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I. INTRODUCTION

Some time ago, two of the authors introduced a statis-
tical mechanical model of a random surface embedded in
a three-dimensional (3D) space, suspended above a planar
substrate with which it interacts [1–3]. A detailed specification
permitted the exact mapping of configurations of the 3D
surface onto those of the planar Ising model in its Peierls-
contour representation. When treated by equilibrium statistical
mechanics, this model displayed a phase transition; at low
enough temperatures, typical configurations indicate that the
surface is bound to the substrate. On raising the temperature
sufficiently, the interface unbinds from the substrate and a layer
of the bulk phase intercalates between the random surface and
the substrate. Although it might be thought, as the authors
originally did, that this model affords an example of wetting
in two dimensions [4], it turns out that the exact critical
indices obtained are quite unlike those normally associated
with wetting. Rather, this model is much more accurately
considered as an example of either Stransky-Krastanov (SK)
[5] or Volmer-Weber (VW) [6] behavior.

We now go back 60 years to the seminal work of Burton,
Cabrera, and Frank [7], who were the first to propose that
a surface phase transition in a 3D uniaxial system, e.g.,
the spin-1/2 Ising model, should display singular behavior
like the two-dimenisonal (2D) Ising model. They considered
symmetry-breaking boundary conditions for which boundary
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spins are fixed to point up in the upper half space and down in
the lower half space. They reasoned that below the 3D critical
temperature the upper half space will be in the up magnetized
state and the lower half space in the down magnetized state.
In the mean field approximation, the 2D lattice of spins at
the interface between the oppositely magnetized bulk phases
is subjected to a mean field that cancels out. Hence this
layer should be strictly 2D in zero magnetic field and behave
accordingly. This scenario is known to be incorrect; the BCF
transition as originally conceived is actually a roughening
transition [8] with quite different characteristics. The work
in Refs. [1,3] affords examples in which the Burton, Cabrera,
and Frank type of transition is obtained by exact analysis,
but in a different scenario and without making a mean field
approximation.

Our first step will be to describe the model as originally
formulated [1–3] and to review the results obtained for it. We
will then indicate why we think the SK or VW scenarios are
more appropriate than the wetting one. After that, we will point
out a number of limitations that were necessary to obtain exact
results and then show how Monte Carlo simulations can be
used to get information when these limitations are relaxed and
the exact result route is no longer available to us.

In the spirit of Kossel and Stransky (KS) [9,10], config-
urations of molecules adsorbed on the substrate plane are
constructed by regarding each molecule as a unit cube the
lower side of which meshes with the underlying simple square
lattice of the substrate, denoted � ⊂ Z2. Molecular rafts
are assembled as close packed arrays of the KS cubes. It
is clear that, because it has no interior holes, a raft can be
described just as well as a simple closed loop on �. Loops
can meet at vertices of � but not on edges, as this would
imply overcounting. The upper faces of the KS cubes have
height 1. To extend this model further, we permit placing rafts
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on top of rafts, without overhangs. In thisway, we encounter
loops within loops on �. As an additional restriction, the
significance of which will soon become apparent, we do not
allow any edge of a raft to lie directly above one of any
lower raft, thus excluding multiple height jumps. This model
thus manifests stepped towers erected on the plane; it was
termed the “multi-ziggurat” (MZ) [3] model in recognition of
its architectural precursor in ancient Sumeria. To complete
the definition of the MZ model for equilibrium statistical
mechanics, we must specify the configurational energy. The
surface of a collection of molecular rafts is composed of two
parts, one in contact with the substrate and the other in contact
with the surroundings. Representing this collection as the
equivalent loop form, labeled �, the energy E(�) is given by

E(�) = τL(�) + (τ − ε)A1(�), (1)

where τ is the surface tension, ε is the adhesion energy of a
molecule to the substrate, and L(�) is sum of the lengths �(γ )
of the simple closed loops of �,

L(�) =
∑
γ∈�

�(γ ). (2)

The term A1 is the area of contact of the plaquettes with
the substrate, which is exactly the same as the “roof” area
because of the ziggurat construction. Thus the second term
in Eq. (1) is the energetic contribution of plaquettes in � with
normal perpendicular to the substrate plane. The remainder
of the surface tension contribution is given by the first term.
For stability against detachment, we evidently require that
τ > −ε. We now briefly mention the results that can be
obtained for this model. Notice that when τ = ε we have
recaptured precisely the planar Ising model, so the transition
temperature and the free energy singularity are known. This is
also the case if ε > τ ; then the first layer is completely covered
and subsequent rafts are laid on top of this layer as with
τ = ε. In the remaining region of stability, characterized by
−τ < ε < τ , much less detailed information is available [2].

If we are to regard the MZ model as a version of the VW
and SK scenarios, then we should point out three shortcomings
of the model as it stands. The first, which we will not discuss
further here, is that we do not allow for the energy of mismatch,
elastic in origin, between the first raft and the substrate.
The second deficiency, the examination of which is the main
subject of this paper, is the Ehrlich-Schwoebel (ES) [11,12]
phenomenon. Simply stated, multiple height steps should be
allowed, but they are energetically disfavored. In the next
section, we will describe in some detail a model of Ref. [13]
that is simply related to the MZ model but permits multiple
height steps and incorporates the ES idea.

The third problem is the formation of corrals. A corral or
hole is a region of lesser height surrounded by a region of
greater height. The model studied in this paper forbids corrals.
Detecting a corral requires nonlocal information, and it is
unlikely that a physically reasonable equilibrium model would
contain long-range interactions that forbid corrals. On the
other hand, dynamical considerations may suppress corrals.
The formation of a corral from a plateau requires the removal
of a molecule that is entirely surrounded by neighbors. Such a
molecule will be tightly bound and its evaporation suppressed.
A corral might also be formed by the sequential deposition

of a wall that eventually encloses a region. However, surface
diffusion would tend to favor more compact structures and
suppress the formation of walls. Thus, although our model
is an equilibrium statistical mechanical model, we believe
that the no-corrals rule makes it an appropriate model for
nonequilibrium surface growth processes.

From the point of view of equilibrium statistical mechanics,
the above height models can be regarded as generalizations
of the height representation of the 2D Ising model, which
corresponds to Eq. (1) with τ = ε. Other generalizations
are possible. In this work we consider the generalization of
Ref. [13] that incorporates the ES idea by allowing height
steps greater than one. Height steps greater than one are given
an extra energy proportional to ε1. We study this multistep
height model numerically and find that, along its critical curve,
the critical exponents vary continuously with ε1. Though our
model is motivated by surface physics, it appears to be closely
related to another class of models in statistical physics, the
O(n) loop models. In the O(n) loop models the statistical
weight depends on the total loop length L(�) and also contains
a factor n for each simple loop. Thus, the energy E(�) becomes

E(�) = τL(�) + (ln n)C(�), (3)

where C(�) is the number of simple loops in � and n is referred
to as the loop fugacity. On lattices with vertices of degree 3,
the loops are disjoint and on the honeycomb lattice one has
the well-known O(n) loop model introduced in Ref. [14]. A
great deal is known about this O(n) loop model when n � 2.
For a given n, there exist three distinct phases: a disordered
phase with small loops, a densely packed phase, and a fully
packed phase. The densely packed and fully packed phases
are both critical; i.e., the probability for two points to be on
the same loop decays algebraically with distance. Between the
disordered and the densely packed phase is a critical curve
as a function of n. The singular behavior of the O(n) loop
model along this critical curve can be described by a set of
critical exponents that are functions of n. These exponents
can be obtained from a mapping to Coulomb gas theory
[15]. Surprisingly, we find strong numerical evidence that the
multistep height model studied here can also be described by
the Coulomb gas theory and that there is a one-to-one mapping
for universal quantities between n and ε1. In the continuum
scaling limit when the lattice spacing shrinks to zero, critical
O(n) loop models and hence presumably also critical multistep
height models should be conformally invariant and described
by Conformal Loop Ensembles (see, e.g., Ref. [16]) with a
parameter value κ mapped onto n and ε1.

The plan for this paper is as follows. In Sec. II we define the
multistep height model. In Sec. III we list quantities of interest
for the model. In Sec. IV we describe the numerical methods
that are used in our simulations. In Sec. V we present our
results for the critical behavior of the multistep height model.
The paper closes with a discussion in Sec. VI.

II. THE MULTISTEP HEIGHT MODEL

The height models proposed in Ref. [13] and studied here
generalize the height representation of the Ising model. Con-
sider the two-dimensional Ising model on a square lattice in
the spin representation with uniform plus-spin fixed boundary
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FIG. 1. A typical configuration of the multistep height model near
the critical temperature for τ = 2, ε1 = 0, and system size L = 30.
The shade of the columns represents their height.

conditions. There is a one-to-one mapping from spins on the
direct lattice to heights on the dual lattice. The height of any
dual lattice site is the least number of Peierls contours that must
be crossed on a path from the boundary. This definition leads
to several important consequences. First, the magnetization of
the Ising model is simply the number of even height sites minus
the number of odd height sites. Second, there is a constraint
that no holes or corrals are allowed in the height representation.
That is, from every dual lattice site, there exists a path to the
boundary that is nonincreasing in height. Finally, the height
representation of the Ising model will have only height steps
of +1 or −1.

To generalize the model, we break the constraint of single
height steps by allowing larger height steps at an extra energy
cost, while still disallowing holes or corrals. The probability
for a loop configuration is obtained from the energy E(�):

E(�) = τL(�) + ε1N (1,1). (4)

Here � is a collection of simple closed loops defined on the
dual lattice. In the Ising model, these form the Peierls contours,
while in the multistep model they can have a more complicated
structure. In particular, this model allows Peierls contours to
overlap, corresponding to larger height steps. L(�), previously
defined in Eq. (2), is the sum of the lengths of all of the loops
(sum of all the edge weights), including now the lengths of all
of the overlapping loops. In the loop representation τ is the
energy associated with adding a single edge to � while N (1,1)
is defined as L(�) minus the length of all edges with weight
one (step size one). ε1 is the energy cost associated with these
larger height steps. L(�) adds factors of τ linearly in the size
of the height step, while N (1,1) adds factors of ε1 linearly in
the size of the step but only for height steps larger than one.
Figure 1 shows a typical height configuration near the critical
temperature for τ = 2 and ε1 = 0. Note that we have not in-
cluded the term (τ − ε)A1(�) in Eq. (1) in the multistep height.
It would be interesting to consider its effect in future studies.

Equation (4) completely specifies the loop representation
of the model. The height representation is uniquely obtained
from the loop representation. The height associated with a

FIG. 2. A configuration of the multistep height model in the
oriented loop representation. Each edge corresponds to a height
change given by its weight. A double arrow corresponds to an edge
with weight two, while a single arrow corresponds to an edge with
weight one. Crossing an edge with an arrow pointing to the right of
the crossing direction is a positive height step. Numbers indicate the
heights of the regions. For this configuration L(�) = 62, N (1,1) = 6,
and E(�) = 62τ + 6ε1.

lattice site is obtained using the rule that the height change
across a dual edge is equal to the weight of the bond. The
direction of the height change is determined by the no-corrals
rule. Figure 2 shows a possible edge configuration and the
associated heights. In this configuration L(�) = 62, N (1,1) =
6, and E(�) = 62τ + 6ε1.

In this paper we simulate multistep height models for
several values of ε1 in the range −1 � ε1 � ∞ and τ = 2.
Equation (4) with τ = 2 and ε1 = ∞ corresponds to the height
representation of the Ising model with interaction energy
J = 1.

III. MEASURED QUANTITIES

Order parameters for height models [17–19] can be con-
structed in analogy to the magnetization for spin models. In the
height representation of the Ising model, plus spins correspond
to even heights while minus spins correspond to odd heights.
One can define magnetization-like quantities Mn for positive
integers n as is done in Ref. [19]:

Mn = 1

N

∑
j

exp

[
2iπh(j )

n + 1

]
, (5)

where h(j ) is the height at site j and N is the number of
sites. This family of order parameters is motivated by the
idea that in the rough (high temperature) phase, any height
is nearly equally likely to occur, so Mn → 0. In the smooth
(low temperature) phase, a single height will dominate, and
Mn → 1 as T → 0. The magnetization m for the Ising model
in the spin representation is equal to M1. In the critical region
of the multistep model, we find that only M1 is useful for the
small systems studied here. Heights significantly greater than
two do not occur often, therefore Mn will have strong finite-size
corrections for n > 2. Henceforth we use m to represent either
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the magnetization for the spin representation of the Ising model
or M1 for height representations.

We measured the following quantities obtained from the
height field h(j ):

Binder cumulant. The Binder cumulant U is defined as

U = 1 − 〈m4〉
3〈m2〉2

. (6)

Crossings of the Binder cumulants as a function of temperature
for various system sizes are used to locate the critical point.

Order parameter. From the finite-size scaling of the order
parameter 〈m〉 at the critical temperature we obtain the
exponent ratio β/ν from 〈m〉 ∼ L−β/ν where L is the system
length.

Susceptibility. The susceptibility is defined as

χ = βN〈m2 − 〈m〉2〉. (7)

From the finite-size scaling of the susceptibility χ at the critical
temperature we obtain the exponent ratio γ /ν from χ ∼ Lγ/ν .
At the critical temperature for fixed boundary conditions the
finite-size scaling relation for χ is better behaved if the mean
is set to zero, the infinite system critical value. Our finite-size
scaling fits for γ /ν are made with the subtraction term 〈m〉2

omitted.
Specific heat. The specific heat c is defined as

c = β2

N
(〈E2〉 − 〈E〉2). (8)

From the finite-size scaling of the specific heat c at the critical
temperature we obtain the exponent ratio α/ν from c ∼ Lα/ν .

Bare substrate areal fraction. The areal fraction of the bare
substrate φ is defined as

φ = 1

N

N∑
j=1

δh(j ),0. (9)

For T 
 Tc there are almost no ad-atoms and φ ≈ 1, while
for T � Tc, φ ≈ 0. The bare substrate is also known as the
“gasket” in Ref. [16], where its (mean) fractal dimension
at criticality is calculated rigorously for conformal loop
ensembles and agrees with earlier nonrigorous results of
Duplantier [20] for the area of connected regions in critical
O(n) loop models. Following the notation of Ref. [21] the
fractal dimension of these domains is 2 − β ′/ν so that the
finite-size scaling of φ is given by φ ∼ L−β ′/ν .

Height. We measured the height at the origin h(0) and
the average height of the lattice h̄ = (1/N)

∑
i h(i). These

quantities are expected to diverge logarthmically in the system
size.

IV. NUMERICAL METHODS

We developed two Monte Carlo algorithms to simulate
these height models. For the Ising case, we simulate the
spin representation using the Wolff algorithm adapted to fixed
boundary conditions. The spins are then mapped to heights
in order to measure properties of the height model. For the
multistep height model, there is no spin representation, and we
use a variant of the worm algorithm to sample the collection
of closed loops �. The nonlocality of the no-corrals rule

creates significant computational difficulties in implementing
the worm algorithm for the multistep heightmodel.

A. Wolff algorithm

The standard Wolff algorithm [22] for the Ising model must
be modified for fixed boundary conditions. Our approach is to
reject clusters that add a boundary spin to the cluster. Here are
the steps of the modified Wolff algorithm:

(1) Choose a random site i to initiate the cluster.
(2) Using a breadth-first search, consider all neighbors j of

every site in the cluster and propose to add j to the cluster.
(a) If the neighbor j has the same spin as the cluster

add this site to the cluster with probability p = 1 − e−2β .
(b) If the site that has been added to the cluster is part of

the fixed boundary, reject the entire cluster. (The rejection
of clusters that connect to the boundary is the only new
feature required for fixed boundary conditions. It reduces
the efficiency of the algorithm compared to free or periodic
boundary conditions.)

(c) Continue adding sites to the cluster until either the
cluster is rejected because it touches the boundary or the
growth of the cluster terminates.

(3) Flip the cluster with probability 1.
(4) Collect statistics.
In order to collect statistics on the height field we must

map the spin configuration to a height configuration. We do
this using a series of breadth-first searches, starting from the
boundary.

(1) All the boundary sites are put in the current queue and
assigned height zero. All other sites have no assigned height.

(2) Do a breadth first search starting from the current queue.
Sites are removed from the current queue one at a time, and
all neighbors of the site are tested. Neighbors with the same
spin as the current queue and no assigned height are added
to the current queue and given the same height as the current
queue. Neighbors with opposite spin and no assigned height
value are assigned a height value one greater than that of the
current queue and added to the future queue. This process is
repeated until the current queue is empty.

(3) The sites in the future queue are moved to the current
queue, and the future queue is emptied.

(4) Steps 2 and 3 are performed iteratively until the heights
of the entire lattice have been determined.

Although the fixed boundary conditions and the spin-
to-height mapping slow down the computation, the Wolff
algorithm is still very efficient for the height representation
of the Ising model with fixed boundary conditions. It is signif-
icantly faster than either the single-spin Metropolis algorithm
or the worm algorithm described below for the multistep
height model. However, the standard worm algorithm for the
Ising model [23] might be more efficient for fixed boundary
conditions but was not used for this study.

B. Worm algorithm

The worm algorithm was developed as a local update
algorithm that, nonetheless, almost entirely eliminates critical
slowing down [23–25]. An additional benefit of using the
worm algorithm for the multistep height model is the ability to
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efficiently detect and reject moves that would create corrals.
The worm algorithm generates a biased random walk that
creates directed edges on the dual lattice and samples the
closed loop structures � with probabilities associated with
the energy defined in Eq. (4).

Height models may be represented either by oriented or
unoriented loops. The energy is the same in either case, but
by using oriented loops it is possible to locally encode the
direction of height steps, and it is more straightforward to
compute heights and detect corrals. In order to easily satisfy
the no-corrals rule, the worm algorithm actually samples
configurations of oriented loops �′. We define height changes
across an edge relative to the direction that an edge is
approached: Crossing a right-pointing edge corresponds to
an increase in height, while crossing a left-pointing edge is a
decrease in height. (If ê is the direction of an edge and v̂ the
direction the edge is crossed then the direction of the height
step is ê × v̂.) As a result counterclockwise loops enclose
mounds, while clockwise loops enclose holes or corrals and
clockwise loops are forbidden by the no-corrals rule. Figure 2
shows an example of an allowed set of oriented loops and the
corresponding heights.

The worm algorithm generates properly weighted, oriented,
counterclockwise loop configurations as follows:

(1) Initiate the worm at a random location on the dual lattice.
Set the head and tail of the worm at the same position on the
dual lattice.

(2) Grow the worm. With equal probability, propose to move
the head or tail a single step in a random direction along
the dual lattice. The movement of the head creates a directed
edge pointing from the original position of the head to its
new position. The movement of the tail creates a directed
edge pointing from the new position of the tail to its original
position. Thus, as the head and tail move, the path connecting
the head and tail is created or destroyed.

(3) For the proposed move to be accepted, two conditions
must be met: The move must be accepted on energetic grounds,
and a corral must not be created.

(a) Calculate the change in energy �E associated with
the move and the associated Boltzmann factor e−β�E .
An increase in the edge weight from zero to one is
provisionally accepted with probability e−βτ , while an in-
crease from a nonzero value to one higher is provisionally
accepted with probability e−β(τ+ε1). Decreasing the edge
weight is always provisionally accepted. These acceptance
probabilities ensure that the probability distribution for
loop configurations satisfies detailed balance with respect
to the set of worm moves.

(b) Verify that no corral is created. As noted previously,
this means that no clockwise loop is formed. If the
proposed edge joins two existing edges, then a depth-first
search that follows the most clockwise edges is carried
out. To detect a clockwise loop, we assign every vertex i

of the dual lattice an angle θi . This angle is measured from
the point at which the search starts. Right (left) turns yield
changes in angle of −1 (+1). If the search returns to the
initial point and has �θi = −4, then it is evident that a
clockwise loop has been formed and the move is rejected.
The search ends by returning to the initial point or when
all edges connected to the initial point have been explored.

(4) If the edge is provisionally accepted and does not create
a corral, the proposed move is accepted and the edge is added
to �′.

(5) Repeat steps 2–4 until the head and tail of the worm
meet. It is only when the head and tail meet that the edge set
is a collection of loops and thus a physical configuration.

(6) Heights are measured when the worm closes and �′ is
physical. The height of each site is found by scanning through
the lattice, row by row, and examining the changes in height
by counting the edges that are crossed. The direction of the
edge that is crossed determines whether the height change is
positive or negative, while the weight of the edge determines
the change in height in crossing the edge. All other observables
are obtained from the heights.

We find that of these two algorithms, the Wolff algorithm
applied to the spin representation followed by a mapping
to the height representation is the most efficient way to
study the height representation of the Ising model. The worm
algorithm and the Wolff algorithm are comparably efficient as
measured in Monte Carlo sweeps, but the worm algorithm has
a substantial computational overhead associated with checking
the orientation of loops. However, the Wolff algorithm is
applicable only in the Ising case, where a spin representation
is available. The multistep height model has no known spin
representation, and thus it is necessary to work either in the
height representation or in the loop representation. Both the
worm and Wolff algorithms are far more efficient than a single-
site height update algorithm such as the single-spin Metropolis
algorithm or loop algorithms that update loops locally.

For the worm algorithm time can be measured in the number
of worms attempted. A worm attempt consists of choosing
a random site and growing the worm from this site until
it either closes to form a loop or disappears. Measured in
units of worm attempts, we found that observables approach
their equilibrium values exponentially with a time scale that
is approximately independent of both the observable and the
value of ε1. This equilibration time scale grows with system
size, but, for the largest system L = 199, it is less than 7500.
For all system sizes we discard the first 105 worm attempts to
achieve equilibration before collecting data. Data are collected
every 200 worm attempts.

Errors in the measurement of observables are estimated
using the blocking method [26]. Each simulation consists
of 200,000 data collection sweeps (4 × 107 worm attempts)
after the initial equilibration. The data are divided into 200
blocks, each containing 1000 measurements, and errors are
obtained from the standard deviation between blocks. The
critical temperature is estimated by extrapolating the crossings
of the Binder cumulants to infinite system size as described
below. The error in the critical temperature was obtained by
considering power-law fits of critical observables near this
extrapolated critical temperature. The range of temperatures
for which the power-law fit was a good fit determined the error
in the critical temperature. Errors in extrapolated quantities
such as the critical exponents are estimated from the range of
fit parameters found by varying the critical temperature over
its uncertainty range. Statistical errors in the fits needed to
obtain exponents are much smaller, typically 10% to at most
25% of the uncertainty resulting from the uncertainty of the
critical temperature.
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FIG. 3. The average height h̄ vs L for the Ising model. The solid
line is the best fit to the form given in Eq. (10), where the prefactor
to the logarithm is B = 0.0467.

V. RESULTS

A. Critical Ising model in the height representation (ε1 = ∞)

To understand critical properties of the height represen-
tation of the Ising model, the Wolff algorithm with fixed
boundary conditions, as described in Sec. IV A, is used along
with finite-size scaling. We simulated the system at the critical
temperature Tc = 2/ ln(1 + √

2) for 12 sizes ranging from
L = 19 to L = 199 to determine the scaling behavior of the
average height per site. Odd system sizes are used so that the
domain has a unique center.

Figure 3 shows how the average height per site scales with
system size. The fitting function is

h̄ = A + B ln(L)

(
1 + C

L

)
. (10)

The 1/L correction to scaling is suggested by the fixed
boundary conditions. It can be difficult to distinguish between
logarithms from small power laws, but the data clearly show
that this is a logarithmic function. A three-parameter power-
law fit for h̄ yields a Q value less than 0.0001, while the
logarithmic fit of Eq. (10) has a Q value of 0.34. The prefactor
of the logarithm is B = 0.0467 ± 0.0015. This prefactor is the
same within error bars for h̄ as it is for h(0).

FIG. 4. (Color online) The Binder cumulant U is shown as a
function of temperature T for various system sizes and ε1 = 0. System
sizes increase from top to bottom on the right side of the graph
and from bottom to top on the left side. Finite-size estimates of the
critical temperature are obtained from the crossings of the curves for
successive system sizes.

Using finite-size scaling we also obtain values for β/ν,
β ′/ν, and γ /ν as shown in Table I. These and other critical
exponents are obtained from a three-parameter fit of the form
y = aLb(1 + c/L) where, again, the linear correction to scal-
ing is suggested by the fixed boundary conditions and yields
reasonable fits. Although fixed boundary conditions result in
larger finite-size corrections than free or periodic boundary
conditions, we are still able to obtain accurate exponent values.

B. Critical behavior of the generalized height model (ε1 < ∞)

The critical temperature of the multistep model depends on
ε1. Critical temperatures are obtained from crossings of the
Binder cumulant defined in Eq. (6). Figure 4 shows the Binder
cumulant for various system sizes. Crossings of these curves
for successive system sizes give a finite-size estimate of the
critical temperature. By plotting the crossings versus 1/L and
extrapolating to 1/L → 0, we find an estimate of the critical
temperature in the thermodynamic limit, as seen in Fig. 5. This
method is used for various values of ε1. The results are shown
in Table I.

Using these values for the critical temperature, simulations
are carried out at and near the measured critical temperature for
12 system sizes from L = 19 to 199 to determine the finite-size
scaling behavior of each of the quantities of interest.

TABLE I. Critical temperature Tc, critical exponents β/ν, γ /ν, α/ν, and β ′/ν, and the prefactor of the logarithmic scaling of the average
height B for each simulated value of ε1. The Ising model corresponds to ε1 = ∞. Ising model results were obtained from the Wolff algorithm.
Exact results for the Ising model are presented for comparison.

ε1 Tc β/ν γ /ν α/ν β ′/ν B

−1 2.0875(10) 0.065(3) 1.868(8) 0.33(3) 0.0317(15) 0.031(2)
0 2.1685(10) 0.075(2) 1.85(1) 0.26(2) 0.034(1) 0.0326(15)
1 2.2065(10) 0.083(2) 1.83(1) 0.21(2) 0.038(2) 0.038(2)
2 2.230(1) 0.0925(20) 1.815(5) 0.17(2) 0.042(1) 0.040(3)
∞ (simulation) 2.2686(8) 0.127(4) 1.75(2) – 0.053(2) 0.0467(15)
∞ (exact) 2.269185. . . 0.125 1.75 0 0.05208. . . 0.04594. . .

061104-6



COMPUTATIONAL STUDY OF A MULTISTEP HEIGHT MODEL PHYSICAL REVIEW E 85, 061104 (2012)

FIG. 5. The crossings of U are plotted vs 1/L for systems
between L = 60 and 160. The L value used for each point is the
smaller of the system sizes.

We find that the multistep model has critical behavior that
is dependent on the value of ε1. We study the exponents β/ν,
γ /ν, α/ν, and β ′/ν, as well as the logarithmic prefactor B of
the average height per site. Table I lists the resulting fits for
each value of ε1. The errors in the specific heat measurements
are too large to discriminate between a logarithmic scaling law
[α/ν = 0(log)] and a small power law α/ν > 0. Both fits are
plausible and yield similar goodness-of-fit values. The values
of α/ν in Table I assume a power-law fit.

It is possible that the observed continuous variation in
the exponents shown in Table I reflects finite-size corrections
and that the number of universality classes is small, perhaps
one or two. However, we believe that the evidence points to
the conclusion that the multistep height model describes a
one-parameter family of universality classes parameterized
by ε1. In two dimensions, there are several parameterized
statistical mechanical models that have continuously varying
critical exponents. These include the q-state random-cluster
model in terms of parameter q ∈ [0,4] [27], the O(n) loop
model for n ∈ [−2,2], and the Ashkin-Teller model in the
associated coupling strength, as well as the six- or eight-vertex
models. In all of these systems, the critical exponents can be
expressed in terms of a single parameter: the coupling constant
g in the Coulomb gas model. Thus, it is plausible that g is also
sufficient to describe the critical exponents of the multistep
height model.

We note that the multistep height model and the O(n) loop
model [14,21,28,29] are similar in several ways. Both models
are formulated in terms of loops and contain the Ising model as
a special case. Both models have statistical weights that depend
in the same way on the total loop length, L(�). The O(n) loop
model is typically defined on a honeycomb lattice and requires
Eulerian loops so that loops do not overlap and the statistical
weight has a term nC(�), where C(�) is the number of simple
loops. When n = 1 the model reduces to the Ising model. In
Ref. [28], by making use of the fact that the critical O(n)
loop model is equivalent to the tricritical q = n2 Potts model,
the critical exponents for the magnetization, the Ising-spin
domain, the susceptibility, and the specific heat were related

by simple formulas to the Coulomb gas coupling. In terms of
the exponents β/ν,β ′/ν,γ /ν, and α/ν, these formulas read
[15,21,28–31]

β/ν = 6 − g

g
, (11)

β ′/ν = (g − 2)(6 − g)

8g
, (12)

γ /ν = 4g − 12

g
, (13)

α/ν = 6 − 32

g
, (14)

with g ∈ [4,6]. Equation (13) is related to Eq. (11) by γ /ν =
2 − 2β/ν. Later in this section we will discuss the relation
between the constant B in Eq. (10) and the Coulomb gas
parameter g.

We use our measurements of β/ν,β ′/ν,γ /ν, and α/ν to
estimate g for each value of ε1. Estimates of g from these
exponents agree well with each other, and a combined estimate
can be obtained from a weighted average of the estimates from
each of the four critical exponents. The weight assigned to
exponent i is 1/δ2

i where δi is the error in the estimate of the
corresponding exponent. Table II lists the value of g, calculated
by performing a weighted average of each of the four measured
exponents together with the goodness of fit Q for combining
the values from each exponent into a single value of g. The
goodness of fit is calculated assuming the critical exponents are
independent and normally distributed with a standard deviation
given by δi . These assumptions are not quantitatively correct,
so the Q values cannot be interpreted as the probability of find-
ing χ2 larger than the fit value. Nonetheless, the fact that the Q

values are large suggests that a single g simultaneously predicts
all of the exponents within their error ranges. The existence of
a single g consistent with all the critical exponents supports the
idea that the multistep height models parameterized by ε1 are
indeed in the universality classes of the Coulomb gas model
parameterized by g. The last column in Table II lists the value
of the loop fugacity n in the O(n) loop model for the value of
g, which is obtained from the formula [15,28]

n = −2 cos(πg/4). (15)

The relation between n and ε1 for the four finite values of
ε1 that were simulated is close to linear and extrapolates to
n = 1/2 for ε1 = −2, which is the limit of stability of the
multistep height model.

TABLE II. For each simulated value of ε1, the best fit values
of the Coulomb gas coupling g(fit), the goodness of this fit Q, the
conjectured value of the Coulomb gas coupling g(conj) obtained from
Eqs. (15) and (16), and the loop fugacity n(fit) obtained from g(fit)
and Eq. (15).

ε1 g(fit) Q g(conj) n(fit)
−1 5.629(10) 0.759 5.6261 0.574(15)
0 5.579(8) 0.986 5.5759 0.649(11)
1 5.535(9) 0.802 5.5297 0.714(13)
2 5.488(7) 0.731 5.4890 0.783(10)
∞(measured) 5.324(16) 0.977 5.3333 1.013(43)
∞(exact) 16/3 – – 1
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Ε

FIG. 6. (Color online) The loop fugacity n of the O(n) loop
model vs ε1. The curve is obtained from Eq. (16), and the data are
from Table II.

We find that the simple relation

n = tanh[(ε1 + 2)/2π ] + 1

2
(16)

is a good fit to the data in Table II. The function is a guess
based on the requirement that it yields n = 1/2 for ε1 = −2
and approaches n = 1 exponentially as ε1 → ∞ as might
be expected since ε1 exponentially suppresses loop weights
greater than one. Figure 6 shows the data in Table II together
with the conjectured relation, Eq. (16). It would be interesting
to simulate larger values of ε1 to test this conjecture beyond the
linear regime. If the conjecture holds, it suggests the possibility
of an exact mapping from the multistep height model to a
known 2D model.

There are also exact results for the Coulomb gas model
for the universal prefactor of the logarithmic growth of the
height at the origin. It is straightforward to show that the
same prefactor holds for both the height at the origin and the
average height, h̄. The prediction for the logarthmic prefactor
B defined in Eq. (10) from Ref. [32], which has been proved
for conformal loop ensembles [16], is

B = (g − 4)

πg
cot(πg/4). (17)

If we use the values of g given in Table II to compute B

using Eq. (17) and compare with the measured values in
Table I, we find reasonable agreement. The measured values
are larger than the predicted values by about twice the quoted
error except for the Ising case where the two values differ by
about the quoted error. Since the measurement of B is likely to
have substantial systematic errors that are not included in the
1/L correction in Eq. (10), we believe that the results for B

are consistent with the Coulomb gas predictions and provide

additional evidence that the multistep height models are in
the universality classes of the Coulomb gas/conformal loop
ensemble.

VI. DISCUSSION

We have analyzed a height model that generalizes the height
representation of the Ising model by allowing height steps
greater than unity with an energy cost parameterized by ε1.
Our data support the hypothesis that the critical exponents
and prefactor B depend continuously on ε1. Although we
believe that the system has continuously varying critical
exponents, it is conceivable that there are only one or two
universality classes and that the ε1 dependent exponents reflect
a finite-size crossover. The hypothesis of continuously varying
exponents is strengthened by the relationship between the
measured exponents that allows a mapping via the Coulomb
gas parameter g to the O(n) loop model for n in the range
1/2 � n � 1. We conjecture an exact relationship between ε1

and g or n that merits further investigation.
In the multistep height model the energy of a height step is a

linear function of its magnitude. It would be interesting to study
other energy functions. For example, the energy of a height step
could be quadratic in its magnitude. We suspect that this would
also yield models in the Coulomb gas universality classes.

A central feature of the model studied here is the no-corrals
rule. It would be interesting to study a model with the same
energetics but without forbidding corrals. Height models that
allow corrals are generally referred to as “solid-on-solid”
models. If the energy for height steps greater than one is
quadratic and corrals are allowed the corresponding discrete
Gaussian model is known to be in the O(2) universality
class [33]. The body-centered solid-on-solid (BCSOS) model
restricts height steps to one and has an energy that is a
sum of next-nearest neighbor height differences. The BCSOS
model is exactly solvable and is also in the O(2) universality
class [34,35]. In the loop representation, allowing corrals
corresponds to oriented loops with both orientations allowed.
In the case of oriented loops on the honeycomb lattice with
ε1 = ∞, the loops are disjoint and the orientation degrees of
freedom can be simply integrated out. This yields a statistical
weight of 2 for each loop, and hence maps to the O(n) loop
model with n = 2. On this basis, it is tempting to speculate
that for 0 < ε1 < ∞, these oriented loop models will map to
O(n) loop models with loop fugacity in the range 1 < n < 2.
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