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Energy-landscape analysis of the two-dimensional nearest-neighbor φ4 model
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The stationary points of the potential energy function of the φ4 model on a two-dimensional square lattice with
nearest-neighbor interactions are studied by means of two numerical methods: a numerical homotopy continuation
method and a globally convergent Newton-Raphson method. We analyze the properties of the stationary points,
in particular with respect to a number of quantities that have been conjectured to display signatures of the
thermodynamic phase transition of the model. Although no such signatures are found for the nearest-neighbor
φ4 model, our study illustrates the strengths and weaknesses of the numerical methods employed.
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I. INTRODUCTION

The stationary points of the potential energy function or
other classical energy functions can be employed to calculate
or estimate certain physical quantities of interest. Well-known
examples include transition state theory or Kramers’s reaction
rate theory for the thermally activated escape from metastable
states, where the barrier height (corresponding to the difference
between potential energies at certain stationary points of
the potential energy function) plays an essential role. More
recently a large variety of related techniques has become
popular under the name energy landscape methods [1],
allowing for applications to many-body systems as diverse as
metallic clusters, biomolecules and their folding transitions,
or glass formers undergoing a glass transition.

In the late 1990s it was observed that properties of stationary
points of the potential energy function V , i.e., configuration
space points qs satisfying dV (qs) = 0, reflect in dynamical
and statistical physical quantities simultaneously and show
pronounced signatures near a phase transition [2]. This
observation sparked quite some research activity, reviewed in
Ref. [3], including a theorem by Franzosi and Pettini asserting
that, at least for a certain class of models, stationary points
with V (qs)/N = vc are indispensable for the occurrence of an
equilibrium phase transition at potential energy vc [4]. This
theorem requires a number of conditions to be satisfied: The
potential energy function V has to have the Morse property,
has to be smooth, confining, and of short range (see Ref. [4] for
a complete list of conditions and their definitions). At the time
when these papers were published, one might have still hoped
that some of the conditions on V were merely technical but not
essential for the result. However, it became clear soon that the
result cannot be extended to long-range interacting models [5]
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or to nonconfining potentials [6]: These classes of potentials
comprise cases which are particularly amenable to analytic
calculations, and a direct relation between phase transitions
and stationary points of V could be ruled out through exactly
solvable counterexamples.

Originally the incentive for the study reported in the present
article was to investigate the stationary points of a model that
satisfies all the conditions required by Franzosi and Pettini [4].
This is not an easy task, as in this class there are no exactly
solvable models which have a phase transition.1 As a model to
study, we then opted for the nearest-neighbor φ4 model on a
two-dimensional square lattice. This model, though not exactly
solvable, appears to be relatively simple. Moreover, results on
the stationary points of its long-range version were known and
readily available for comparison [5]. The potential of the two-
dimensional nearest-neighbor φ4 model is smooth, confining,
and of short range. Moreover it has the Morse property for
almost all values of the coupling constants (see the Appendix
for a proof) and therefore satisfies all requirements of Franzosi
and Pettini’s theorem.

Much to our surprise, we found that all stationary points qs

of the potential energy function V have nonpositive potential
energies, i.e., V (qs) � 0. From this observation, one can
conclude that the result of Franzosi and Pettini, allegedly
proven in Ref. [4], is false. Furthermore, a numerical method
put forward in Ref. [7] and applied to the very same two-
dimensional φ4 model yields incorrect results. These findings,
and a discussion of their implications, have been published
in a Letter [8]. The nonpositivity of the stationary energies
V (qs) was established in that Letter analytically, supported
by results obtained with two different numerical methods.

1Note that most exactly solvable models with short-range interac-
tions, like, for example, the two-dimensional nearest-neighbor Ising
model, have a discrete configuration space, and the energy landscape
techniques we are interested in do not apply.
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The main purpose of the present article is to give a detailed
account of these numerical methods and to present a more
detailed analysis of the properties of the stationary points of
the two-dimensional nearest-neighbor φ4 model.

In Sec. II this model is introduced and some of its
thermodynamic properties are reviewed. In Sec. III the first of
the numerical methods, homotopy continuation, is discussed.
It is an algebraic-geometrical technique devised to obtain all
isolated stationary points of a given system of multivariate
polynomial equations but is restricted to fairly small lattice
sizes. We have applied this method to square lattices of
sizes 3 × 3 and 4 × 4. The stationary points obtained are
analyzed with respect to their number, potential energies,
indices, and Hessian determinants in Sec. IV. The second
numerical method, discussed in Sec. V, makes use of a globally
convergent version of the Newton-Raphson algorithm for
searching the zeros of a real-valued function. It can be applied
to larger lattice sizes, but provides in general only a subset of
the stationary points. We summarize and discuss our findings
in the concluding Sec. VI.

II. TWO-DIMENSIONAL NEAREST-NEIGHBOR φ4

MODEL

On a finite square lattice � ⊂ Z2 consisting of N = L2

sites, a real degree of freedom φi is assigned to each lattice
site i ∈ �. By N (i) we denote the subset of � consisting
of the four nearest-neighboring sites of i on the lattice under
the assumption of periodic boundary conditions. The potential
energy function of this model is given by

V (q) =
∑
i∈�

[
λ

4!
q4

i − μ2

2
q2

i + J

4

∑
j∈N (i)

(qi − qj )2

]
, (1)

where q = (q1, . . . ,qN ) denotes a point in configuration space
� = RN .2

The parameter J > 0 determines the coupling strength
between nearest-neighboring sites, and the parameters λ,μ >

0 characterize a local double-well potential each degree of
freedom is experiencing.

In the thermodynamic limit N → ∞ this model is known
to undergo, at some critical temperature Tc, a continuous phase
transition, in the sense that the configurational canonical free
energy

f (T ) = − lim
N→∞

T

N
ln

∫
�

dNq e−V (q)/T (2)

is nonanalytic at T = Tc. The transition is from a “ferromag-
netic” phase with nonzero average particle displacement to
a “paramagnetic” phase with vanishing average displacement
(see Ref. [9] for more details as well as for Monte Carlo
results).

2Our definition of V coincides with the one in Ref. [12], but differs
from Ref. [7] by a factor 1/6 in the quartic term. Judging from the
critical temperatures and energies reported in the latter, as well as
from their reference to Ref. [12], we assume that there is a misprint
in Ref. [7]. For the main conclusions in Ref. [8] and in the present
article, the precise values of any of the constants are not crucial.
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FIG. 1. (Color online) Monte Carlo results for the critical poten-
tial energy vc as a function of the coupling J for the two-dimensional
φ4 model (1) with λ = 3/5 and μ2 = 2. System sizes up to L = 128
have been used to obtain the estimates. The line connecting the data
points is plotted as a guide to the eye.

Since we are interested in whether, and how, the phase
transition reflects in the properties of the potential energy
landscape, it is more adequate for our purposes to compare not
to Tc, but to the critical potential energy per lattice site vc of
the transition [10]. Both quantities are unambiguously related
to each other in the thermodynamic limit via the caloric curve
v(T ). This is true independently of the statistical ensemble
used, as these ensembles are known to be equivalent for
short-range models like the one we are studying [11].

The critical potential energy vc is less frequently studied; in
fact, the only data we could find in the literature are from Monte
Carlo simulations of fairly small system sizes N = 20 × 20 in
Ref. [12], with parameter values λ = 3/5, μ2 = 2, and J = 1.
We use the same values of λ and μ2 in the following but will
show results for a range of couplings J . Since the value of
vc is a crucial benchmark when relating our stationary point
analysis to the phase transition of the φ4 model, we have
performed standard Metropolis Monte Carlo simulations for
somewhat larger system sizes up to 128 × 128 and 107 lattice
sweeps.

Some of the Monte Carlo results have already been reported
in Ref. [8]. From these plots one can read off a critical potential
energy per lattice site of roughly vc ≈ 2.2 for coupling J = 1.
A more precise value or an estimate of the statistical error could
be obtained by more extensive Monte Carlo simulations and/or
a finite-size scaling analysis of the data, but the results as they
are will be sufficient for our purposes. We have determined vc

also for several other couplings, and the results are displayed
in Fig. 1.

III. NUMERICAL POLYNOMIAL HOMOTOPY
CONTINUATION METHOD

The idea behind numerical continuation methods is to first
find the solutions of a simple system of equations which
shares several important features with the given system.
Then, in a second step, starting from these solutions one
continues them towards the given system in a systematic way.
Homotopy continuation methods have been around already
for several decades [13,14]. With more recent machinery like
the numerical polynomial homotopy continuation (NPHC)
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method used in the present article, the method is guaranteed
to find all isolated solutions of systems of polynomial
equations [15,16].

We consider a system of m polynomial equations

P (q) =

⎛
⎜⎝

p1(q)
...

pm(q)

⎞
⎟⎠ = 0 (3)

in the variables q = (q1, . . . ,qm)T , and we assume that all
solutions of Eq. (3) are isolated. Then Bézout’s Theorem (see
Chapter 8 of Ref. [15]) asserts that a system of m polynomial
equations in m variables has at most

∏m
i=1 di isolated solutions

where di is the degree of the ith polynomial. This bound is
called the classical Bézout bound, and it is known to be sharp
for generic systems [i.e., for generic values of the coefficients
of the polynomials pi(q)].

The continuation of solutions is formally described by the
homotopy

H (q,t) = P (q)(1 − t) + γ tS(q), (4)

where γ is a complex number and

S(q) =

⎛
⎜⎝

s1(q)
...

sm(q)

⎞
⎟⎠ = 0 (5)

is again a system of m polynomial equations. Varying the
parameter t ∈ [0,1], H can be deformed from the start system
H (q,1) = γ S(q) at t = 1 into the polynomial system of
interest, H (q,0) = P (q) at t = 0. The following conditions
have to be satisfied in order to guarantee that all solutions of
P can be computed from this homotopy:

(i) The solutions of S(q) = 0 can be computed.
(ii) The number of solutions of S(q) = 0 satisfies the

classical Bézout bound for P (q) = 0 as an equality.
(iii) The solution set of H (q,t) = 0 for t ∈ (0,1] consists of

a finite number of smooth paths, called homotopy paths, which
are parameterized by t .

(iv) Every isolated solution of H (q,0) = P (q) = 0 can be
reached by some path originating at a solution of H (q,1) =
γ S(q) = 0.

Satisfying the first two criteria hinges on a suitable choice
of the start system S. Criteria (iii) and (iv) are guaranteed to be
satisfied based on the genericity of the constant γ in Eq. (4).
Theorem 8.4.1 of Ref. [15] states that these criteria hold for
all but finitely many γ on the unit circle.

The start system S(q) = 0 can, for example, be taken to be

S(q) =

⎛
⎜⎝

q
d1
1 − 1

...
qdm

m − 1

⎞
⎟⎠ = 0, (6)

where di is the degree of the ith polynomial of P (q) = 0. The
system (6) is easy to solve and guarantees that the total number
of start solutions is

∏m
i=1 di and all solutions are nonsingular.

Each homotopy path, starting at a solution of S(q) = 0 at
t = 1, is tracked to t = 0 using a path-tracking algorithm,
e.g., Euler predictor and Newton corrector methods. There
are a number of freeware packages well equipped with path
trackers such as PHCpack [17], HOM4PS2 [18], and Bertini

[19]. We used the latter one to get the results in this paper.
Tracking the solutions to t = 0, the set of endpoints of these
homotopy paths is the set of all solutions to P (q) = 0. Since
each homotopy path can be tracked independently, NPHC is
inherently parallelizable.

The set of real solutions can be obtained from the set of
complex solutions by considering the imaginary part of the
solutions (typically, up to a numerical tolerance). We remark
that the approach of Ref. [20] implemented in alphaCertified
[21] can be used to certify the reality or nonreality of a
nonsingular solution given a numerical approximation of the
solution. The ability to compute all complex solutions, and thus
all real solutions, distinguishes the NPHC method from most
other methods. Due to the power of the NPHC method, it has
recently found several applications in theoretical physics [22].

To find the stationary points of the nearest neighbor φ4

model, we need to solve its stationary equations, i.e.,⎛
⎜⎝

∂V
∂q1

(qs)
...

∂V
∂qN

(qs)

⎞
⎟⎠ = 0 (7)

with qs ≡ (qs
1, . . . ,qs

N ) ∈ CN . Since (7) is a system of N

coupled third-order polynomial equations, the classical Bézout
bound is 3N . For this particular system, we know that the
number of solutions is exactly 3N (counting multiplicity) for
any parameters J and μ2 with λ �= 0. This follows since the
system consisting of all the terms of degree three is a decoupled
system of monomials. That is, there is only one term of degree
three for the ith polynomial in (7) which depends only upon qs

i ,
namely, the monomial λ(qs

i )3/6. This implies that (7) has no
solutions “at infinity” so that the classical Bézout bound must
be sharp (counting multiplicity). Thus, we have a solid check
on our claim to find all solutions using homotopy continuation.
However, the problem is that 3N grows rapidly as N increases,
and, due to current computational limitations, we are restricted
to only small size lattices such as 3 × 3 and 4 × 4.

For the 3 × 3 lattice, it took an average of roughly a minute
to compute the 39 solutions (counting multiplicity) for a given
value of J using Bertini running on a 2.4 GHz Opteron 250
processor with 64-bit Linux. For the 4 × 4 lattice, it took an
average of roughly 8.5 hours to compute the 316 solutions
(counting multiplicity) for a given value of J using Bertini
running on a cluster consisting of 12 nodes, each containing
two 2.33 GHz quad-core Xeon 5410 processors running 64-bit
Linux.

IV. PROPERTIES OF STATIONARY POINTS

Using the NPHC method as explained in the previous
section, we can obtain all complex stationary points of V . In the
context of energy landscape methods, one is usually interested
in the real solutions only, i.e., solutions of Eq. (7) with qs ∈
RN . In the next few subsections, we report on the properties
of these real stationary points: In Sec. IV A the number
of real stationary points is analyzed, and the existence of
singular solutions is discussed. In Sec. IV B we study the
potential energies V (qs) of the real qs, and in Sec. IV C their
Hessian determinants. In Sec. IV D the Euler characteristic of
certain submanifolds in configuration space, computed from
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the indices of the real stationary points, is investigated. Since,
as mentioned in the Introduction and discussed in a Letter [8],
we found that the real stationary points are not related to
the phase transition of the model (at least not in the direct
way predicted by the theorem in Ref. [4]), we extended our
analysis to include complex stationary points. The results of
this analysis are reported in Sec. IV E.

A. Real stationary points

For J = 0, i.e., in the absence of coupling, the stationary
points qs of the potential V in Eq. (1) can be calculated
analytically, obtaining 3N distinct solutions qs = (qs

1, . . . ,qs
N )

with qs
j ∈ {0,±

√
6μ2/λ}. Since λ,μ > 0, these stationary

points are all real. Upon increasing the coupling constant J ,
real stationary points start to bifurcate into complex ones,
and the number of real stationary points decreases gradually
from 3N for J = 0 to only three stationary points for some
sufficiently large J . This behavior is illustrated for 3 × 3 and
4 × 4 lattices in Fig. 2. The three stationary points that persist
at large J are the two global minima qs = (qs

1, . . . ,qs
N ) where

all qs
j =

√
6μ2/λ, respectively, −

√
6μ2/λ, and a stationary

point of index 1 where all qs
j = 0.

The value of J at which the number of real solutions drops
to three can be computed semi-analytically. This is done by
computing with MATHEMATICA the index of the stationary point
qs = (0, . . . ,0) as a function of J and then search for the value
of J at which the index drops to 1. Strictly speaking this value
of the index does not guarantee that there are indeed only
three real solutions, but the evidence we find makes it appear
plausible at least:

(i) For the 3 × 3 and 4 × 4 lattices where we can compute
all stationary points, the index drops to 1 at the same value
where the number of solution drops to three.

(ii) Once the index is 1, it remains zero for all larger J we
tested. Assuming that, as in the case of the 3 × 3 and 4 × 4
lattices, the number of real stationary points always decreases
with increasing J and reaches three for some value of J , it
appears plausible that this last change of the index happens
when the number of real solution drops to its lowest value of
three.

(iii) Index 1 of the stationary point qs = (0, . . . ,0) is
consistent with the existence of just 3 real solutions from the
point of view of the Euler characteristic (12) as introduced
in Sec. IV D: The two global minima (having index zero)
contribute +2 to the Euler characteristic. In the absence of
other stationary points, qs = (0, . . . ,0) has to contribute −1
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FIG. 2. (Color online) The number of real stationary points of V

for 3 × 3 (left) and 4 × 4 (right) lattices, plotted logarithmically as a
function of the coupling J .
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FIG. 3. (Color online) The value of J at which, for a given linear
system size L, the number of real stationary points of V drops to
three. The dots are data points computed with MATHEMATICA; the
line is the parabola 0.0507366L2 fitted to the data.

which is achieved by a stationary point of index 1 (but any
other odd index would have worked as well).

Accepting this reasoning as plausible, we find the values
of J (N ) at which the number of solutions drops to three to
be N -dependent and to be fitted excellently by a parabola, as
shown in Fig. 3.

We have also investigated the values of J for which the
system has at least one real singular solution, i.e., bifurcation
points of the parametric systems, using NPHC. At these
solutions the potential has degenerate critical points, a feature
that does not make V qualified to directly apply Morse theory
as described in Sec. IV D. There are two approaches that we
used to compute where the bifurcations in a one-parameter
system occur, which we describe in the context of computing
where the first bifurcation occurs. In the first approach, we
use the basic philosophy of the NPHC method with a slight
change that we treat J itself as a continuation parameter; i.e.,
we start with the known solutions at J = 0 and simply track
the solutions as J increases to determine the smallest value
of J > 0 where solutions coalesce. This yielded the values of
J ≈ 0.12907 and J ≈ 0.12894 for the 3 × 3 and 4 × 4 lattice,
respectively.

In the second approach, we use the fact that the Hessian
determinant, detHV (q,J ), where

HV (q) =
[
∂2V (q)

∂qi∂qj

]
i,j

, (8)

is zero at the singular solutions. We add this equation,
detHV (q,J ) = 0, as an additional equation in the system of
stationary equations leaving J unfixed so that it can be treated
as a variable. We then use Bertini to compute the set S of
values of J where this combined system has a solution. Since
all of the solutions at J = 0 are nonsingular, it follows that
the set S is the set of roots of a nonzero univariate polynomial
s(x). In particular, S is a finite set of points. See the Appendix
for more details.

The coefficients of the polynomial s depend upon λ and
μ2. If λ and μ2 are rational numbers, then s has rational
coefficients, meaning that S is a finite subset of the set of
algebraic numbers, a countable subset of C. For example,
with λ = 3/5 and μ2 = 2, we know that the set V of complex
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FIG. 4. (Color online) The scaled Hessian determinant D plotted vs the stationary values vs for all real stationary points qs of a 4 × 4 lattice
with couplings J = 0.1, 0.15, 0.3, and 0.45 (from left to right). To compare with the corresponding values of the phase transition energy vc,
see Fig. 1. The distribution of potential energies also illustrates that vs � 0 for all qs, as discussed in Sec. IV B.

stationary points must contain 3N distinct points when J is a
transcendental number, e.g., J = π .

For the 3 × 3 lattice, Bertini found that S consists of 1357
complex numbers, of which 297 are real and 178 are positive.
The smallest positive value using this approach is also J ≈
0.12907. This computation also yields that, for J > 11.00169,
all stationary points must be nonsingular. Performing this same
computation using the 4 × 4 lattice is currently beyond the
available computational resources.

B. Stationary values

In the Introduction we briefly reviewed the research efforts
aiming at establishing a relation between phase transitions and
stationary points of the potential energy function V . These
efforts all have in common that they focus on a conjectured
relation between the occurrence of a phase transition at some
critical potential energy vc and the properties of stationary
points qs with stationary values vs = V (qs)/N coinciding
with vc.3 From the stationary points obtained by means of
the numerical homotopy continuation method for lattice sizes
3 × 3 and 4 × 4, it is straightforward to compute, via (1), the
stationary values vs. For arbitrary couplings J , we found that
vs � 0 for all stationary points qs. An analytical calculation,
reported in Ref. [8], has confirmed this observation and
extended it to lattices of arbitrary sizes. As explained in this
same reference, it is this upper bound on vs which disproves the
theorem by Franzosi and Pettini [4], as it cannot be reconciled
with the fact that the critical energy vc of the phase transition
becomes positive for couplings J � 0.7.

C. Hessian determinant

Once a relation between stationary points of the potential
energy landscape and the occurrence of phase transitions had
been conjectured in the 1990s, it immediately became clear that
not all stationary points induce phase transitions. Therefore
an obvious question to ask was: Is there a certain property
of a stationary point that renders it capable of inducing a
phase transition? Some years later it was noticed that the
Hessian determinant HV of the potential energy function V ,
evaluated at the stationary points, is crucial for discriminating
whether or not a stationary point can induce a phase transition

3In contrast to other approaches which focus on what is called the
underlying stationary points; see Ref. [32].

in the thermodynamic limit [23]. For some models, even in
the absence of an exact solution, this insight facilitated the
exact analytic computation of transition energies [24]. We
refrain here from stating the precise criterion, noting only that
stationary points with a Hessian determinant approaching zero
in the thermodynamic limit play an important role.

We evaluated the determinant of the Hesse matrix (8) at all
of the real stationary points qs of V obtained by the homotopy
continuation method. In Fig. 4 we show the rescaled Hessian
determinant

D = | detHV (qs)|1/N , (9)

plotted versus the stationary values vs = V (qs)/N for all real
stationary points of 4 × 4 lattices and various couplings J .
From these plots one can immediately verify that vs � 0 for
all real stationary points and arbitrary coupling J , as discussed
in Sec. IV B. Since in general (i.e., at least for sufficiently large
J ) the potential energy at which the phase transition occurs
is not close to any of the stationary points, there is no point
in discussing the Hessian determinant as a possible signature
of the transition in the spirit of what was proposed in the
above-mentioned references [23]. In Sec. V we will use the
data as presented in Fig. 4 for a different purpose, namely, to
compare the homotopy continuation data to those obtained by
means of the Newton-Raphson method.

D. Euler characteristic

In the Introduction, and at the beginning of Sec. IV, we
referred to the work of Franzosi and Pettini [4] or to related
publications as dealing with the relation of stationary points
of the potential energy function V to thermodynamic phase
transitions. Although this is correct as regards content, it is not
obvious at first glance, as these results were originally phrased
in terms of topology changes of certain submanifolds Mv in
configuration space �,

Mv = {q ∈ �| V (q) � Nv}. (10)

Upon variation of the parameter v, the topology of the
submanifolds Mv may change at some value vt, in the sense
that Mv is not homeomorphic to Mw for v < vt and w > vt.
The occurrence of phase transitions at some critical potential
energy vc was then conjectured to be related to the presence of
topology changes with energies vt in an open neighborhood of
vc. Via Morse theory, such topology changes can be related to
the presence of stationary points of V with stationary values
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vs = vt (see Ref. [3] for an elementary introduction or Ref. [25]
for a textbook presentation).

In the context of configuration space topology, the Euler
characteristic χ (Mv) of the manifolds Mv has been used in
several publications as a way of characterizing the changes of
topology [7,26]. The Euler characteristic χ is a topological
invariant, i.e., different values of χ for manifolds Mv and
Mw imply that Mv and Mw are not homeomorphic. Hence
monitoring the Euler characteristic of the family {Mv}v∈R of
configuration space subsets under variation of the parameter
v, we may get an impression of the way the topology of the
Mv changes. Plotting the related quantity

σ (v) = lim
N→∞

1

N
ln |χ (Mv)| (11)

as a function of the potential energy v, a kink in σ was observed
precisely at the critical energy vc of the phase transition for
several models studied [7,26].

Knowing all stationary points of V with stationary values
vs up to a given value v, the Euler characteristic of Mv can be
calculated by means of the formula

χ (Mv) =
N∑

i=0

(−1)iμi(v), (12)

where the Morse numbers μi(v) are defined in this context
as the number of stationary points qs of V with index i and
stationary value vs � v. The index i is defined as the number
of negative eigenvalues of the Hessian matrix HV (qs), which
is assumed to have only nonzero eigenvalues. As we noted
earlier, for finitely many values of J the corresponding
systems of equations indeed possess singular solutions (see
the Appendix). Using the NPHC method, we know which of
the values of J possess at least one singular solution, and in
this section, we avoid such values of J .

We have computed the Euler characteristic χ (Mv) from the
real stationary points qs of V as obtained by the homotopy
continuation method, and the results are plotted as a function
of v and for various values of J in Fig. 5. Since the energy
levels are very closely spaced, it is difficult to distinguish
one from another. Here we use the tolerance 10−8, i.e., if
|v1 − v2| � 10−8, then v1 and v2 are distinct energy levels.
No kink or other signature is visible in χ (Mv) at v = vc:
As was discussed in Sec. IV B, the stationary values vs are
nonpositive, and the Euler characteristic χ (Mv) is therefore
constant for v > 0. Since the critical potential energy vc is
positive for J � 0.7, it is clear that in this case the phase
transition cannot be signaled by a signature in χ (Mv). For

J � 0.7 our results cannot exclude that a signature of the
phase transition is somewhere hidden in the data of χ (Mv),
but it seems unlikely that above and below this seemingly
arbitrary value of J the behavior should be so different.

Note that a similar conclusion holds for the Euler charac-
teristic χ (�v) of the related manifolds

�v = {q ∈ �| V (q) = Nv}. (13)

These submanifolds of � are the boundaries of Mv , and their
Euler characteristic has been studied numerically in Ref. [7].
For potential energies v > 0, we know that the manifold Mv

is homeomorphic to an N -dimensional ball. Its boundary is
therefore homeomorphic to an (N − 1) sphere, and its Euler
characteristic is constant for v > 0. In fact, we have χ (�v) = 0
or 2, depending on whether N is odd or even. Comparing this
exact result with the plot of numerical data in Fig. 3 of Ref. [7],
we have to conclude that the behavior of χ (�v) reported in
this reference must be an artefact of the numerical method
employed.

We can use the results of our computation of the Euler
characteristic χ (Mv) as a consistency check: For potential
energies v > 0 where the manifold Mv is homeomorphic to
an N -dimensional ball, the Euler characteristic is known to
be χ (Mv) = 1 for all v > 0. Computing the alternating sum
(12) with all the stationary points and their indices as an input,
we find that at v = 0, χ (Mv) = 1. Since there is no stationary
point for v > 0, χ (Mv) = 1 for all v > 0, as it should be.
We have confirmed this result for all the values of J without
singular solutions used in this paper.

E. Complex stationary points

In Sec. IV B we discussed the fact that, for arbitrary
coupling J , the stationary values vs are never positive, while
the critical energy vc of the phase transition of the nearest-
neighbor φ4 model becomes positive for J � 0.7. A direct
relation between phase transitions and stationary points of V

(in the spirit of the one in Ref. [4]) is hence ruled out, but
one might wonder if a modification of the conjectured relation
might be more successful.

One possible and rather straightforward generalization
of this conjecture is obtained by considering not only real
stationary points, but also complex ones. The reasoning behind
this generalization is that the presence of complex stationary
points whose imaginary parts go to zero with increasing
system size N should have the same (or at least a similar)
effect on the thermodynamic properties of the system as their
real counterparts. To test this idea, we have used the (in
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FIG. 5. (Color online) Graphs of the logarithm of the Euler characteristic, ln |χ (Mv)|/N , for a 4 × 4 lattice and coupling strengths J = 0.1,
0.15, 0.3, and 0.45 (from left to right). Note that these results are exact, and the oscillations visible are not a consequence of noisy data.
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FIG. 6. (Color online) Imaginary vs real parts of the complex potential energies V (qs)/N for all complex solutions qs of a 4 × 4 lattice
with coupling J = 0.1, 0.15, 0.3, and 0.45 (from left to right). For small couplings J � 0.2 the real part is nonpositive for all qs, whereas for
larger couplings some of the stationary values move into the right half plane.

general complex) stationary points qs obtained by means of the
homotopy continuation method and plotted in Fig. 6 real and
imaginary parts of the (complex) potential V (qs) for various
values of the coupling J .

At first sight the results are encouraging, as they show that,
for sufficiently large J , there exist complex qs with positive
real stationary values V (qs). Moreover, for the couplings J we
studied, the maximal real stationary value is larger than the
critical potential energy of the phase transition. Unfortunately,
from the data we have there is not much more we can say,
and it would be unreasonable to conjecture a relation of the
above-mentioned kind on the basis of our results.

V. NEWTON-RAPHSON METHOD

The Newton-Raphson method is a powerful and frequently
used iterative algorithm for approximating the roots of a
function (see Sec. 9.7 of Ref. [27]). In the context of energy
landscapes, the stationary points of V are determined by the
system of N equations (7), so the problem is equivalent to
finding the roots of the vector-valued function on the left-hand
side of Eq. (7).

From a given initial point in phase space, the Newton-
Raphson method iteratively finds approximations to a station-
ary point. If the function has more than one stationary point,
it will depend on the initial value of the iteration which of the
stationary points is found. For the potential energy function
(1) of the two-dimensional nearest-neighbor φ4 model, we

have seen in Sec. III that, at least for small coupling J ,
the number of stationary points is exponentially large in the
number N of lattice sites. The result of the Newton-Raphson
computation will therefore crucially depend on the set of initial
points chosen for the iterations. First, the initial points have to
differ sufficiently from each other, in order to make sure that
different stationary points are found in the various iteration
runs. Second, properties of the initial points will have an
influence on the properties of the stationary points found,
as the outcome of a Newton-Raphson run typically yields
a stationary point that is in some sense close to the initial
point.

For a given coupling J and lattice sizes up to N = 32 × 32,
we generated sets of 106 initial points by means of a standard
Metropolis Monte Carlo dynamics in configuration space [28].
The temperature T in the canonical acceptance rate of the
Monte Carlo algorithm was set to T = 100, and we will
comment on this choice of T towards the end of this section.
Starting from each of the thus generated initial points, the
routine newt from Ref. [27], a globally convergent version of
the Newton-Raphson method, was used to compute stationary
points of V . Like in the homotopy continuation computations,
all stationary points qs were found to have nonpositive
potential energies vs � 0, and the number of stationary
points was found to decrease dramatically with increasing
coupling J .

For smaller couplings (J = 0.1 and J = 0.2) where the
number of stationary points is large, we have plotted the results

FIG. 7. (Color online) Numerical results from the Newton-Raphson method. For system sizes N = L × L with L = 3, 4, 6, 8, and 16, the
scaled Hessian determinant D is shown vs the stationary value vs. Up to 106 different stationary points qs per system size have been computed
for J = 0.1 (top row) and J = 0.2 (bottom row).
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of the Newton-Raphson calculations in Fig. 7. Like for the
results from numerical continuation in Sec. III, we have plotted
the scaled Hessian determinant D at a stationary point versus
its stationary value vs. For the smaller system sizes N = L × L

with L = 3 and L = 4, the shapes of the clouds of points shown
in Fig. 7 resemble the ones produced from the complete set
of stationary points in Fig. 4. For larger system sizes L = 6,
8, 16, the cloud of points becomes more and more focused,
being localized in that region of the (v,D) plane where the
concentration of stationary points is largest.

We have seen that, in contrast to the homotopy continuation
method where only small system sizes L = 3 and 4 were
accessible, the Newton-Raphson method can be applied to
much larger sizes up to L = 32 (and even larger with more
numerical effort). However, for small couplings J and the
larger L considered, the number of real stationary points of V

is expected to be of the order of 3N , and it is evident that we
cannot compute more than a small fraction of them.

This is reminiscent of the situation one encounters in Monte
Carlo simulations where only a tiny subset of a tremendously
large configuration space can be sampled. In the Monte Carlo
context, the problem can be overcome (or at least significantly
abated) by the technique of importance sampling [28]. We have
tried a very straightforward (and possibly naive) adaptation of
this idea to the Newton-Raphson computation of stationary
points, simply by adjusting the parameter T of the Metropolis
importance sampling algorithm, which was used for generating
the initial points of the Newton-Raphson search. Somewhat
disappointingly, the shape of the cloud of points in Fig. 7
turned out to be entirely insensitive to changes in T . Using for
example a small value of T , we would have expected to end
up with stationary points of lower potential energy on average,
but surprisingly this was not the case.

There are other, more involved ways of how one could shift
the search of stationary points to higher or lower potential
energies, but we have not yet implemented such refinements.
One could, for example, use a more advanced search routine
(like the OPTIM program package [29]) which allows one to
search for stationary points of a given index, i.e., of a given
number of negative eigenvalues of the Hessian at the stationary
point. Since the index of a stationary point and its potential
energy are expected to be correlated, such a routine should
find stationary points of low energy when searching for small
indices, and vice versa.

VI. CONCLUSIONS

Two numerical methods for the computation of stationary
points of multivariate functions were discussed in this article:
the numerical polynomial homotopy continuation method
(NPHC) and a globally convergent variant of the Newton-
Raphson method. We applied both methods to the potential
energy function V of the two-dimensional nearest-neighbor
φ4 model on L × L square lattices. The NPHC method allows
one to obtain all stationary points of V but is limited to system
sizes up to 4 × 4 with the computational resources we had
at our disposal. With the Newton-Raphson method we have
computed stationary points for larger lattices of up to 32 × 32
sites, but only a small subset of all the stationary points of such
a large system could be obtained.

The motivation for this type of study originates from a
number of conjectures relating the stationary points of V to
the occurrence of phase transitions in the thermodynamic
limit. These conjectures refer to certain quantities which
can be computed from the stationary points of V , like their
potential energies, their Hessian determinants, and the Euler
characteristic of the underlying potential energy manifolds in
configuration space. We have calculated these and a few other
quantities from the stationary points of the φ4 model obtained
with NPHC and Newton-Raphson, but, contrary to what the
conjectures suggest, no sign of the phase transition of the
model was found. This failure and its consequences, including
the falsification of a theorem allegedly proven in Ref. [4], was
discussed in a Letter [8].

The NPHC results for the nearest-neighbor φ4 model on a
4 × 4 lattice can be overviewed as follows:

(i) The number of real stationary points decreases from 3N

for J = 0 to only 3 with increasing J .
(ii) For any finite N , singular solutions occur only for

finitely many values of J .
(iii) The stationary values vs are all nonpositive for arbitrary

couplings J .
(iv) The Euler characteristic, computed as the alternating

sum of the Morse numbers, confirms the correct and complete
computation of all the stationary points.

(v) Unlike real stationary points, complex stationary points
of V can have positive stationary values, but we were unable
to identify a relation between these positive values and the
positive phase transition energy of the φ4 model for larger J .

Since the Newton-Raphson method yields only a subset of
all the stationary points, we compared these results for system
sizes up to 16 × 16 to those obtained by the NPHC method
for 4 × 4 lattices. For this comparison we chose plots of the
rescaled Hessian determinant D as defined in Eq. (9) versus
the potential energy v. A comparison of different lattice sizes
is of course problematic, but a general trend can be deduced:
For system sizes 8 × 8 and larger, the number of stationary
points becomes in general so large that only that region in the
(D,v) plane is explored where the (strongly peaked) density
of stationary points is the highest. Importance sampling may
provide a way out of these difficulties, but we have not yet
implemented such a scheme.
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APPENDIX: MORSE PROPERTY OF
THE POTENTIAL ENERGY

In Sec. IV A, for given N , λ and μ2, we considered values
of J for which the potential V in Eq. (1) is not a proper Morse
function, i.e., for which not all of the stationary points of V
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have a nonzero Hessian determinant. The following provides
more details regarding such values of J and relationship to a
theorem by Franzosi and Pettini.

Let A(N,λ,μ2) be the set of pairs (q,J ) such that q is a
singular stationary point (either real or complex) of V ; i.e., (7)
holds and detHV (q,J ) = 0. Denote by

S(N,λ,μ2) = {J ∈ C|(q,J ) ∈ A(N,λ,μ2) for some q}
(A1)

the set of values J such that the system describing the set of
stationary points of V has at least one singular solution.

Proposition 1. For each N � 2 and nonzero λ,μ ∈ C, the
set S(N,λ,μ2) is a finite subset of C.

Proof. The set A(N,λ,μ2) is an algebraic set and the set
S(N,λ,μ2) is a constructible algebraic set (see Chapter 12 of
Ref. [15]). Lemma 12.5.3 of Ref. [15] yields that there is a
univariate polynomial sN,λ,μ2 (x) such that the set of roots of
sN,λ,μ2 (x) is the closure ofS(N,λ,μ2) in the complex topology.
Since a univariate polynomial is either zero or has finitely
many roots, this implies that S(N,λ,μ2) is either dense in
C or is a finite set. Since all stationary points for J = 0 are
nonsingular, the Inverse Function Theorem (see Chapter 3 of

Ref. [30]) implies that this must hold in an open neighborhood
of 0. In particular, S(N,λ,μ2) cannot be dense in C and thus
must be finite. �

It follows from elimination theory (see Chapter 14 of
Ref. [31]) that the coefficients of sN,λ,μ2 (x) are polynomials
in λ and μ2 with rational coefficients. In particular, if λ and
μ2 are rational, then sN,λ,μ2 (x) has rational coefficients so that
S(N,λ,μ2) consists of finitely many algebraic numbers.

Corollary 1. For nonzero λ,μ ∈ C, the set

T (λ,μ2) =
⋃
N�2

S(N,λ,μ2) (A2)

is a countable subset of C.
Proof. It follows from Proposition 1 that T (λ,μ2) is a

countable union of finite sets and is therefore countable. �
Corollary 1 shows that for given λ and μ2, there exist

uncountably infinite many values of J , which densely cover
the real axis, such that the potential energy function (1) is
a Morse function. The potential energy function (1) of the
nearest-neighbor φ4 model is therefore a valid counterexample
disproving the theorem announced by Franzosi and Pettini in
Ref. [4].
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