now four constraints. These
constraints introduce effectively an interaction between the
bosonic and fermionic variables. They can be implemented
via four Lagrange multipliers, being two of bosonic character
and two of fermionic character.

B. Superspace formulation

A very elegant and concise way to formulate supersym-
metry is through the notion of the superspace. Moreover, this
formulation has the advantage of making the underlying theory
manifestly supersymmetric. The price is that it is necessary
to introduce auxiliary (not dynamical) bosonic degrees of
freedom. The superspace consists of an extension of the
ordinary space that in the quantum mechanic case corresponds
to the time coordinate only, in order to accommodate the
anticommuting coordinates θ and θ̄ , satisfying θ2 = θ̄2 = 0
and {θ,θ̄} = 0. To fix our notation, let us define some useful
operations with these Grassmannian variables:

∂

∂θ
θ = ∂

∂θ̄
θ̄ ≡ 1,

∂

∂θ̄
θ = ∂

∂θ
θ̄ ≡ 0, (29)

and ∫
dθ =

∫
dθ̄ ≡ 0,

∫
dθ θ =

∫
dθ̄ θ̄ ≡ 1, and∫

dθdθ̄ θ̄θ ≡ 1. (30)

We then associate at each site of the lattice a superfield
r(t,θ,θ̄ ) that is a function of the superspace coordinates and
can be expanded in powers of θ and θ̄ in the following way:

r(t,θ,θ̄ ) ≡ Sr + θ̄ψr + ψ̄rθ + θ̄ θFr. (31)

The bosonic and fermionic variables are components of the
superfield and Fr is the auxiliary field. Next, let us introduce
the supercharges,

Q ≡ ∂

∂θ̄
+ i θ

∂

∂t
and Q̄ ≡ − ∂

∂θ
− i θ̄

∂

∂t
(32)

that are the generators of translations in the superspace,

θ → θ + ε, t → t − iθ̄ε and

θ̄ → θ̄ + ε̄, t → t + iε̄θ. (33)

In addition, it is easy to verify that the superfield transforma-
tions,

δεr = Q̄εr and δε̄r = ε̄Qr, (34)

correspond to the following component transformations:

δεSr = ψ̄rε, δεψr = −iṠrε + Frε,

δεψ̄r = 0, and δεFr = i ˙̄ψrε, (35)

and

δε̄Sr = ε̄ψr, δε̄ψr = 0, δε̄ψ̄r = iṠrε̄ + Frε̄, and

δεFr = −iε̄ψ̇r. (36)

These transformations may be compared with Eqs. (24) and
(25) by rescaling the variables Sr → g−1/2Sr, ψr → g−1/4ψr
and ψ̄r → g−1/4ψ̄r and also the parameters ε → g−1/4ε

and ε̄ → g−1/4ε̄. Furthermore, the supercharges satisfy the
algebra,

{Q,Q} = 0, {Q̄,Q̄} = 0, and {Q,Q̄} = −2i
∂

∂t
. (37)

The last anticommutation relation is proportional to the
generator of time translations that must be identified with the
Hamiltonian.

We need to construct an action in the superspace such
that the corresponding Lagrangian reproduces (23) after
integration over θ and θ̄ , and further take into account the
constraints (27) and (28). Initially, let us consider the kinetic
term. For this purpose it is convenient to introduce the covariant
derivatives,

D ≡ − ∂

∂θ̄
+ iθ

∂

∂t
and D̄ ≡ ∂

∂θ
− iθ̄

∂

∂t
, (38)

that satisfy

{D,Q} = {D,Q̄} = {D̄,Q} = {D̄,Q̄} = 0 and

{D,D̄} = 2i
∂

∂t
. (39)

These anticommutation relations imply that the covariant
derivative of a superfield has the same property under
supersymmetry transformations as the superfield itself. So,
any action involving only superfields as well as covariant
derivatives of superfields is manifestly supersymmetric.

Now, observe that

Dr = −ψr + (iṠr − Fr)θ − iψ̇rθ̄ θ, (40)

and

D̄r = −ψ̄r − (iṠr + Fr)θ̄ + i ˙̄ψrθ̄ θ. (41)

Then, the kinetic term can be obtained according to

1

2

∑
r

D̄rDr|θ̄ θ = 1

2

∑
r

Ṡ2
r + i

∑
r

ψ̄rψ̇r + 1

2

∑
r

F 2
r .

(42)

Notice that we do not have terms involving the time derivative
of the variable Fr, which means that it is an auxiliary variable
as we said above (i.e., it does not possess dynamics and can be
eliminated via its equation of motion). The interaction terms
can also be constructed in a simple way,

1

2

∑
r,r′

Ur,r′rr′ |θ̄ θ =
∑
r,r′

Ur,r′SrFr′ −
∑
r,r′

Ur,r′ψ̄rψr′ .

(43)
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The interaction energy Jr,r′ does not appear explicitly in the
action, but only after the elimination of the auxiliary field Fr.
The action in the superspace is then the sum of the kinetic and
the interaction parts,

S =
∫

dtdθdθ̄

(
1

2

∑
r

D̄rDr +
√

g

2

∑
r,r′

Ur,r′rr′

)
.

(44)

The equation of motion for the auxiliary variable Fr is given by

Fr = −
∑

r′
Ur,r′Sr′ , (45)

that can be used to eliminate Fr. The resulting action of
this process is, up to a rescaling of the fields Sr → g−1/2Sr,
ψr → g−1/4ψr, and ψ̄r → g−1/4ψ̄r as mentioned before, just
that of component formulation.

The spherical constraint will be imposed on the superfield
according to ∑

r

rr = N, (46)

which in components yields the following relations:∑
r

S2
r = N,

∑
r

ψ̄rSr = 0,
∑

r

ψrSr = 0, and

∑
r

ψ̄rψr =
∑

r

SrFr. (47)

After using Eq. (45), we get (27) and (28). We can implement
the constraint through a delta function (inside the partition
function) that in the integral representation requires an inte-
gration over a superfield,

� ≡ γ + θ̄ ζ + ζ̄ θ + θ̄ θλ, (48)

where γ and λ play the role of the usual Lagrange multipliers
and ζ and ζ̄ of anticommuting Lagrange multipliers. To sum
up, we have constructed a consistent supersymmetric extension
of the quantum spherical model in components as well as in
the superspace formulation. The next step is to evaluate the
partition function, which will be discussed in the sequel.

IV. IMAGINARY TIME FORMALISM

We will employ the imaginary time formalism to the eval-
uation of the partition function, as it has been discussed in the
purely bosonic model. Because of the anticommuting character
of the Grassmannian quantities, the fermionic variables are
required to satisfy the antiperiodic boundary conditions. In
general, the fields must satisfy

Sr(0) = Sr(β), ψr(0) = −ψr(β), and

ψ̄r(0) = −ψ̄r(β). (49)

The reflex of the antiperiodic conditions is the arising of the
discrete spectrum fermionic frequencies ωF

n = (2n + 1)π/β,
with n ∈ Z, in contrast with bosonic frequencies ωB

n = 2nπ/β.

A. Components evaluation

Let us consider the partition function in components, gen-
eralizing the procedure of the pure bosonic model discussed

before. The partition function is then given by the functional
integration over all fields present in the Lagrangian taking into
account the constraints (27) and (28):

Z =
∫
DSrDψrDψ̄rδ

( ∑
r

S2
r −N

)
δ

( ∑
r

ψ̄rSr

)

× δ

( ∑
r

ψrSr

)
δ

(∑
r

ψ̄rψr+
∑
r,r′

Ur,r′SrSr′

)
e− ∫ β

0 dτLE ,

(50)

where LE is the Euclidean version of Eq. (23),

LSusy = 1

2g

∑
r

(
∂Sr

∂τ

)2

+ 1

2

∑
r,r′

Jr,r′SrSr′

+ 1√
g

∑
r

ψ̄r
∂ψr

∂τ
+

∑
r,r′

Ur,r′ψ̄rψr′ . (51)

As before, it is convenient to use the integral representation
for the delta functions:

δ

( ∑
r

S2
r − N

)
=

∫
Dλ e− ∫ β

0 dτλ(
∑

r S2
r −N), (52)

δ

( ∑
r

ψ̄rSr

)
=

∫
Dζ e− ∫ β

0 dτ
∑

r ψ̄rSrζ , (53)

δ

( ∑
r

ψrSr

)
=

∫
Dζ̄ e− ∫ β

0 dτ
∑

r ζ̄ψrSr , (54)

and

δ

( ∑
r

ψ̄rψr +
∑
r,r′

Ur,r′SrSr′

)

=
∫

Dγ e− ∫ β

0 dτγ (
∑

r ψ̄rψr+
∑

r,r′ Ur,r′SrSr′ ). (55)

In this way, the integration over Sr and (ψr,ψ̄r) becomes
Gaussian and can be performed. First, let us concentrate on the
Sr integration by considering the effective partition function,

Z
ϕ

eff ≡
∫

DSr exp

{
−

∫ β

0
dτ

[
1

2g

∑
r

(
∂Sr(τ )

∂τ

)2

+ 1

2

∑
r,r′

Jr,r′SrSr′ + λ
∑

r

S2
r

+ γ
∑
r,r′

Ur,r′SrSr′ +
∑

r

ϕrSr

]}
, (56)

where we defined the real bosonic field ϕr ≡ ψ̄rζ + ζ̄ψr.
Introducing the Fourier transformation of the fields involved
and performing the Gaussian integration, we find

Z
ϕ

eff = exp

{
−1

2
Tr

∑
q

lnOq

}

× exp

{
−1

2

∫ β

0
dτ

∑
q

ψ̄qζO−1
q ζ̄ψq

}
, (57)
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with

Oq ≡ − 1

2g

∂2

∂τ 2
+ 1

2
J (q) + λ + γU (q). (58)

Now, we move on to the fermionic integrals by defining another
effective partition function whose action is written in terms of
Fourier transformations:

Zeff ≡
∫

Dψ̄qDψq exp

{
−

∫ β

0
dτ

[ ∑
q

ψ̄q

(
1√
g

∂

∂τ

+U (q) + γ + 1

2
ζO−1

q ζ̄

)
ψq

]}
, (59)

which gives

Zeff = exp

[
Tr

∑
q

ln

(
− 1√

g

∂

∂τ
− U (q)−γ − 1

2
ζO−1

q ζ̄

)]
.

(60)

So, by putting all together, we get

Z =
∫

DλDγDζ̄Dζe−NSeff , (61)

with

Seff ≡ −
∫ β

0
dτλ + 1

2N
Tr

∑
q

ln

(
− 1

2g

∂2

∂τ 2

+ 1

2
J (q) + λ + γU (q)

)

− 1

N
Tr

∑
q

ln

(
− 1√

g

∂

∂τ
− U (q) − γ − 1

2
ζO−1

q ζ̄

)
.

(62)

Proceeding as before, we use the saddle point method, which
in this case implies the following four conditions:

δSeff

δλ(τ )
= δSeff

δγ (τ )
= δSeff

δζ (τ )
= δSeff

δζ̄ (τ )
= 0. (63)

We shall look now for solutions of this equation with all
parameters (λ,γ,ζ̄ ,ζ ) time independent. The conditions of
extremum with respect to the fermionic parameters ζ and ζ̄ ,
can be immediately satisfied if ζ = ζ̄ = 0. So, there are still
two remaining conditions. Let us define the corresponding
saddle points as λ ≡ μ and γ ≡ α. The condition of extremum
with respect to the λ can be worked out in the same way that
led us to the result (21):

1 − 1

N

∑
q

g

2ωB
q

coth

(
βωB

q

2

)
= 0, (64)

but, with the bosonic frequency slightly different, namely,
(ωB

q )2 ≡ 2g(μ + αU (q) + J (q)
2 ). Finally, the last condition

furnishes

1

N

∑
q

g

2ωB
q

U (q) coth

(
βωB

q

2

)

− 1

N

∑
q

g

2ωF
q

(U (q) + α) tanh

(
βωF

q

2

)
= 0, (65)

where the fermionic frequency is (ωF
q )2 ≡ 2g( α2

2 + αU (q) +
J (q)

2 ). To obtain this result, we have used the identity,

∞∑
n=−∞

1

(2n + 1)2 + y2
= π

2y
tanh

(πy

2

)
, (66)

in the calculation of the trace of the fermionic part, which
involves a sum on the fermionic Matsubara frequencies ωF

n =
(2n + 1)π/β, n ∈ Z. The critical behavior of the model can
be determined by analyzing these two saddle point conditions
near the critical point, what will be done in the next section.

One last noteworthy remark before closing this section is
that the procedure described above can also be generalized to
the superspace (i.e., directly in terms of the superfields). We
will not consider this approach in this work.

V. CRITICAL BEHAVIOR

In order to investigate the critical behavior we need to
consider the system near the critical point, when μ → 0
and α → 0, and the integrals are dominated by the small
momenta contributions. Thus, as mentioned before, we can
parametrize the interactions for small values of |q| ≡ q as
J (q) ∼ qx and U (q) ∼ q

x
2 , respecting the supersymmetry

requiring [U (q)]2 = J (q). Next, we will analyze the critical
behavior at finite temperature as well as at zero temperature,
since the system exhibits different behaviors in these two cases.

A. Finite temperature

As already mentioned, the supersymmetry is incompatible
with temperature (i.e., at finite temperature the supersymmetry
is broken). In this situation, the thermal fluctuations are present
and are responsible to drive the phase transition. At the critical
point, the equations (64) and (65) become

1 − 1

N

∑
q

gc

2
√

gcJ (q)
coth

(
β
√

gcJ (q)

2

)
= 0, (67)

and

1

N

∑
q

gc

2
√

gcJ (q)
U (q) coth

(
β
√

gcJ (q)

2

)

− 1

N

∑
q

gc

2
√

gcJ (q)
U (q) tanh

(
β
√

gcJ (q)

2

)
= 0, (68)

respectively. These integrals converge if D > x, what defines
the lower critical dimension.

We may determine the critical behavior of the system by
subtracting the expression (64) near the critical point from
(67). Technically, near the critical point we can expand the
hyperbolic functions coth and tanh for small values of the
argument, according to what has been discussed above.

From now, we are going to investigate some simple cases
that exhibit interesting critical behaviors: (1) α = 0 with finite
μ near the critical point; (2) μ = 0 with finite α near the critical
point.
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1. α = 0 and finite μ

By subtracting Eq. (64) (with α = 0 and small μ) from
Eq. (67), and evaluating the sum over the momenta, we obtain
the following behavior:

tg ∼

⎧⎪⎨
⎪⎩

μ
D−x

x (D < 2x)

μ ln μ (D = 2x)

μ (D > 2x)

, (69)

where tg ≡ (g − gc)/gc, as in Ref. [27]. Equivalently, of
course, we could consider the distance from the critical point
given in terms of the temperature, tT ≡ (T − Tc)/Tc. Clearly,
the critical dimension is given by Dc = 2x. This is exactly the
same result of the purely bosonic spherical model of Sec. II.
We interpret this behavior as the decoupling of the bosonic
and fermionic degrees of freedom when the saddle point value
of the parameter γ is zero (α = 0). In this situation, we end up
just with the bosonic model subject to the spherical constraint.

2. μ = 0 and finite α

For μ = 0 and small α, after subtracting Eq. (64) from
Eq. (67) and then evaluating the remain sum over the momenta,
we find

tg ∼

⎧⎪⎨
⎪⎩

α
2(D−x)

x

(
D < 3x

2

)
α ln α

(
D = 3x

2

)
α

(
D > 3x

2

) . (70)

Here, we no longer have the decoupling of the bosonic
and fermionic degrees of freedom, since the correspondent
constraint effectively introduces an interaction mediated by
the parameter γ , whose saddle point value α is now different
from zero. Consequently, the model exhibits a distinct critical
behavior and a critical dimension Dc = 3x/2.

It should be mentioned here, despite the break of the
supersymmetry because of the temperature, we could try
to investigate the case when the frequencies become equal,
namely, when μ = α2/2 (in the case of zero temperature this
would correspond the supersymmetric case). The behavior
arising from this choice is exactly that of Eq. (70). This can
be understood due to the dominance of the term q

x
2 over qx at

small momenta, whenever α is nonvanishing.

B. Zero temperature

In the case of zero temperature, β → ∞, the hyperbolic
functions coth and tanh become identically one, and Eqs. (64)
and (65) are given by

1 − 1

N

∑
q

g

2ωB
q

= 0, (71)

and
1

N

∑
q

g

2ωB
q

U (q) − 1

N

∑
q

g

2ωF
q

(U (q) + α) = 0. (72)

The integrals converge if D > x/2, what defines the lower
critical dimension in the quantum case. The procedure for
determining the critical behavior is the same as for the
finite temperature. Note that at the critical point (μ = α = 0)
Eq. (72) is identically satisfied.

1. Supersymmetric case: μ = α2

2

The supersymmetric situation is characterized by the
equality between bosonic and fermionic frequencies, ωB

q =
ωF

q ≡ ωq, which can be achieved by choosing μ = α2

2 , as we
said. The consequence of this choice is that even outside (near)
of the critical point we get α = 0 and also μ = 0. This result
indicates the absence of the critical behavior, in agreement
with the argument presented in the Introduction. It has a simple
interpretation: the bosonic and fermionic quantum fluctuations
necessary to drive the quantum phase transition are canceled
between themselves in the supersymmetric situation.

2. Broken supersymmetry case: α = 0 and finite μ

In this situation the frequencies are no longer equal and the
supersymmetry is broken. By proceeding as before, we may
determine the quantum critical behavior:

tg ∼

⎧⎪⎨
⎪⎩

μ
2D−x

2x

(
D < 3x

2

)
μ ln μ

(
D = 3x

2

)
μ

(
D > 3x

2

) , (73)

where now tg ≡ (g − g0
c )/g0

c , with g0
c the critical value of g

at zero temperature. The critical dimension is Dc = 3x/2. As
already argued in the finite temperature case, this result also is
the same as that obtained in the purely bosonic spherical model.

3. Broken supersymmetry case: μ = 0 and finite α

In this last case, where the supersymmetry remains broken,
we get the following critical behavior:

tg ∼

⎧⎪⎨
⎪⎩

α
2D−x

x (D < x)

α ln α (D = x)

α (D > x)

, (74)

which, in virtue of the coupling between the bosonic and
fermionic degrees of freedom, it is different from Eq. (73),
and reveals the critical dimension Dc = x.

VI. CONCLUSIONS

In this work, we constructed a consistent supersymmetric
extension of the quantum spherical model, by considering the
components and the superspace formulations. Afterwards, we
calculated the partition function through the imaginary time
formalism, yielding to the saddle point conditions. From these,
we studied the critical behavior of the model in some simple
cases for finite and also for zero temperature and determined
the critical dimensions. In general, the model exhibits a critical
behavior whenever the supersymmetry is broken, either by
thermal effects (classical critical behavior) or because of the
inequality between the bosonic and fermionic frequencies
(quantum critical behavior).

Specifically, we verified that when μ is finite and α = 0,
the critical behavior (T �= 0 and T = 0) is the same as the
pure bosonic quantum spherical model, namely, Dc = 2x for
T �= 0 and Dc = 3x/2 for T = 0, which agrees with the results
of Ref. [27]. In the other case, when α is finite and μ = 0,
we obtained a reduction of the critical dimension values:
Dc = 3x/2 for T �= 0 and Dc = x for T = 0. When μ =
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α2/2, we have a supersymmetric situation at zero temperature.
In this case, the model does not exhibit a quantum phase
transition because of the vanishing of the ground-state energy
and consequently the absence of the quantum fluctuations.

As final remarks, we stress that some further issues can still
be analyzed, for example, the calculation of thermodynamic
quantities. Moreover, the supersymmetric model is an inter-
esting laboratory to investigate some typical ingredients of the
statistical models, such as competing and disorder interactions,
including finite-size effects, the presence of random fields,
the existence of quantum Lifshitz points, and their possible
influences on the critical properties. Lastly, it could be
worth exploring the connection with the supersymmetric
field theoretic nonlinear sigma model [40–42], according to
Stanley’s ideas [43].
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APPENDIX: CANONICAL QUANTIZATION

In this Appendix, we consider the supersymmetric mean
spherical model, with the constraints imposed as thermal
averages, corresponding to a grand canonical ensemble. From
the beginning, in order to simplify the analysis we will
invoke the law of large numbers in the thermodynamic limit,
what avoids the presence of orthogonality constraints in the
Lagrangian because of the vanishing of the mixed two point
functions:

1

N

∑
r

ψrSr → 〈ψrSr〉 = 0 and

1

N

∑
r

ψ̄rSr → 〈ψ̄rSr〉 = 0. (A1)

In the path integral approach, these conditions correspond to
the saddle point choice ζ̄ = ζ = 0. Without this simplification
the diagonalization procedure will involve a transformation of
coordinates such that Ax2 + Bxy + Cy2 → Āx̄2 + B̄ȳ2 + C̄,
where x and y generically represent bosonic and fermionic
coordinates.

Next, for our proposals it is convenient to write the
Lagrangian (23) in a more symmetric way, already taking into
account the Lagrange multipliers,

L = 1

2g

∑
r

Ṡ2
r − 1

2

∑
r,r′

Jr,r′SrSr′ + i√
g

∑
r

ψ̄rψ̇r − 1

2

∑
r,r′

Ur,r′ [ψ̄r,ψr′ ]

−μ

( ∑
r

S2
r − N

)
− α

(
1

2

∑
r

[ψ̄r,ψr] +
∑
r,r′

Ur,r′SrSr′

)
− h

∑
r

Sr −
∑

r

(ψ̄rη + η̄ψr), (A2)

where h and (η̄,η) are bosonic and fermionic external fields. By introducing the momenta,

Pr = ∂L
∂Ṡr

, �r = ∂L
∂ψ̇r

and �̄r = ∂L
∂ ˙̄ψr

, (A3)

we can easily determine the Hamiltonian by means of a Legendre transformation,

H = g

2

∑
r

P 2
r + 1

2

∑
r,r′

Jr,r′SrSr′ + 1

2

∑
r,r′

Ur,r′[ψ̄r,ψr′ ] + μ

( ∑
r

S2
r − N

)

+α

(
1

2

∑
r

[ψ̄r,ψr] +
∑
r,r′

Ur,r′SrSr′

)
+ h

∑
r

Sr +
∑

r

(ψ̄rη + η̄ψr). (A4)

From now on, we interpret the variables as quantum operators. After writing the Hamiltonian in the Fourier space and then
performing the standard Bogoliubov transformations, we can find the diagonal form in terms of creation and annihilation
operators,

H =
∑

q

ωB
q

(
a†

qaq + 1

2

)
+

∑
q

ωF
q

(
c†qcq − 1

2

)
− μN − Nh2

4μ
− Nη̄η

α
, (A5)

with the frequencies (ωB
q )2 ≡ 2g(μ + αU (q) + J (q)

2 ) and (ωF
q )2 ≡ 2g( α2

2 + αU (q) + J (q)
2 ) and the bosonic and fermionic

operators satisfying

[aq,aq′ ] = 0, [a†
q,a

†
q′ ] = 0, [aq,a

†
q′ ] = δq,q′ , (A6)

and

{cq,cq′ } = 0, {c†q,c†q′ } = 0, {cq,c
†
q′ } = δq,q′ . (A7)
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The partition function can be straightforwardly evaluated according to Z = Tr e−βH and the connection with the thermodynamics
is through the free energy,

f = − 1

βN
ln Z = − 1

Nβ

∑
q

[
ln cosh

(
βωF

q

2

)
− ln sinh

(
βωB

q

2

)]
− μ − h2

4μ
− η̄η

α
. (A8)

Finally, the constraints are implemented as

∂f

∂μ
= 0 and

∂f

∂α
= 0. (A9)

The resulting conditions coincide with Eqs. (64) and (65), when h = 0 and η̄ = η = 0.
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