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We study the energy minimization problem for an elastic interface in a random potential plus a quadratic
well. As the position of the well is varied, the ground state undergoes jumps, called shocks or static avalanches.
We introduce an efficient and systematic method to compute the statistics of avalanche sizes and manifold
displacements. The tree-level calculation, i.e., mean-field limit, is obtained by solving a saddle-point equation.
Graphically, it can be interpreted as the sum of all tree graphs. The 1-loop corrections are computed using results
from the functional renormalization group. At the upper critical dimension the shock statistics is described by the
Brownian force model (BFM), the static version of the so-called Alessandro-Beatrice-Bertotti-Montorsi (ABBM)
model in the nonequilibrium context of depinning. This model can itself be treated exactly in any dimension and
its shock statistics is that of a Lévy process. Contact is made with classical results in probability theory on the
Burgers equation with Brownian initial conditions. In particular we obtain a functional extension of an evolution
equation introduced by Carraro and Duchon, which recursively constructs the tree diagrams in the field theory.
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I. INTRODUCTION: MODEL AND METHOD

Complex systems, as well as systems with quenched dis-
order, often respond nonsmoothly, with jumps or avalanches,
to a change in external parameters, as, e.g., an applied field.
This is seen as Barkhausen noise in magnets [1], earthquakes
in the motion of tectonic plates [2,3], wetting of a disordered
substrate [4,5], dry friction [6], cracks in brittle material [7,8],
vortices in superconductors [9,10], and many more.

Quite generally, these systems can be modeled by an
elastic interface pinned by disorder [3,9–18,56]. In a previous
work [19,20] we have obtained the probability distribution
of the sizes of static avalanches for an elastic interface in
a random pinning potential. The interface is parameterized
by a one-component displacement field u(x), where x is the
d-dimensional internal coordinate. The interface is submitted
to an additional quadratic well centered at w (e.g., a spring
acting on it) and the ground state of the interface, u(x; w),
experiences discontinuous jumps as the center-of-well position
w is varied. These static avalanches, also called shocks because
of interesting connections with the Burgers equation in the
limit d = 0 [21–27], are characterized by their size; i.e.,
S := ∫

x
u(x; w), where

∫
x

≡ ∫
ddx. In [19,20] we obtained

the distribution P (S) from a combination of graphical and
analytical methods, first at tree, i.e., mean-field level, valid
for d � duc, where the upper critical dimension is duc = 4
for the usual short-range elasticity, and then to first order
in a dimensional expansion in ε = 4 − d, by resumming all
1-loop corrections. This calculation was technically rather
complicated as it required summing an infinite set of diagrams,
both at the tree and 1-loop level. Further their nonanalytic
dependence on w had to be extracted. Thus [19,20] contains
some amount of heuristics in extrapolating formulas from
small moments of P (S) to arbitrary ones, while the final
structure is a relatively simple self-consistent equation. This
suggests that a simpler method should exist.

In this paper we present such a simple, complementary
method. It is powerful and versatile enough to apply to many
situations. It is extended in companion papers to (i) the
depinning transition, for which the avalanche-size distribution
was also studied numerically in [28]: There we predict and

measure the distribution of velocities inside an avalanche
[29–32]. (ii) Elastic objects where the displacements u(x) have
more than one component [31,33]. This new method accounts
for the (relatively) simple structures unveiled in [20], via a
saddle-point equation and dressed propagators. It also allows
deriving a more precise picture of the structure of avalanches
around the upper critical dimension duc. In particular we find
that their statistics at duc is given in the statics by a Brownian
force model (BFM) which we study here, closely related to
the so-called Alessandro-Beatrice-Bertotti-Montorsi (ABBM)
model [34] that we also recently showed to describe interfaces
at duc near depinning [29].

In the second part of this article we make connection to the
work by Carraro and Duchon [35], as well as Bertoin [36].
These authors use methods of probability theory to study the
Burgers equation with Brownian initial conditions, which is
the d = 0 limit of the BFM for the interface. Their description
in terms of Lévy processes is extended to interfaces and we
unveil a new connection between evolution equations for these
Lévy processes in Burgers dynamics, and the mean-field theory
for pinned interfaces.

Our model is defined by the standard energy for a disordered
elastic interface:

H[u] = Hel[u] +
∫

x

V (u(x),x), (1)

Hel[u] = 1

2

∫
xx ′

g−1
xx ′ [u(x) − wx][u(x ′) − wx ′ ] , (2)

where gxx ′ = ∫
q
gqe

iq(x−x ′) and the elastic energy kernel is, in

the simplest case of short-range elasticity, g−1
q = q2 + m2 (we

denote
∫
q

≡ ddq

(2π)d ). A quadratic external potential of curvature

m2 and centered at wx has been added and acts as a large-scale
(infrared) cutoff. In all cases gq=0 = ∫

x ′ gxx ′ = m−2. V (u,x)
is a centered Gaussian random potential with correlator

V (u,x)V (u′,x ′) = R0(u − u′)δd (x − x ′). (3)

At finite temperature one considers the canonical partition sum
Z = ∫

D[u] e−H[u]/T in a given disorder realization (sample).
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Disorder averages are denoted by · · ·, and thermal ones by
〈· · ·〉.

To study the statics of this model, one introduces replica
ua(x), a = 1, . . . ,n and considers the replicated action func-
tional denoted SR0 [u] ≡ S[u] ≡ S[{ua(x)}]:

Zn =
∫ ∏

a

D[ua]e−S[u],

(4)

S[u] = 1

T

∑
a

Hel[ua] − 1

2T 2

∑
ab

∫
x

R0(ua(x) − ub(x)).

The correlation functions of the disordered model are obtained
from those of the replicated theory in the limit of n → 0,
implicit in all formulas below.

Let us now sketch the principle of the method, starting
with a simple example. Since we are interested in probability
distributions of observables, we need to compute averages of
the form

〈e
∫
x
λxu(x)〉 = lim

n→0

〈
e
∫
x
λxu1(x)

〉
S , (5)

where u1(x) designates one of the n replicas. One defines

〈O[u]〉S :=
∫ ∏

a D[ua]O[u]e−S[u]∫ ∏
a D[ua]e−S[u]

, (6)

and since for n = 0 the denominator equals one, it can be
dropped. Equation (5) is a generating function from which one
can, at least in principle, extract via Laplace inversion a prob-
ability distribution, here the distribution of the displacement
field, i.e., P[u] = 〈∏x δ(u(x) − u(x))〉 with a double average
over sample and thermal realizations. Note that averages
such as (5), and their multipoint generalizations discussed
below, are also frequently studied as generating functions of
the distribution of the velocity field in turbulence. Burgers
turbulence, e.g., maps exactly to the present model at d = 0
with time t = 1/m2 and velocity u [21,22,25–27,35–42].

We now recall a few basic facts from field theory. Let us
consider �[u], the effective action functional associated with
the action S[u]. Then the above average (5) can be expressed
as

〈e
∫
x
λxu1(x)〉S = e

∫
x
λxu

λ(x)−�[uλ], (7)

where uλ(x) extremizes the exponential, i.e., is the solution of
the equation

∂ua (x)�[u]|u=uλ = λxδa1. (8)

This property follows from the definition of the effective action
as the Legendre transform of W [λ] = 〈e

∫
x
λa

xua (x)〉S , i.e., from
the relation W [λ] + �[u] = ∑

a

∫
x
ua(x)λa

x .
The calculation of �[u] can be performed in an ε = duc − d

expansion around the upper critical dimension duc. To lowest
order in this expansion one replaces �[u] by the action S[u].
The corresponding calculation yields the tree-level result

〈e
∫
x
λxu1(x)〉tree

S = e
∫
x
λxu

λ(x)−S[uλ], (9)

∂ua (x)S[u]|u=uλ = λxδa1. (10)

It is written in terms of a tree-level extremum field uλ ≡ uλ,tree

which extremizes (9). This precisely amounts to resumming
all tree diagrams in the perturbation expansion in the nonlinear

part of the action SR0 , i.e., in the disorder R0, also known as
the mean-field calculation. This is discussed in Sec. III and
Appendix A. For the problem at hand it gives the correct result
for probability distributions for d � duc, if the renormalized
disorder R is used in the action, rather than the bare one R0, as
discussed in [20] and again below. The corresponding action
SR is called the improved action. The precise definition of R

is recalled in Sec. IV A2, and useful equivalent definitions can
be found in Secs. II and III of Ref. [20] (with which present
definitions and notations aim to be consistent).

Here we start with the tree calculation in Sec. II, by first
defining the proper observable to compute, a generalization of
(9), and deriving the saddle-point equation which resums all
tree diagrams. In the following Sec. III, we give a graphical
derivation and illustration of the saddle-point equations. We
then compute in Sec. IV �[u] to first order in ε, and
analyze the resulting saddle-point equation, from which the
avalanche-size distribution to 1-loop order is obtained. In
Sec. V we study a simpler model where the force landscape is
a Brownian motion, and we make the connection to Lévy
processes and the Burgers equation. In Sec. VI we derive
the generalized Carraro-Duchon equation which encodes the
mean-field theory of interfaces.

The appendices contain details and extensions: In
Appendix A we study a nonuniform deformation wx .
Appendix B derives useful formulas for the diagonaliza-
tion of replica matrices. Appendix C calculates �1[u,v].
Appendix D gives a diagrammatic interpretation of the loop
corrections. Appendix E contains a detailed derivation of
many-point correlations in the BFM. Appendices F and H
recall the derivation of the Carraro-Duchon formula and its
connection to the exact RG equations. In Appendix I we
discuss the (near absence of) loop corrections in the BFM
model and we prove that it is an attractive fixed point of the
RG. Finally in Appendix J we recall how the statistics of shocks
depends on their correlations.

II. TREE-LEVEL (MEAN-FIELD) CALCULATION

A. Avalanche observables

Let us recall the avalanche observables introduced in [20].
Unless stated otherwise the considerations below are valid in
all generality (i.e., beyond mean field).

At T = 0, the minimal energy configuration of the inter-
face u(x; w), and its center of mass u(w) := L−d

∫
x
u(x; w),

advances by jumps as the position of the center of the parabola,
w = wx (taken uniform for now), is increased:

u(x; w) =
∑

i

Si(x)θ (w − wi), (11)

u(w) = L−d
∑

i

Siθ (w − wi). (12)

Here wi is the position, and Si := ∫
x
Si(x) the total

size of the ith shock. One defines ρ(S) := ρ0 P (S) =∑
i δ(S − Si)δ(w − wi), where ρ(S) is the shock-size density,

P (S) the shock-size probability distribution (normalized to
unity), and ρ0 the total shock density. From u(w) = w it
follows that ρ0〈S〉 = Ld whenever all motion occurs in shocks
(which is the case here in the limit of interest, m → 0). We
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denote size moments as 〈Sp〉 := ∫
dS SpP (S). It was also

shown in [20] that for S0 � S, P (S) takes the general form

P (S) = 〈S〉
S2

m

p(S/Sm), (13)

Sm := 〈S2〉
2〈S〉 = R′′′(0+)

m4
. (14)

Here Sm ∼ m−d−ζ is the scale of the large avalanches, and
S0 � Sm a microscopic cutoff. The function p(s) is universal
with

∫∞
0 ds sp(s) = 1 and

∫∞
0 ds s2p(s) = 2.

As detailed in [20] the shock-size moments can be extracted
from the generating function:

Ẑ(λ) := L−d∂w eλLd [u(w/2)−w−u(−w/2)] |w=0+

= 〈eλS〉 − 1 − λ〈S〉
〈S〉 . (15)

This formula follows from the fact that in a small window
of width w > 0 the probability that there is a shock is ρ0w,
in which case the field u(w) − w jumps by S. We used that
due to statistical translation invariance, we can without loss of
generality consider the interval ] − w/2,w/2[. Equation (15)
can be compared to (5) with a uniform λx = λ: However,
while (5) encodes only the one-point probability of u(w) (say
at w = 0), Eq. (15) depends on the two-point joint probability
distribution of the field u(w) at two values of w (denoted −w/2
and w/2), as required to study shocks. Furthermore, in d = 0,
m2(w − u(w)) is the velocity field of the decaying Burgers
equation at space point w [21,22,25] and Eq. (15) is thus the
generating function of the distribution of velocity differences
at two points in space distant by w. We retain below this
terminology of p-point distributions.

We now recall the results obtained at mean-field level in [20]
by resumming the tree diagrams. There it was shown that
Z(λ) := λ + Ẑ(λ) satisfies the self-consistent equation

Z(λ) = λ + R′′′(0+)

m4
Z(λ)2. (16)

This quadratic equation is easily solved,

Ztree(λ) ≡ ZMF(λ) = 1

2Sm

(1 −
√

1 − 4Smλ), (17)

where

Sm = R′′′(0+)

m4
(18)

is the characteristic avalanche size introduced in Eq. (14).
Taylor-expanding Eq. (17) in λ, Z(λ) = λ + Smλ2 + . . . , and
comparing to the definition (15), allows us to identify Sm =
1
2 〈S2〉/〈S〉, also stated in Eq. (14).

Inverse Laplace transforming Eq. (17), one obtains the
mean-field avalanche-size distribution,1 valid for d � duc:

ptree(s) ≡ pMF(s) = 1

2
√

πs3/2
e−s/4. (19)

1These formulas correspond to an infinite density of avalanches.
For discrete displacements u, as illustrated in Appendix J, ρ0 is finite,
and Z(λ) is cut at large negative λ, equivalent to a small S = Smin for
P (S). This is further discussed in [20].

We now recover these results, and more, by introducing a
method which does not use a graphical expansion.

B. Saddle-point equation

Here we show how to evaluate, at tree level, the slightly
more general generating function for the joint probability
of the field u(x; w) at two “points” wx/2 and −wx/2. It
corresponds to moving the center of the parabola from −wx/2
to wx/2. While this is not the most general nonuniform
move, its symmetry simplifies the analysis below. For future
convenience, we denote here the full disorder correlator
(which contains loop corrections to all orders), by R; i.e.,
we consider the improved action SR . This is an improved tree
approximation; i.e., it is the sum of all tree diagrams in R; in
R0 it is the sum of all tree diagrams plus those loop diagrams
in R0 correcting R itself.

Generalizing Eq. (9) requires us to introduce two sets of
n replicated fields denoted ua,va , a = 1, . . . ,n, subject to the
same disorder. We find that2

〈e
∫
x
λx [u(x;w/2)−wx−u(x;−w/2)]〉

tree
= e−Sλ[uλ,vλ], (20)

where (dropping the superscript λ)

−Sλ[u,v] =
∫

x

λx[u1(x) − wx − v1(x)]

−
∑

a

∫
xx ′

g−1
xx ′

2T

{[
ua(x) − wx

2

][
ua(x ′) − wx ′

2

]

+
[
va(x) + wx

2

][
va(x ′) + wx ′

2

]}

+ 1

2T 2

∑
ab

∫
x

[R(ua(x) − ub(x))

+R(va(x) − vb(x)) + 2R(ua(x) − vb(x))] .

(21)

ua(x) and va(x) are extrema of Sλ, i.e., solution of

T λxδa1 = g−1
xx ′

[
ua(x ′) − wx ′

2

]
− 1

T

∑
c

[R′(ua(x) − uc(x))

+R′(ua(x) − vc(x))] (22)

together with a similar equation for v, obtained by (u,λ,w) ↔
(v,−λ,−w). One can also write the functional derivative
of (20),

∂wy

〈
e
∫
x
λx [u(x;w/2)−wx−u(x;−w/2)]

〉tree

=
{

−λy +
∑

a

∫
y ′

g−1
yy ′

2T
[ua(y ′)−wy ′−va(y ′)]

}
e−Sλ[uλ,vλ].

(23)

Due to the saddle-point equations (22), only the explicit
dependence on w appears.

By parity, the solution of the saddle-point equation satisfies
va(x) = −ua(x), which we use from now on. Since only

2Here u(x; w) is a functional of the field wx . For simplicity however
we do not use the square bracket notation.
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replica 1 is singled out, we look for a (replica symmetric)
solution where all replicas a �= 1 assume the same value. We
denote

ua(x) = u1(x) − T U (x), a �= 1, (24)

which at this stage is just a definition. The saddle-point
equations for the two functions u1(x) and U (x) become

λxT = g−1
xx ′

[
u1(x ′) − wx ′

2

]
+ 1

T
[R′(T U (x))

+R′(2u1(x) − T U (x)) − R′(2u1(x))], (25)

λxT = T

∫
x ′

g−1
xx ′U (x ′) − 1

T
R′(2u1(x) − 2T U (x))

+ 1

T
[2R′(2u1(x) − T U (x)) − R′(2u1(x))]. (26)

Note that the second equation has been obtained by subtracting
in (22) the equation for a �= 1 from the one for a = 1. In both
equations the sum over replica indices has been performed
using (24), i.e.,

∑
c F (uc) = F (u1) + (n − 1)F (u1 − T U1),

and then setting n → 0. We have also used that R′(u) is an
odd function with R′(0) = 0. Once these equations are solved,
the solution can be used to compute the generating functions:

〈e
∫
x
λx [u(x;w/2)−wx−u(x;−w/2)]〉

tree
= e−Sλ ,

∂wy
〈e

∫
x
λx [u(x;w/2)−wx−u(x;−w/2)]〉

tree

=
[

− λy +
∫

y ′
g−1

yy ′U (y ′)
]
e−Sλ , (27)

with

−Sλ := −Sλ[u, − u] =
∫

x

λx(2u1(x) − wx)

+
∫

xx ′
g−1

xx ′ [−U (x)(2u1(x ′) − wx ′ ) + T U (x)U (x ′)]

+ 1

T 2

∫
x

[2R(0)−2R(T U (x)) +R(2u1(x)−2T U (x))

+R(2u1(x)) − 2R(2u1(x)−T U (x))]. (28)

The limit n = 0 has been taken everywhere. This result is
equivalent to the graphical summation of all tree diagrams,
in terms of either R0 or R, depending on whether bare or
renormalized perturbation theory is used. It is valid for any
T and wx ; hence in principle it allows us to compute at tree
level a rather general 2-point correlation function of the field
u(x; w) at any temperature T .

In the absence of disorder, the saddle point is u1(x) −
wx/2 = T U (x) = T

∫
x ′ gxx ′λx ′ , and one obtains −Sλ =

T
∫
x,x ′ gxx ′λxλx ′ . The tree formula (27) is then exact and corre-

sponds to two copies with uncorrelated thermal fluctuations. In
the presence of disorder, but for λx = 0, one must haveSλ = 0.
This is indeed the case, as the saddle point is then U (x) = 0
and u1(x) − wx

2 = 0. When there could be several solutions to
the saddle-point equation, the correct one should reduce to that
one in the small-λ limit. The saddle-point solution can also be
obtained order by order in λ from perturbation theory; i.e., a
well-defined expansion of u1(x) and U (x) in powers of λ must
exist.

C. T = 0 limit of the saddle-point equations

We can now study the system at T = 0. Then R(u) is
nonanalytic; more precisely it exhibits a linear cusp in its
second derivative, R′′′(0+) > 0. This cusp is related to the
second moment of avalanche sizes, as shown in [20], via
R′′′(0+) = m4〈S2〉/2〈S〉. We will recover this relation here.

In the T → 0 limit we obtain a consistent solution assuming
that U and u1 are going to a finite limit, as we show now.
Expanding (25) and (26) in powers of T we obtain to lowest
order∫

x ′
g−1

xx ′

[
u1(x ′) − wx ′

2

]
+ [R′′(0) − R′′(2u1(x))]U (x) = 0,

(29)∫
x ′

g−1
xx ′U (x ′) − R′′′(2u1(x))U (x)2 = λx. (30)

The generating functions are, omitting the thermal averages
〈. . .〉, since we are studying T = 0,

e
∫
x
λx [u(x;w/2)−wx−u(x;−w/2)]

tree
= e−Sλ , (31)

∂wy
e
∫
x
λx [u(x;w/2)−wx−u(x;−w/2)]

tree
=
[
−λy +

∫
y ′
g−1

yy ′U (y ′)
]

e−Sλ ,

(32)

−Sλ =
∫

x

[
u1(x) − wx

2

][
2λx −

∫
x ′

g−1
xx ′U (x ′)

]
, (33)

where (29) has been used to simplify Sλ. These formulas are
valid for arbitrary wx . We now analyze these equations in
several cases.

D. Uniform case: Avalanches of center of mass

Let us start with the simplest case of both λx = λ and
wx = w uniform, corresponding to the generating function
(15). Then u1(x) = u1 and U (x) = U satisfy

m2(u1 − w/2) + [R′′(0) − R′′(2u1)]U = 0, (34)

m2U − R′′′(2u1)U 2 = λ, (35)

L−d∂w eλLd [u(w/2)−w−u(−w/2)]
tree = [−λ + m2U ]e−Sλ , (36)

−Sλ = Ld (2λ − m2U )

(
u1 − w

2

)
. (37)

These equations can be studied for any w.
We now consider the limit w → 0+ from which avalanche

observables can be extracted. We look for a solution of the
form

u1 = y
w

2
+ O(w2), (38)

which implies that Sλ = O(w). Hence

L−d∂w e
∫

λLd [u(w/2)−w−u(−w/2)]
tree|w=0+ = −λ + m2U. (39)

Assuming y > 0 we obtain from (34) and (35)

y

(
1 − 2R′′′(0+)

m2
U

)
= 1, (40)

m2U − R′′′(0+)U 2 = λ. (41)
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Comparing the definition (15) and the result (39) we see that
we can identify

Z(λ) ≡ λ + Ẑ(λ) = m2U. (42)

Our self-consistent equation (41) is indeed the same as the
one obtained in [20], namely (16). Its physical solution, which
vanishes at λ = 0, is m2U = Z(λ) = ZMF(λ) given in (17).
Note that

y = 1√
1 − 4Smλ

(43)

is indeed positive for this solution. The breakdown at λ � 1/

(4Sm) signals that the Laplace transform of P (S) does not exist
beyond that value of λ, due to the exponential tail at large S in
(19).

E. Nonuniform case: Local structure of avalanches

To obtain spatial information about avalanches one may
consider both λx and wx nonuniform. We specify wx = w̃f (x)
and vary w̃ from w̃ = −w

2 to w̃ = +w
2 for a fixed f (x). In the

limit of small positive w we look for a solution of the form

u1(x) = y(x)
w

2
+ O(w2). (44)

Again one finds Sλ = O(w); hence

∂w e
∫
x
λx [ux (w/2)−wx−ux (−w/2)]

tree
|w=0+

=
∫

x

f (x)

[
−λx +

∫
x ′

g−1
xx ′U (x ′)

]
. (45)

The field U (x) satisfies Eq. (30); i.e.,∫
x ′

g−1
xx ′U (x ′) − R′′′(y(x)w)U (x)2 = λx. (46)

Here we assume that y(x) > 0; a more general discussion
is given in Appendix A. Then in the limit of w → 0+, one
can replace R′′′(y(x)w) → R′′′(0+) and (46) becomes a closed
equation for U (x), independent of y(x),∫

x ′
g−1

xx ′U (x ′) − R′′′(0+)U (x)2 = λx. (47)

This is a classical equation for a cubic field theory, which
admits instanton solutions, from which local size distributions
can be extracted, as discussed in [20]. Here we will not study
again these applications, but simply make contact with the
notations used there. For that purpose we identify

Zx(λ) =
∫

x ′
g−1

xx ′U (x ′), (48)

in terms of which the self-consistent equation becomes

Zx(λ) = λx + R′′′(0+)
∫

x1,x2

gxx1gxx2Zx1 (λ)Zx2 (λ). (49)

These are Eqs. (204) (in unrescaled form) and (F8) of [20].
The space-dependent generating function can then be written
as

∂wy
e
∫
x
λx [ux (w/2)−wx−ux (−w/2)]

tree
|wy=0+ = Zy(λ)−λy := Ẑy(λ).

(50)

Note that a rescaled version of U (x) was denoted Y (x) in [20].

Zy(λ) is connected to local avalanche-size distributions.
Assuming that for fixed L as w → 0+ the probability of a
shock during a change of wx is ρ

f

0 w, we can write from Eq. (45)

ρ
f

0

〈
e
∫
x
λxSx − 1 −

∫
x

λxSx

〉
f

=
∫

x

f (x)

[
−λx +

∫
x ′

g−1
xx ′U (x ′)

]
.

(51)

The subscript f reminds us that we use a nontrivial f (x). In
addition, one can show that ux(w/2) − ux(−w/2) = wx and
hence ρ

f

0 〈Sx〉f = 1, which also implies ρ
f

0 〈S〉f = Ld . Note
that the size distribution, whose Laplace transform is given by
(51), a priori depends on the function f (x); the case f (x) = 1
was studied in [20].

F. Multipoint correlations of center-of-mass displacement

1. Discrete version

We now indicate how to compute, at tree level (i.e., as a
sum of all tree diagrams), the correlations of the center-of-
mass displacement field u(wi) − wi at an arbitrary number of
discrete points wi . For this we introduce a generating function,
parameterized by λi :

eLd
∑

i λi [u(wi )−wi ]
tree

= e
Ld [

∑
i λi (u1i−wi )−

∑
ai

m2

2T
(uai−wi )2+ 1

2T 2

∑
abij R(uai−ubj )]

. (52)

The fields uai are solutions of the saddle-point equations

m2(uai − wi) − 1

T

∑
cj

R′(uai − ucj ) = T λiδa1. (53)

As above, we look for a replica-symmetric saddle point
uai = ui for a �= 1. Define ui := u1i − T Ui , and subtract the
equation for a = 2 from the one for a = 1:

m2(u1i − wi) + 1

T

∑
j

[R′(u1i − u1j + T Uj )

−R′(u1i − u1j )] = T λi, (54)

m2T Ui + 1

T

∑
j

[R′(u1i − u1j + T Uj ) − R′(u1i − u1j )

+R′(u1i − u1j − T Ui) − R′(u1i − u1j − T Ui + T Uj )]

= T λi. (55)

Note that in the second equation the terms i = j can be
excluded. Taking the limit T → 0, we find

m2(u1i − wi) +
∑

j

R′′(u1i − u1j )Uj = 0,

(56)
m2Ui +

∑
j �=i

R′′′(u1i − u1j )UiUj = λi.

One must solve these equations for Ui and u1i and insert the
result into

eLd
∑

i λi [u(wi )−wi ]
tree = eLd

∑
i (λi− 1

2 m2Ui )(u1i−wi ) , (57)

which has been simplified using the saddle-point equations.
Note that one recovers the 2-point equations (35) from the
solution u12 = −u11 and U2 = −U1 valid for λ2 = −λ1.
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2. Continuous version

It is instructive to perform the same calculation in a
continuum framework. We again restrict to the center of mass
and compute

〈eLd
∫
w

λ(w)[u(w)−w)]〉
tree

= e−Sλ (58)

for a test function λ(w), depending on w but uniform in space.
Here and below

∫
w

= ∫∞
−∞ dw. We now introduce3 replica

fields uai → ua(w) and then extremize the action:

L−dSλ =
∫

w

λ(w)[u1(w) − w] −
∫

w

∑
a

m2

2T
[ua(w) − w]2

+ 1

2T 2

∫
w,w′

∑
ab

R(ua(w) − ub(w′)). (59)

We will not repeat all the above manipulations. The saddle-
point equations with respect to ua(w) in the limit T = 0 lead
to

m2[u1(w) − w] +
∫

w′
R′′(u1(w) − u1(w′))U (w′) = 0,

(60)
m2U (w) +

∫
w′

R′′′(u1(w) − u1(w′))U (w)U (w′) = λ(w).

Its solution is inserted into

−L−dSλ =
∫

w

[
λ(w) − m2

2
U (w)

]
[u1(w) − w]. (61)

The general analysis of these multipoint correlations and their
discrete analog (56) is left for the future. Below we study
them, in Sec. V and Appendix E, for a simpler model, where
R′′′(u) is a constant, and in Sec. VI G for periodic disorder. We
also discuss, in Sec. VI, another powerful method to generate
multipoint correlations.

G. Displacement correlations for finite w:
Absence of correlations for d � duc

The two-point correlation function of the center-of-mass
displacement,

eLdλ[u(w/2)−w−u(−w/2)]
tree = e−Sλ , (62)

can also be evaluated within tree level at finite w > 0 by
setting u1 = yw/2, and solving the saddle-point equations
(35) for y and U , denoting yw and Uw these solutions. This
can be done, e.g., order by order in w. Here we give the
small-w expansion up to O(w4). It is convenient to introduce
the rescaled (dimensionless) variables w̃ and λ̃,

w = mdSmw̃, λ = λ̃/Sm. (63)

3The generalization with space dependence would involve λx(w)
and replica fields ua(x,w).

Defining Z̃w = m2SmUw, one finds

− Sλ

(mL)d
= w̃(Z̃ − λ̃) + m−εR′′′′(0)

w̃2Z̃2

2(1 − 2Z̃)2
+ w̃3Z̃2m−2ε

×
[
R′′′′(0)2 Z̃(1 − Z̃)

(1 − 2Z̃)5
+ R′′′(0)R(5)(0)

6(1 − 2Z̃)3

]
+O(w̃4), (64)

Z̃ ≡ Z̃tree(λ̃) = 1
2 (1 −

√
1 − 4λ̃). (65)

More generally, one can introduce the dimensionless rescaled
renormalized disorder correlator,

R′′(u) = Adm
ε−2ζ R̃′′(umζ ), (66)

where Ad = 1/(εĨ2), and for short-ranged disorder ε = 4 − d

and

Ĩ2 =
∫

k

1

(1 + k2)2
(67)

is an amplitude; for details see [17], and for generalization
to long-range disorder [16,43,44]. It is known that as m → 0,
R̃′′(u) goes to a fixed-point function in any d, measured in [45].
Then, in any d, and within the tree approximation,

− Sλ

(mL)d
= F (λ̃,w̃) := (y − 1)

(
λ̃ − 1

2
Z̃

)
w̃ (68)

takes a scaling form, obtained by eliminating y ≡ yw and Z̃ ≡
Z̃w in the rescaled saddle-point equations:

(y − 1)AdR̃
′′′(0)

w̃

2
+ R̃′′(0) − R̃′′(yAdR̃

′′′(0)w̃)

R̃′′′(0)
Z̃ = 0,

Z̃ − R̃′′′(yAdR̃
′′′(0)w̃)

R̃′′′(0)
Z̃2 = λ̃ . (69)

While these equations for the tree approximation can be written
for any d < duc, they are expected to become exact as d → duc

and in d > duc. For d = duc − ε, ε > 0, the rescaled disorder
R̃′′(u) is uniformly of order ε. In (69) the argument of the
functions is O(ε) which justifies an expansion of the system
for small w. This is because the scaling variable is

w = AdR̃
′′′(0)m−ζ w̃ ≡ Smmdw̃. (70)

Hence near d = duc one can focus on (64). Since

m−εR′′′′(0) = AdR̃
′′′′(0) = O(ε), (71)

m−2εR′′′(0)R(5)(0) = O(ε2) , (72)

we arrive (in terms of the unrescaled variables) for w > 0 at
the result

eLdλ[u(w/2)−w−u(−w/2)]
tree = eLdwẐ(λ)+O(ε). (73)

The interpretation of this result is that, for d � duc, the
increments in the displacements in the center of mass become
uncorrelated. It will further be discussed in Sec. V B in terms
of Lévy processes.

Below duc, in d = duc − ε, we expect correlations. They
only exist on a distance w̃ = O(1), i.e., w = O(ε)m−ζ , a
very small layer as ε → 0. The above result (64) allows us
to compute the first correction in ε; however one may also get
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contributions at one loop of the same order. This calculation
is performed elsewhere.

III. GRAPHICAL INTERPRETATION

Here, we sketch a short graphical interpretation of the mean-
field saddle-point equations. We work in d = 0 for simplicity.
The results apply to the center-of-mass variable in any d, after
restoring the necessary factors of Ld . For easier comparison
with Sec. VI we use the notations

�(u) = −R′′(u), t = 1

m2
. (74)

We define

eZ(λ,w) := eλ[u(w)−u(0)]. (75)

Thus Ẑ(λ,w) = Z(λ,w) − wλ is the generating function of the
connected moments [u(w) − u(0) − w]n

c = tnK (n)(w), which
in Eq. (41) of [20] were called the Kolmogorov cumulants.
In [20], a graphical derivation of the recursion relation for the
O(w) term Z(λ) was given, noting

Z(λ,w) = Z(λ)w + O(w2). (76)

At tree level, ZMF(λ,w) is the sum of all connected tree
diagrams. The generating function ZMF(λ) as a function of
the bare action can be written as a sum of particularly simple
tree graphs, namely the ones of the form

ZMF(λ) = K
∑

,

(77)

where dotted lines represent the bare disorder �0. Each graph
represents correlations of the λ[u(wi) − wi] fields at different
points wi (external lines on the top, each coming with a factor
of λ). The linear operator K identifies wi with w or 0, in order
to build the Kolmogorov cumulants. The disorder vertex on
the bottom contributes a factor of �0(w) − �0(0) to Z(λ,w),
which has been expanded to first order in w to obtain Z(λ),
hence it must be counted as �′

0(0+) in (77). Equivalently, one
can include a factor of ∂w|w=0 in K. For more details of these
graphical rules see [20], Sec. V C. They are also further used
below in Sec. VI and Appendix D. The improved generating
function ZMF,R(λ) is the same sum of tree diagrams with � at
each vertex; hence, if reexpressed in terms of the bare disorder
�0, it is now a sum of graphs of the form

ZMF,R(λ) = K
∑

.

(78)

It contains all loop corrections to the 2-point disorder vertex,
while loop corrections to higher-point disorder vertices are
neglected. Explicit formulas for low-order contributions can
be found in [20].

The mean-field self-consistency equation for Z(λ) =
ZMF,R(λ) reads

Z(λ) = λ − t2�′(0+)Z(λ)2. (79)

It is graphically written as [20]

Z(λ) =

... ...
λ

...

.

(80)

As indicated, the blob denotes Z(λ) itself, while the lowest
disorder vertex counts as a �′(0+) and the lines entering the
two blobs from below do not come with differentiations.4 This
self-consistent equation yields the desired sum of tree diagrams
with only one lower disorder vertex, i.e., a term �(w) − �(0)
expanded into w�′(0+), which is sufficient to obtain the O(w)
part in (76) as explained in [20].

We now want to construct a recursion relation for Z(λ,w),
which yields its complete w dependence. We thus need to sum
all tree diagrams. To generate them, it seems natural to write

(λ, w) =

...
λ w

......

.

(81)

Now the lower vertex is �(w) − �(0) and the line entering a
blob Z(λ,w) from below acts as derivative with respect to w.

However, a new difficulty arises: One may have two or more
lower vertices, as, e.g., in

. (82)

Unfortunately, the self-consistency equation (81) is then
incorrect, as it leads to an overcounting since there are several
ways to construct the same graph. Fortunately this can be
corrected. Let us explain the source of the problem, and its
correction on an example:

= +

+

− .

(83)

On the left-hand side we have plotted the contribution to
Z(λ,w), with the correct combinatorial factor. The first two
terms on the right-hand side appear in a recursion relation of
the form (81), plotting the added vertex in Eq. (81) red (thick in
black-and-white). This leads to an overcounting, which can be
corrected by subtracting the last term, which has two marked
(red/thick) vertices.

4Note that in [20] a factor of |�′(0+)| = −�′(0+) has been absorbed
in λ, whereas here it is explicitly written, resulting in a seemingly
opposite sign.
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In the case of three lower vertices, the recursion reads

= +

+

+

−

−

−

+
. (84)

Now pairs of lower vertices are subtracted, leading to a
cancellation of all terms, and consequently the triplet of lower
vertices has to be added. This can be generalized, replacing
the self-consistency condition (81) by

λw = lim
ν→0

ν ln
(

:eν[�(w)−�(0)]t2∂w∂w: e
1
ν
Z(λ,w)

)
. (85)

The dots around the first exponential function indicate that
the derivatives act only on Z(λ,w), not on �(w). This can be
written as

λw = lim
ν→0

ν ln
(
eν[�(w)−�(0)]t2∂u∂ue

1
ν
Z(λ,u)

)∣∣
u=w

. (86)

The limit of ν → 0 selects the tree diagrams, and the ln selects
a single connected component. Note that eν[�(w)−�(0)]t2∂u∂u is
defined by its series expansion in t ; thus the limit ν → 0 is
done term by term in the expansion in powers of t .

To proceed, we observe that independent of ν and for all
functions f (u) which are infinitely differentiable5

eν[�(w)−�(0)]t2∂u∂uf (u)|u=w

= 1√
4πν[�(w) − �(0)]t2

∫ ∞

−∞
du e

− (u−w)2

4ν[�(w)−�(0)]t2 f (u).

(87)

Inserting this relation into (86) yields

λw = lim
ν→0

ν ln

(
1√

4πν[�(w) − �(0)]t2

×
∫ ∞

−∞
du e

− (u−w)2

4ν[�(w)−�(0)]t2 e
1
ν
Z(λ,u)

)
. (88)

In the limit of ν → 0 to be taken here, the integral is dominated
by its saddle point, and we get

wλ = Z(λ,u) + [�(0) − �(w)] t2 [∂uZ(λ,u)]2 , (89)

u = w + 2t2 [�(w) − �(0)] ∂uZ(λ,u). (90)

5The formula is valid for ν[�(w) − �(0)] > 0; i.e., the integral
should be evaluated for ν < 0, and the limit to be taken is ν → 0−.

The new variable u has to be eliminated between these two
equations. Note that it is an independent variable not to be
confused with u(w).

We remark that passing from (86) to the self-consistent
set of equations (89) and (90) is a quite common feature in
tree-resummation problems. It also appears in the large-N
resummation for the disorder itself, where the links are the
1-loop momentum integral, and which therefore are termed
cactus-diagrams; see [46,47].

Below we devise another method to compute Z(λ,w) and
we have checked to high orders, ∼ λ100, that (89) reproduces
the solution Eq. (210), e.g., (212), as well as the lowest-order
Kolmogorov cumulants (62)–(66) in [20].

One needs the derivative du
dw

, obtained by deriving (90) with
respect to w,

du

dw
= 1 + 2t2�′(w)∂uZ(λ,u)

1 + 2t2 [�(0) − �(w)] ∂2
uZ(λ,u)

. (91)

Deriving Eq. (89) with respect to w and using (91) yields the
astonishingly rather similar equation,

λ = ∂uZ(λ,u) + �′(w)t2[∂uZ(λ,u)]2. (92)

We now make contact to the results given in Eq. (34). Since
u and w are simply variables, and we are more interested
in Z(λ,w) than in Z(λ,u), one can exchange their names, to
obtain a second set of equations,

uλ = Z(λ,w) + [�(0) − �(u)]t2[∂wZ(λ,w)]2, (93)

w − u = 2t2[�(u) − �(0)]∂wZ(λ,w), (94)

λ = ∂wZ(λ,w) + �′(u)t2[∂wZ(λ,w)]2. (95)

Equation (95) is redundant, or can be used instead of (93). We
have explicitly checked that up to order t8, both expressions
are correct.

Graphically, the interpretation of Eqs. (89)–(92) is rather
different from that of Eqs. (93)–(95). To see this, recursively
replace u in Eq. (89) by its value given by Eq. (90). This yields
a perturbative expansion in t of λw, which can be read as a
self-consistent equation for Z(λ,w). Graphically, it contains
links made out of [�(w) − �(0)] t2, which end in vertices
made out ofZ(λ,w). If n links enter into such a vertexZ(λ,w),
it means to take n derivatives.

The picture is different when replacing recursively in
Eq. (93) u by its value given by Eq. (94), thus constructing
again a perturbative expansion in t for Z(λ,w). Apart from a
single term Z(λ,w), all other terms are proportional to powers
of ∂wZ(λ,w), and no higher derivative of Z(λ,w) appears. The
objects with more derivatives are (n − 2)nd derivatives of the
disorder [�(w) − �(0)]t2, which have n outgoing lines which
end either in a disorder, a ∂wZ(λ,w) or λ. This will in more
detail be discussed in [31].

Identifying

∂wZ(λ,w) = m2U, (96)

u = 2u1 (97)

shows that Eq. (95) is equivalent to Eq. (35), and (94) to
(34). We still have to check expression (37). We know that
Ẑ(λ,w) = Z(λ,w) − λw = −Sλ. Multiplying Eq. (94) with λ
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and adding the result to (93) gives

Z(λ,w) − λw = [�(u) − �(0)] t2 [∂wZ(λ,w)]2

−2t2λ [�(u) − �(0)] ∂wZ(λ,w). (98)

The right-hand side is nothing but −Sλ, given in Eq. (37).

IV. BEYOND MEAN FIELD: 1-LOOP CALCULATION

A. Simpler example: 1-point probability

1. Perturbation around mean field

We start with the simpler case of a 1-point probability, e.g.,
as given by Eqs. (7) and (8). As we explain in detail below,
in the dimensional expansion around mean field, the effective
action can be written as

�[u] = S[u] + �1[u]. (99)

Here S[u] ≡ SR[u] is the improved action, and �1[u] is “small”
in a sense to be specified below. Hence we can expect that uλ

and uλ,tree, the solutions of (8) and (10), are close to each
others. Schematically we write

S ′[uλ] + �′
1[uλ] = λ, (100)

S ′[uλ,tree] = λ. (101)

Inserting into Eqs. (7) and (8) and expanding to lowest order,
i.e., in the differences uλ − uλ,tree ∼ O(�1) and �1, we find

〈e
∫
x
λxu1(x)〉S = 〈e

∫
x
λxu1(x)〉tree

S e−�1[uλ,tree]. (102)

Hence to compute this generating function to lowest order
around the tree result we only need to evaluate �1 at the tree
saddle point.

2. Effective action for the pinned interface

The (replica) effective action �[u] associated with the
(bare) action (4) of the pinned interface takes the form

�[u] = Sel[u] −
∞∑

p=2

∑
a1,...,ap

1

T pp!
S(p)[ua1 , . . . ,uap

]. (103)

Here Sel[u] = 1
T

∑
a Hel[ua] arises from the elastic and

quadratic well energy, defined in (2). The p-replica terms, S(p),
are the pth cumulants of the renormalized disorder.6 The local
part [i.e., ua(x) = ua] of the second cumulant, S(2)[ua,ub] =
LdR(uab), uab = ua − ub, defines the renormalized disorder
correlator R(u).

Let us now consider T = 0. As m → 0, R(u) flows to a
fixed-point function R = O(ε) where ε = duc − d. In general
�[u] can be computed in an expansion in powers of R, i.e., of
ε. For p = 2 one has [17,25]

S(2)[ua,ub] =
∫

x

∑
ab

R(uab(x)) + 1

2

∫
xy

(
g2

xy − δxyg
2
z

)
× R′′(uab(x))R′′(uab(y)) + O(R3), (104)

6Due to statistical tilt symmetry, the term p = 1 is a constant,
dropped here.

where here and below we denote R′′(u) := R′′(u) − R′′(0).
Purely nonlocal parts are thus O(ε2) and higher. For p � 3,
each S(p) is of order O(Rp) = O(εp). They were computed
previously [20,48]; the result can be summarized by Eq. (99)
with

�1[u] = 1

2
Tr ln

(
g−1δab − W 1

ab

) − 1

2
Tr ln

(
g−1δab − W 0

ab

)
+ I2

4
Tr[(W 1)2 − (W 0)2], (105)

Wκ
ab,xy = 1

T
δxy

[
δab

∑
c

R′′(uac(x)) − κR′′(uab(x))

]
, (106)

where In = ∫
k
gn

k . Equation (105) has the usual expression of a
1-loop effective action, 1

2 Tr lnS ′′, apart from a subtraction of
the 1-loop graphs leading to p + 1 replica terms, proportional
to T (second term on first line) and of the p = 2 part,
already taken into account in (104), thus expressing �1[u] as
a functional of the renormalized instead of the bare disorder.
[Note that as written �1 also contains the bilocal O(ε2) part
of p = 2 in Eq. (104)]. Upon expanding the Tr ln, which acts
both on replica and space indices, the S(p) are recovered to
O(Wp); see, e.g., formula (113) in [20]. Note that the two
O(W ) terms cancel (using n = 0).

3. 1-loop probability distribution of displacements

Let us compute the 1-point generating function to lowest
order beyond mean field,

〈e
∫
x
λxu(x;w)〉 = 〈e

∫
x
λxu(x;w)〉

tree
e−�1[{ua (x)}]. (107)

Here ua(x) satisfies the tree-level saddle-point equation∫
x ′

g−1
xx ′ [ua(x ′) − wx ′ ] − 1

T

∑
c

R′(uac(x)) = T λxδa1. (108)

Supposing that there are exactly two different fields u1 and ua

for a > 1, this gives∫
x ′

g−1
xx ′ [u1(x ′) − wx ′ ] + 1

T
R′(u12(x)) = T λx, (109)∫

x ′
g−1

xx ′ [u2(x ′) − wx ′ ] − 1

T
R′(u21(x)) = 0. (110)

Note that in the first line we have dropped the term ∼R′(0) = 0,
and the sign change comes from the factor of (n − 1) replicas.
On the other hand, from the sum in the second line, only the
term c = 1 survives, while all other terms are ∼ R′(0) = 0.

As in Eq. (24), we now look for a solution ua = u1 −
T U for a �= 1. Equation (109) and the difference between
Eqs. (109) and (110) become

T λx =
∫

x ′
g−1

xx ′ [u1(x ′) − wx ′] + 1

T
R′(T U (x)), (111)

Ux =
∫

x ′
gxx ′λx ′ . (112)

In the limit of T → 0, the first equation is expanded as

u1(x) = wx − R′′(0)
∫

x ′
gxx ′U (x ′) + O(T ),

= wx − R′′(0)
∫

y

∫
z

gxygyzλz + O(T ). (113)
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This gives the tree contribution at T = 0,

〈e
∫
x
λxu(x;w)〉

tree

T =0 = e
∫
x
λxwx− 1

2 R′′(0)
∫
xx′y λxgxygyx′λx′ . (114)

It is a Gaussian distribution for the displacements at tree level
[recall R′′(0) < 0].

Let us now compute the 1-loop corrections to mean field.
Here we restrict to uniform λx = λ and uniform wx = w. Since
we consider a 1-point function, w = 0 can be chosen. The
saddle point is uniform ua(x) = ua , and

�1[u]

Ld
= 1

2

∫
k

tr ln
(
g−1

k δab + M1
ab

)− 1

2

∫
k

tr ln
(
g−1

k δab + M0
ab

)
+ I2

4
tr[(M1)2 − (M0)2], (115)

Mκ
ab = 1

T
{δab[R′′(uac) − R′′(ua1)] + κR′′(uab)}. (116)

Here tr refers to replica indices, and we have used the saddle-
point properties denoting by c any index with c �= 1. More
explicitly, Mκ is a replica matrix, where replica 1 is singled
out, and which is symmetric in the other n − 1 replicas a �= 1.
It thus has (for any n) four distinct components (denoting with
a,b indices different from 1):

Mκ
11 = 1

T
[R′′(T U ) + (κ − 1)R′′(0)], (117)

Mκ
1 = Mκ

1a = Mκ
a1 = 1

T
κR′′(T U ), (118)

Mκ
ab = δabM

κ
c + Mκ, (119)

Mκ
c = 1

T
[R′′(0) − R′′(T U )], (120)

Mκ = 1

T
κR′′(0). (121)

The field U is U = λ/m2; see Eq. (112). The diagonalization
of this matrix is performed in Appendix B. The eigenvalues
are given in Eqs. (B5) and (B6). In the limit n → 0 they are as
follows:

(i) A (−2)-dimensional space with eigenvalue μ = Mc;
since Mκ

c is independent of κ , its contribution cancels between
the two first lines of (115).

(ii) A 2-dimensional space with eigenvalues given in (B6).
Since μ̄κ = Mκ

11 + Mκ
c − Mκ = 0, the eigenvalues in (B6) are

μκ = ± 1
2

√
AκBκ . The latter vanishes for κ = 1, while for

κ = 0 one has Aκ = Bκ . Their contribution can be regrouped
leading to

�1[u]

Ld
= −1

2

∫
k

[
ln

(
1 − g2

k

T 2
[R′′(T U ) − R′′(0)]2

)

+ g2
k

T 2
(R′′(T U ) − R′′(0))2

]
. (122)

The limit of T → 0 can then be taken unambiguously, i.e.,
independent of the sign of U :

�1[u]

Ld
= −1

2

∫
k

[
ln
(
1 − R′′′(0+)2g2

kU
2) + R′′′(0+)2g2

kU
2].

(123)

This gives the final result for the characteristic function of the
probability distribution of the center of mass u(w = 0) of the
interface, to lowest order in ε = duc − d:

1

Ld
ln 〈eλLdu(0)〉

= −R′′(0)
λ2

2m4
+ 1

2

∫
k

[
ln

(
1 − R′′′(0+)2 g2

k

m4
λ2

)

+R′′′(0+)2 g2
k

m4
λ2

]
. (124)

This result is in agreement with Eq. (G2) in [20]. At depinning,
the distribution is different; see Eq. (42) of [49].

B. 2-point probabilities and avalanche-size distribution

1. General considerations

Following arguments similar to those in Sec. IV A1, the
2-point generating function can be computed as

e
∫
x
λx [u(x;w/2)−w−u(x;−w/2)]

= e
∫
x
λx [uλ

1 (x)−w−vλ
1 (x)]−�[uλ,vλ]

= e
∫
x
λx [u(x;w/2)−w−u(x;−w/2)]

tree
e−�1[uλ,tree,−uλ,tree]. (125)

In the second line, which is exact, uλ,vλ denote the
saddle-point solutions obtained from �[u,v]. Here �[u,v] =
S[u,v] + �1[u,v] + O(ε2) is the effective action of S[u,v]
given by (21), setting λ = 0. The third line is only correct to
1-loop order (i.e., lowest order in ε = duc − d), and requires
the evaluation of �1 at the tree-level saddle point; hence we
can set uλ = uλ,tree, and vλ = vλ,tree = −uλ,tree. Note that this
symmetry property carries over to the effective action; hence
one can set from the outset �[uλ,vλ] → �[uλ, − uλ]. An
important property is that the dependence on w of �[u,v]
is the same as the one of S[u,v], i.e., only through the elastic
energy7 in (21). We can thus derive (125) with respect to w, to
obtain two alternative expressions:

∂wy
e
∫
x
λx [u(x;w/2)−w−u(x;−w/2)]|w→0 = −λy +

∑
a

∫
y ′

g−1
yy ′

T
uλ

a(y ′)

(126)

= −λy +
∑

a

∫
y ′

g−1
yy ′

T
uλ,tree

a (y ′) − ∂wy
�1
[
uλ,tree

w

]∣∣
w→0.

(127)

The first one (126) is exact in terms of the exact saddle point;
hence only explicit derivatives with respect to w are needed.
The second is expressed in terms of the tree saddle point and
is true to 1-loop order. �1 has no explicit w dependence; hence
the last derivative acts only on the dependence on w of the tree
solution (emphasized in the notation).

2. Computation of �1

The general expression of �1[u,v] is given in Appendix C.
Again we restrict to uniform λx = λ and uniform wx = w; thus

7This is because changing w results in a shift (w1
a(x) → w1

a(x) +
w/2,w2

a(x) → w2
a(x) − w/2) in the generating functional W [w1,w2]

associated with S[u,v].
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we only need the expression for �1[u, − u] at the uniform tree
saddle point. Dropping the superscripts λ and tree, this is

�1[u, − u]

Ld
= 1

2
Tr ln

(
g−1δab1l + M1

ab

)
− 1

2
Tr ln

(
g−1δab1l + M0

ab

)
+ I2

4
Tr[(M1)2 − (M0)2], (128)

with

Mκ
ab =

(
Mκ

ab P κ
ab

P κ
ab Mκ

ab

)
, (129)

1l =
(

1 0

0 1

)
, (130)

Mκ
ab = 1

T
{δab[−R′′(ua1) + R′′(uac) − R′′(ua + u1)

+R′′(ua + uc)] + κR′′(uab)}, (131)

P κ
ab = 1

T
κR′′(ua + ub). (132)

Here Tr refers to a trace over replica and u,v indices (space),
and c to c �= 1. More explicitly, the matrices Mκ and P κ have
for any n again each four distinct components (denoting a,b

indices different from 1),

Mκ
11 = 1

T
[R′′(T U ) − R′′(2u1) + R′′(2u1 − T U )

+ (κ − 1)R′′(0)], (133)

Mκ
1 = Mκ

1a = Mκ
a1 = κ

T
R′′(T U ), (134)

Mκ
ab = δabM

κ
c + Mκ, (135)

Mκ
c = 1

T
[R′′(0) − R′′(T U ) − R′′(2u1 − T U )

+R′′(2u1 − 2T U )], (136)

Mκ = κ

T
R′′(0), (137)

and

P κ
11 = κ

T
R′′(2u1), (138)

P κ
1 = P κ

1a = P κ
a1 = κ

T
R′′(2u1 − T U ), (139)

P κ
ab = δabP

κ
c + P κ, (140)

P κ
c = 0, (141)

P κ = κ

T
R′′(2u1 − 2T U ). (142)

We recall that U and u1 are solutions of (34).
The matrix Mκ is diagonalized in Appendix C for n = 0. It

has
(i) with multiplicity −4 the eigenvalue Mκ

c (since P κ
c = 0).

Since Mκ
c in (136) does not depend on κ , the contribution of

these eigenvalues to (128) cancels between κ = 1 and κ = 0.
(ii) 2 eigenvalues each for σ = ±1, of the form μ =

1
2 (μ̄σ ± √

AσBσ ), where μ̄σ , Aσ , and Bσ will be calculated
below.

Regrouping in Eq. (128) we get

�1[u, − u]

Ld
= 1

2

∫
k

∑
σ=±1

{
ln

([
g−1

k + 1

2
μ̄1

σ

]2

− 1

4
A1

σB1
σ

)

− ln

([
g−1

k + 1

2
μ̄0

σ

]2

− 1

4
A0

σB0
σ

)

− quadratic part

}
. (143)

We find using formulas (B15), (B16) of Appendix B

μ̄κ
σ = 1

T
[R′′(2u1 − 2T U ) − R′′(2u1)](1 − σκ)

= 2UR′′′(2u1)(σκ − 1) + O(T ), (144)

A1
σ = (σ − 1)U 2R′′′′(2u1)T + O(T 2), (145)

B1
σ = 4

T
[R′′(0) + σR′′(2u1)] + O(T 0), (146)

A0
σ = B0

σ = 1

T
[2R′′(2u1 − T U ) − R′′(2u1 − 2T U )

+ 2R′′(T U ) − R′′(2u1) − 2R′′(0)],

= 1

T
[2R′′(T U ) − 2R′′(0) + O(T 2)]. (147)

In Eq. (143) appears the product A0
σB0

σ , which, contrary to
each factor, has no ambiguity at T = 0,

A0
σB0

σ = 4R′′′(0+)2U 2. (148)

Putting everything together we obtain

�1[u, − u]

Ld
= 1

2

∫
k

{
2 ln g−1

k + ln
([

g−1
k − 2UR′′′(2u1)

]2

− 2U 2R′′′′(2u1)[R′′(2u1) − R′′(0)]
)

− 2 ln
([

g−1
k − UR′′′(2u1)

]2 − R′′′(0+)2U 2
)

− quadratic part
}
, (149)

where subtraction of terms quadratic in U , or equivalently in
gk , is indicated. Inserting into formula (125) this gives the
correction to the tree expression for the 2-point generating
function for arbitrary w, the distance between the points. It is
expressed in terms of U and u1 which, we recall, are solutions
of (34). Since u1 → 0+ as w → 0+ we check that �1[u, − u]
indeed vanishes as w → 0+ as it should from (125). The linear
term in w contains the information about avalanches as we
discuss now.

3. Limit of w → 0+ and generating function
of avalanche moments

We now want to use formula (127), i.e.,

Ẑ = L−d∂weLdλ[u(w/2)−w−u(−w/2)]|w→0+

= −λ + m2U − L−d∂w�1[u, − u]|w→0+ . (150)

In Eq. (149) the dependence on w is only contained in U

and u1. Since �1[u, − u] vanishes for any U as w → 0+,
it is of the form �1[u, − u] = wf (U ) + O(w2); hence the
dependence of U on w is not needed and we can consider U as
its w = 0+ limit, i.e., the solution of m2U − R′′′(0+)U 2 = λ.
To obtain (150) we thus replace u1 = yw/2, expanding to
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linear order in w using the w = 0+ limit given in (40), y =
[1 − 2R′′′(0+)

m4 m2U ]−1. We find Ẑ = Z − λ, with

Z = Ztree + yR′′′′(0+)R′′′(0+)
∫

k

U 2[
g−1

k −2UR′′′(0+)
]2

+ 2U 2gk

g−1
k − 2UR′′′(0+)

− 3g2
kU

2 (151)

with Ztree = m2U . Specifying to g−1
k = k2 + m2 and rescaling

k → km yields

Z = Ztree + R′′′′(0+)md−4Ztree

1 − 2SmZtree

∫
k

[
ZtreeSm

(k2 + 1 − 2ZtreeSm)2

+ 1

k2 + 1 − 2ZtreeSm

− 1

k2 + 1
− 3

ZtreeSm

(1 + k2)2

]
+ O(ε2),

(152)

where the terms appear in the same order as in (151). We have
abbreviated the characteristic scale of avalanches

Sm = R′′′(0+)

m4
(153)

already introduced in Eq. (14). R′′′′(0+) ∼ ε is the small
expansion parameter, and as indicated subleading terms are
of order ε2. Equation (152) has the form

(Z − Ztree)(1 − 2SmZtree) = ε δZ(Ztree) + O(ε2), (154)

and since Z − Ztree ∼ ε, it can be rewritten as

(Z − Ztree)[1 − Sm(Z + Ztree)] = ε δZ(Z) + O(ε2). (155)

Rearranging gives

Z = SmZ2 + Ztree(1 − SmZtree) + ε δZ(Z) + O(ε2)

= SmZ2 + λ + ε δZ(Z) + O(ε2). (156)

Explicitly, this is

Z = λ + SmZ2 + R′′′′(0+)md−4Z ×
∫

k

[
ZSm

(k2 + 1 − 2ZSm)2

+ 1

k2 + 1 − 2ZSm

− 1

k2 + 1
− 3

ZSm

(1 + k2)2

]
+ O(ε2).

(157)

We see that ZSm always appear together. It is therefore useful
to introduce the dimensionless function Z̃ of the dimensionless
argument λSm,

Z̃(λSm) := Z(λ)Sm. (158)

Inserting into the above equation yields

Z̃ = λ + Z̃2 + εĨ2R
′′′′(0+)md−4 1

εĨ2

∫
k

[
Z̃2

(k2 + 1 − 2Z̃)2

+ Z̃

k2 + 1 − 2Z̃
− Z̃

k2 + 1
− 3

Z̃2

(1 + k2)2

]
+ O(ε2),

(159)

where the combination

α := εĨ2R
′′′′(0+)md−4 ≡ R̃′′′′(0+) (160)

is the fourth derivative of the rescaled renormalized disorder,
and Ĩ2, defined in Eq. (67), is the (dimensionless) 1-loop
integral used to eliminate the normalization of

∫
k
. The result

(159) is equivalent to Eq. (151) of [20], noting that the
force-force correlator used in Eq. (143) of [20] is �′′(0) =
−R′′′′(0+).

The generalization to a more general elastic kernel is
straightforward, and can be obtained replacing k2 + 1 → g̃−1

k

as detailed in Appendix E of [20], and for the contact-line
experiment in [44].

C. Avalanche-size distribution

Let us recall the results for the normalized probability-
distribution function p(s), defined in Eq. (13), as obtained
in [19,20] for standard elasticity: For d � 4, the tree or MF
result is relevant. It reads

pMF(s) = 1

2
√

πs3/2
e−s/4. (161)

For dimension d smaller than 4, loop corrections are relevant.
The 1-loop result, obtained by inverse-Laplace transforming
(159), is

p(s) = A

2
√

πsτ
exp

(
C

√
s − B

4
sδ

)
, (162)

with exponents

τ = 3
2 + 3

8α = 3
2 − 1

8 (1 − ζ1)ε, (163)

δ = 1 − α

4
= 1 + 1

12
(1 − ζ1)ε , (164)

where α = − 1
3 (1 − ζ1)ε and ζ1 = 1/3 for the RF class,

relevant to the present study. The constants A, B, and C depend
on ε, and must satisfy the normalization conditions∫ ∞

0
ds sp(s) = 1, (165)

∫ ∞

0
ds s2p(s) = 2. (166)

At first order in ε they are

A = 1 + 1
8 (2 − 3γE)α, (167)

B = 1 − α

(
1 + γE

4

)
, (168)

C = − 1
2

√
πα, (169)

where γE = 0.577216 . . . is Euler’s constant.

V. UNCORRELATED AVALANCHES:
THE BROWNIAN FORCE MODEL (BFM)

A. The BFM model

In this section we study the Brownian force model (BFM),
which corresponds to a Gaussian bare disorder with a force
correlator in Eq. (3) of

−R′′
0 (u) = −R′′

0 (0) + σ |u| , R′′′
0 (u) = σ sign(u). (170)

For a point, i.e., in d = 0, V ′(u) performs a Brownian motion
in u. The potential V (u) is thus given by a so-called random
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acceleration process [50–52]. In the present framework we
assume that the distribution of V ′(u) has statistical translational
invariance; hence the model needs a regularization. It can for
instance be defined in a periodic box V (u + W ) = V (u) with
W → ∞, the increments V ′(u1) − V ′(u2) being those of the
Brownian motion,

[V ′(u1) − V ′(u2)]2 = σ |u1 − u2|. (171)

The zero mode then has very large fluctuations; i.e., R′′
0 (0) =

O(W ). The generalization to an interface is straightforward
with V ′(u,x) being a set (indexed by x) of mutually uncorre-
lated Brownian motions along u. Note that a dynamical version
of this model was studied in the context of nonequilibrium
depinning [29,53]. In d = 0, it is known as the ABBM model
(see [53] for a review).

A remarkable property of this model defined in the
continuum is that it appears to be an exact fixed point of
the FRG in any dimension d; i.e., the renormalized disorder
correlator R(u) (for its definition see Secs. IV A2, II and III of
Ref. [20]) remains of the same form as (170). More precisely

R′′′(u) = σ sign(u), R̃′′′(u) = σ̃ sign(u), (172)

where the rescaled disorder correlator was defined in (66). Its
flow, i.e., its dependence on m, is given by the FRG equation

−m∂mR̃′′′(u) = (ε − ζ )R̃′′′(u) + β[R]′′′(u). (173)

The β function, taken for u > 0, contains only higher deriva-
tives which vanish for (172), and this to any loop order. This
property is detailed in Appendix I, together with a stability
analysis, which shows that this fixed point is attractive. More
precisely, it is at least linearly attractive up to 2-loop order. The
roughness exponent for the BFM can be read off from Eq. (173)
to be ζ = ε = 4 − d. Hence σ = Adσ̃ with A0 = 1/4.

At this stage, this remarkable property is not rigorously
established for arbitrary d. In fact, some of the statements
have to be qualified; see Appendix I. It should be considered
as a (quite solid) conjecture. In d = 0, however, there exists
some theorems, discussed below, which strengthen the case.

In d = 0, this model has been studied in the context of the
1D Burgers equation [35,36,40]. Let us recall the connection.
It is convenient to denote space by w and consider the
time-dependent velocity field v ≡ vt (w) satisfying the Burgers
equation

∂tv + 1
2∂wv2 = ν∂2

wv (174)

in the inviscid limit ν = 0+. It is solved via the Cole-Hopf
transformation [54]

vt (w) = 1

t
[w − u(w)] = V̂ ′(w), (175)

where u(w) realizes the minimum of

V̂ (w) = min
u

[
1

2t
(u − w)2 + V (u)

]
. (176)

Hence this is exactly the disordered model in d = 0 with the
(Burgers) “time” t = 1/m2, taken at temperature T = ν/2 =
0+ (minimization condition), identical to the inviscid limit. At
initial time t = 0, V̂ = V , hence the initial velocity field is
vt=0(w) = V ′(w). The Burgers velocity correlator thus equals

the renormalized disorder correlator,

t2 vt (w1)vt (w2) = −R′′(w1 − w2), (177)

with R = R0 at t = 0 (i.e., m = ∞).
Until now, these statements were completely general. The

BFM corresponds to a choice of a random initial velocity
vt=0(w) with the same increments as the Brownian motion. As
a consequence, R̃′′′(u) is for all times given by (172).

B. Shocks in the BFM and Lévy processes

If we admit that there are no loop corrections for the BFM,
then we can conjecture that the (improved) tree level (i.e., mean
field) result is exact for the BFM in any dimension d. From
the fact that R′′′(u) = σ (for u > 0), i.e., all higher derivatives
vanish, the results of Sec. II G then show that, for w > 0,

eLdλ[u(w/2)−w−u(−w/2)] = eLdwẐ(λ). (178)

This should hold in any d for the two-point correlation of
the center-of-mass displacements. In (178) Ẑ(λ) takes the tree
expression Ẑ(λ) = Ztree(λ) − λ from (17)

Ẑ(λ) = 1

2Sm

(1 − 2Smλ −
√

1 − 4Smλ), (179)

with Sm = σ/m4 = σ t2. In Appendix E we show, from our
saddle-point method, that the same holds for an arbitrary
number of ordered points w1 < w2 < · · · < wp,

eLd
∑p

i=1 λi [u(wi )−wi ] = eLd
∑p−1

i=1 (wi+1−wi )Ẑ(μi ) (180)

with
∑p

i=1 λi = 0 and μi = −∑i
j=1 λj . It admits a more

general formulation

e−Ld
∫

dw μ′(w)[u(w)−w] = eLd
∫

dw Ẑ(μ(w)) (181)

for any function μ(w) which vanishes at w = ±∞, derived
in Appendix F. Inserting μ(w) = −∑

i λiθ (w − wi) one
recovers (180).

Let us now make contact with a remarkable set of results
obtained by Carraro-Duchon and Bertoin for the Burgers
equation, i.e., the case d = 0 [35,36].

We recall the definition of a (homogeneous) Lévy process.
It is a real random function X(w), continuous on the right with
a limit on the left; i.e., it can have jumps. It has homogeneous
and independent increments; i.e., {X(wi+1) − X(wi)}i=1,...,p

are independent random variables for any ordered set w1 <

w2 < · · · < wp and any p; and for all w < w′ the law of
X(w′) − X(w) is the same as the law of X(w′ − w) − X(0).
Its characteristic function satisfies, for w > 0, and ω ∈ iR,

eω[X(w)−X(0)] = ewφ(ω). (182)

A Lévy process is thus fully determined by its Lévy exponent
φ(ω), with φ(0) = 0. More generally,

e− ∫
dw ω′(w)X(w) = e

∫
dw φ(ω(w)) (183)

for any function ω(w) which vanishes at w = ±∞.8

Equation (182) is recovered using ω(v) = ωθ (w − v)θ (v). The
Lévy-Khintchine theorem [55] then establishes that X(w) is a

8In Bertoin [36] φ is called ψ and ω is called q.
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sum of a Brownian motion (with drift) and an independent
jump process, with measure n(s)ds. (We use sans-serif s
in order not do confuse with s = S/Sm used earlier.) Here
we need the case of (i) only positive or zero jumps (resp.
only negative jumps); (ii) finite first and second moments∫

max(s,s2)n(s)ds < ∞. In that case

φ(ω) = bω +
∫

s>0
(e−ωs − 1) n(s) ds. (184)

(The same formula holds with s → −s for only negative
jumps.) In (184) ω can be taken in a domain of convergence
which includes Re(ω) � 0 (but usually is larger).

A remarkable theorem by Carraro and Duchon [35] estab-
lishes that if the velocity field Xt (w) = vt (w) of the inviscid
Burgers equation is a Lévy process (with only negative jumps)
at initial time [with φ′(0) � 0], then (i) it remains a Lévy pro-
cess with only negative jumps for all times; (ii) its associated
Lévy exponent φt (ω) satisfies itself a Burgers equation

∂tφ + φ∂ωφ = 0. (185)

We recall in Appendix F a simple-minded derivation of this
formula. Its solution for ω > 0 is obtained by inverting

φt (ω + tφ0(ω)) = φ0(ω), (186)

i.e., φt (ω) = φ0(ht (ω)), where ht (ω) is the inverse function
of ω → ω + tφ(ω). This was applied to the case of the initial
Brownian velocity

φ0(ω) = a2

2
ω2, (187)

leading to [35,36]

φt (ω) = 1 + a2ωt − √
1 + 2a2ωt

a2t2

= ω

t
+
∫

s<0
(eωs − 1) n(s) ds, (188)

n(s) = 1

a
√

2πt3|s|3/2
e−|s|/(2a2t). (189)

This is the same law for the shock-size distribution as the
mean-field result (179) for the interface.

We can now identify the results from our present method
with those in d = 0. Since Eq. (175) gives vt (w) = [w −
u(w)]/t , in d = 0 the process u(w) − w in the BFM is a Lévy
process with only positive jumps. This is consistent with the
above, Eq. (179), noting

Ẑ(λ) = φt (ω = −tλ), (190)

where we recall t = 1/m2. The result (189) then gives the
P (S) of Eqs. (13) and (19) with s = −m2S and a2 = 2σ .

To conclude, we conjecture that the BFM model for the
interface in any d has center-of-mass displacements given by
a Lévy process with positive jumps, i.e., perfectly uncorrelated
shocks. In d = 0 this was proven in [35,36]. Since we argue
that for interfaces for more general disorder (i.e., not restricted
to the BFM model but with shorter-ranged correlations) the
mean-field theory becomes exact for d � duc, we conclude
that at (and above) the upper critical dimension the BFM
becomes a good description (with ζ = 0) and the center
of mass of the interface undergoes a Lévy process. The ε

expansion then allows us to compute deviations from the
independent-avalanche properties.

VI. GENERALIZATION: TREE-LEVEL DIFFERENTIAL
EQUATION FOR AN ARBITRARY DISORDER

CORRELATOR

We have seen in the previous section that in the case where
|R′′′(u)| is a constant, (i) the generating functions for the joint
probabilities of u(w) − w at an arbitrary number of points is
easily computed, from the one at 2 points, and (ii) the (Lévy)
exponent of the 2-point generating function itself satisfies the
Burgers equation, as shown by Carraro-Duchon [35].

Here we show an even more striking result: We find a
generalization of the differential equation, satisfied at tree
level, to an arbitrary number of points, and for any disorder
correlator R(u). This equation encodes the complete mean-
field results developed in this paper. Here we show how it
arises. The question of its solution, and further applications,
will be examined elsewhere, but for illustration we discuss an
explicit solution for periodic disorder at the end of this section.

A. Observable

The observable of interest is

eẐt [λ] := e
∫
w

λ(w)[u(w)−w], (191)

a slight generalization of (75) since it is now a functional of
λ(w) (hence the notation with a square bracket) and contains
information about multiple-point correlations. As in Sec. III
we work in dimension d = 0 or equivalently (up to the volume
factor of Ld ) we study the center-of-mass displacement in any
d. We compute it in the (improved) tree approximation; i.e.,
it is the sum of all connected tree graphs (for details of the
graphical rules see Sec. VI C below):

Ẑt [λ] := e
∫
w

λ(w)[u(w)−w]
c,tree

=
∑
G

. (192)

It is obtained by the expansion of e
∫
w

λ(w)[u(w)−w], where the
external lines on the top link to the external u(wi) − wi fields
at various wi , following the graphical rules defined in Sec. V C
of [20]. It will be convenient to use the notation

�(w) = −λ(w)t, t = 1/m2 (193)

and loosely denote by the same symbol

Ẑt [�] := Ẑt [λ = −�/t]. (194)

It contains information about all n-point cumulants Ĉ(n) of the
displacement, or equivalently in d = 0 of the Burgers velocity
(see Table I for the conventions used). Ẑt [�] can be expanded
as

Ẑt [�] =
∞∑

p=2

1

p!

∫
w1,...,wp

�(w1) . . . �(wp)Ĉ(p)
t (w1, . . . ,wp),

(195)
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TABLE I. Conventions used for the various sources and generat-
ing functions.

t = 1
m2

λ(w) = −μ′(w) = −�(w)
t

= ω′(w)
t

eẐt [λ] := e
∫
w λ(w)[u(w)−w]

Ẑt [�] = Ẑt [λ = −�/t] = Ŷt [�,u]|u(w)=w

Z(λ,w) = Z(λ)w + O(w2)

Ẑ(λ,w) = Z(λ,w) − λw

where the cumulants

(−t)pĈ
(p)
t (w1, . . . ,wp) = [u(w1) − w1] . . . [u(wp) − wp]

c

(196)

were defined in [20]. There we have seen how to calculate
them at tree level as a sum over all connected tree graphs G as
in (192) and obtained them explicitly for p � 4.

B. Differential equation

Here we show that Ẑt [�] can be obtained very elegantly
from a suitable (functional) generalization of the Carraro-
Duchon equation which naturally sums up all tree graphs in
the field theory. The idea is to write an evolution equation in
the variable t ; hence we have emphasized the dependence on
this variable.

To achieve this, one needs to generalize Ẑt [�] into a
functional Ŷt [�,u] of two variables u and w, defined as

Ŷt [�,u] =
∞∑

n=2

1

n!

∫
w1,...,wn

�(w1) . . . �(wn)

× Ĉ
(n)
t (u(w1), . . . ,u(wn)). (197)

Hence it depends on a background field u(w), not to be
confused with u(w), the center of mass of the manifold in
a given disorder realization, the fluctuating field which is
averaged over. Then the following property holds:

Ŷt [�,u] is the solution of the flow equation

∂t Ŷt [�,u] = −
∫

w

δ

δu(w)
Ŷt [�,u]

δ

δ�(w)
Ŷt [�,u] (198)

with initial condition

Ŷt=0[�,u] = 1

2

∫
w,w′

�(w)�(w′)�(u(w) − u(w′)). (199)

C. Graphical proof

By definition one has

Ŷt [�,u] =̂e− ∫
w

�(w)t−1[u(w)−w]
c,tree

=
∑
G

. (200)

By the notation =̂ we mean to use the graphical rules extending
the ones defined in [20] Sec. V C as follows:

(1) Draw all connected tree diagrams obtained by the
expansion of e− ∫

w
�(w)t−1[u(w)−w].

(2) Each external point is a contracted variable
− ∫

w
�(w)t−1[u(w) − w], i.e., will contribute a factor of

− ∫
w

�(w)/t ; hence it does not depend on the background
field u.

(3) Each dashed line is a disorder correlator, R(u(w1) −
u(w2)), with n1 derivatives taken with respect to u(w1) and n2

derivatives taken with respect to u(w2), where n1 and n2 are the
number of lines entering the left and right vertex, respectively.

(4) Each solid line is a correlation function at zero momen-
tum, gq=0 = 1/m2 = t . All points connected with such a line
have the same argument wi . In the drawing of Eq. (200), we
have distinguished external propagators, i.e., lines which end
in a �(w) (in green/gray/thin) from internal ones (bold, black).
The reason is that the factor of t on an external line cancels
with the factor of 1/t which comes with each �(w). Thus only
internal lines carry a factor of t .

(5) Once Ŷ [�,u] has been evaluated, one sets u(w) → w

to get Ẑt [�],

Ẑt [�] = Ŷ [�,u]
∣∣
u(w)=w

. (201)

In order to allow for a recursion relation, we perform this last
step only at the end.

We now show that there exists a recursion relation for
derivatives with respect to internal lines:

Consider ∂t Ŷ [�,u]. Since each internal line carries a factor
of t , graphically this means a sum over all possibilities M to
mark an internal line (here dotted, red),

∂t Ŷ [�,u]

=
∑
M

∑
G

. (202)

One realizes that above and below the marked propagator
appear functional derivatives of Ŷ [�,u] itself: δ

δu(w) Ŷt [�,u]

at the top, and − δ
δ�(w) Ŷt [�,u] at the bottom. This implies

equation (198). The initial condition (199) is then made to
recover the exact second cumulant Ĉ(2), i.e., the quadratic
term in the graphical expansion.

D. Consequences and particular cases

The above mean-field differential equation is remarkable
in several respects. First it allows us to compute explicitly
the n-point function Ĉ(n) by integration of (198) in a small-t
expansion. One immediately checks that the terms of order �3

and �4 coincide with the expressions (59)–(61) of [20].
We now analyze some special cases, for which the above

equations simplify. Suppose we want to compute the p-point
expectation

eẐt ({ωi,wi }) := e− 1
t

∑p

i=1 ωi [u(wi )−wi ] (203)
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within the tree approximation. We can use the above formalism
with the choice

�(w) :=
p∑

i=1

ωiδ(w − wi). (204)

The two functions �(w) and u(w) have been replaced by the
two sets of discrete variables ωi and wi . The variation with
respect to u(w) gets replaced by the derivative with respect to
wi , so that one can write the recursion relation directly for Ẑt ,

Ẑt ({ωi,wi})
= e− 1

t

∑p

i=1 ωi [u(wi )−wi ]
c, tree

=
∑
G

. (205)

Rule (3) now gives R(w1 − w2) instead of R(u(w1) − u(w2)).
The functional differential Eq. (198) simplifies to an ordinary
differential equation,

∂t Ẑt ({ωi,wi}) = −
p∑

i=1

∂

∂wi

Ẑt ({ωi,wi}) ∂

∂ωi

Ẑt ({ωi,wi}).

(206)

The initial condition to this equation is

Ẑt=0({ωi,wi}) = 1

2

p∑
i,j=1

ωiωj�(wi − wj ). (207)

Solving Eq. (206) iteratively in powers of t reproduces again
the n-point functions of [20], Eqs. (59)–(61). Indeed one also
has, from (195) and (204),

Ẑt ({ωi,wi}) =
∞∑

n=2

1

n!

p∑
i1,...,in=1

ωi1 . . . ωin Ĉ
(n)
t (wi1 , . . . ,win).

(208)

Formula (206) simplifies even more for the p = 2 generat-
ing function expressed as a function of the position difference,

eẐt (ω,w) := e−(ω/t)[u(w)−u(0)−w]. (209)

Equation (206) and the initial condition become

∂t Ẑt (ω,w) = − ∂

∂w
Ẑt (ω,w)

∂

∂ω
Ẑt (ω,w), (210)

Ẑt=0(ω,w) = ω2[�(0) − �(w)]. (211)

As an example, we give the solution up to order t2,

Ẑt (ω,w) = ω2[�(0) − �(w)] + 2ω3t�′(w)[�(0) − �(w)]

+ω4t2[5(�(0) − �(w))�′(w)2

− 2(�(0) − �(w))2�′′(w)] + O(t3). (212)

This recursion easily reproduces the 6 first connected
Kolmogorov cumulants, explicitly calculated in [20],
Eqs. (62)–(66).

There is an interesting property related to the expansion in
w: If one writes

Ẑt (ω,w) =
∞∑

n=1

wnzn(ω,t), (213)

then the equations for the zp(ω,t), p � n, close; i.e.,

∂tz1 + z1∂ωz1 = 0, (214)

∂tz2 + 2z2∂ωz1 + z1∂ωz2 = 0, (215)

∂tz3 + 3z3∂ωz1 + 2z2∂ωz2 + z1∂ωz3 = 0. (216)

More generally

∂tzn +
n∑

q=1

qzq∂ωzn−q+1 = 0, (217)

with initial conditions zn(ω,t = 0) = − 1
n!ω

2�(n)(0+).
One particular solution of these equations is zn(ω,t) = 0

for n � 2. It corresponds to the BFM [where �(n)(0+) = 0
for n � 2], discussed in the previous section, and thus to the
equation (185) originally derived by Carraro and Duchon [35].
It describes a Lévy process with exponent z1(ω,t) = φt (ω).
The initial condition is

z1(ω,t = 0) = φt=0(ω) = −ω2�′(0+) = ω2σ. (218)

z1 is uniquely determined by its initial condition; hence we
can use the result (189)

z1(ω,t) = 1 + 2σωt − √
1 + 4σωt

2σ t2
. (219)

Inserting into (215) we find the general solution for z2,

z2(ω,t) = F
( 1+√

1+4σωt

4ωσ

)
1 + 4ωσt

. (220)

This can be seen by introducing a = ln ω and b = ln(1 +√
1 + 4σ tω) in which variables one gets (∂a + ∂b)z2 =
2

e−b−1z2. The function F (x) is determined by the initial
condition as

F (x) = − 1

8x2

�′′(0+)

�′(0+)2
. (221)

Hence

z2(ω,t) = − 2�′′(0+)ω2

(1 + √
1 + 4σωt)2(1 + 4ωσt)

. (222)

Now one can check that z1 and z2 reproduce the terms
O(w) and O(w2) in (64) obtained there by a completely
different method. For the general case one can determine the
zn recursively. Their systematic study is left for the future.

E. Connection with exact RG equations

One easily sees that the generalized Carraro-Duchon
equation (198) together with the definition (197) is equivalent
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to the following RG equation for the cumulants

∂t Ĉ
(n)
t (w1, . . . ,wn)

= −
∑

p,q,p+q=n+1

n!

(p − 1)!(q − 1)!

× [Ĉ(p)
t (w1,w2, . . . ,wp)∂w1Ĉ

(q)
t (w1,wp+1, . . . ,wn)].

(223)

Here [. . .] means symmetrization over the n variables
w1, . . . ,wn. The summation over p,q is for p,q � 2 in the
case of STS and p,q � 1 in the absence of STS. One can
show that if Ĉ(1) = 0 at t = 0, it remains so. In that case the
equation for Ĉ(n) involves only Ĉ(n−1). In Appendix H we
recall the exact RG (ERG) equations in d = 0, and show that
neglecting one term in these equations (which corresponds to
loop corrections) we indeed recover (223) which hence appears
as a tree approximation

F. Including loops

It is shown in Appendix G that Ẑt [�] satisfies a more
general evolution equation

∂t Ẑt = 1

2

∫
w

�′(w)

[
δ2Ẑt

δ�(w)2
+ δẐt

δ�(w)

δẐt

δ�(w)

]
. (224)

This equation is exact (i.e., valid beyond the tree approx-
imation) and equivalent to the ERG equations given in
Appendix H. Neglecting the first term corresponds to the tree
approximation and is equivalent to the recursion of moments
(223). As shown in Appendix G2, Eq. (224) can also be
obtained by replacing the tree-level equation (198) by the
equivalently exact equation

∂t Ŷt [�,u] = −
∫

w

lim
w′→w

[
δ

δ�(w′)
δ

δu(w)
Ŷt [�,u]

]

−
∫

w

δ

δu(w)
Ŷt [�,u]

δ

δ�(w)
Ŷt [�,u]. (225)

The first term generates all loop corrections.
We now consider the BFM, with statistical translation

invariance. In Appendix G2 we show that then a solution for
Ẑt can be obtained from

Ẑt = ft (ω∞) +
∫

w1

φt (ω(w1),ω∞), (226)

ω(w) =
∫ ∞

w

dw′ �(w′) , ω∞ =
∫

w

�(w), (227)

∂tφt (x,y) = −φt (x,y)∂1φt (x,y), (228)

∂tft (y) = 1

2
[∂1φt (0,y) + ∂1φt (y,y)], (229)

where ∂1 denotes the partial derivative with respect to the first
argument. The initial condition for the BFM is

φt=0(x,y) = σx2 − σxy, (230)

ft=0(y) = 1
2�(0)y2. (231)

The solution of the system (228) and (229) with this initial
condition is

φt (x,y) = 1

2σ t2

[
1 + 2σ t

(
x − y

2

)

−
√

1 + 4σ t
(
x − y

2

)
+ σ 2t2y2

]
, (232)

ft (y) = 1
2 ln(1 − t2s2y2) + 1

2�0(0)y2. (233)

The ln term corresponds to 1-loop corrections, while for
this model higher loop contributions identically vanish, as
discussed in Appendices G2 and I2.

G. Periodic case

In the periodic case in any dimension it is conjectured that
R′′(u) − R′′(0) = R′′′(0+)u(1 − u). Noting σ := R′′′(0+), we
have r4 := R′′′′(0+) = −2σ .

Here we compute (in d = 0 for simplicity but extension is
straightforward) the most general 2-point generating function
using an arbitrary value for σ . The calculation is performed
in Appendix K. The general result for any function λ(w) =
−μ′(w) on the interval [0−,1−] [this is sufficient since u(w) −
w is periodic] with μ(0) = μ(1) is

〈e
∫
w

λ(w)[u(w)−w]〉
tree

= e−Sλ , (234)

−Sλ = −
∫ 1

0
dw [μ(w) + m2V (w)] + σA2. (235)

V (w) = m2 − 2σA

2σ

(√
1 − 4σ

(m2 − 2σA)2
μ(w) − 1

)
. (236)

A is given by the self-consistent equation

A =
∫ 1

0
dw

m2V (w)

m2 − 2σA + 2σV (w)
. (237)

From this the 2-point function is obtained by taking μ(w′) =
λθ (0 < w′ < w):

〈eλ[u(w)−w−u(0)]〉tree = e−Sλ , (238)

−Sλ = −w(λ + m2V ) + σA2. (239)

V and A both depend on the length of the interval w, and
the function V (w′) introduced above is V (w′) = θ (0 < w′ <

w)V . The self-consistent equations are

V m2 − 2σAV + σV 2 = −λ, (240)

A(m2 − 2σA + 2σV ) = wV m2, (241)

to be solved for the branch such that V = −λ
m2 + O(λ2) and

A = −λw
m2 + O(λ2). Up to order t10, or equivalently λ6 or σ 5,

this gives, denoting t = 1/m2,

−Sλ = −(λt)2σ (w − 1)w + 2(λt)3σ 2t(w − 1)w(2w − 1)

−(λt)4σ 3t2(w − 1)w(24(w − 1)w + 5)

+2(λt)5σ 4t3(w − 1)w(2w − 1)(44(w − 1)w + 7)

−2(λt)6σ 5t4(w − 1)w[52(w − 1)w(14(w − 1)w + 5)

+ 21] + O(t12,λ7). (242)
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This is in agreement both with our previous expansions in (64)
(up to order w3) and with (212).

VII. CONCLUSION

In this paper we have presented efficient algebraic tools to
study multipoint correlations of the displacement field of an
elastic manifold of internal dimension d in a random potential,
upon variation of an external parameter. In d = 0 these identify
with the correlations of the Burgers velocity field with random
initial conditions (playing the role of the disorder). Such
correlations are of interest in the field of turbulence. In both
cases, they yield the statistics of avalanches, i.e., shocks in
Burgers.

The first method uses replicas. The saddle-point equations
obtained at T = 0 resum all tree diagrams and yield among
others the avalanche-size distribution in the mean-field limit,
i.e., for d � duc. We have then extended this method to
compute the 1-loop corrections. It allowed us to derive the
1-loop avalanche-size distribution more systematically than in
our previous work [20], providing an independent check of the
latter. This method has a natural extension to the dynamics,
which allows us to compute the distribution of velocities in
an avalanche near the depinning transition [29,31,32]. Apart
from the avalanche-size distribution, other distributions, which
were obtained by a resummation of diagrams, such as the width
of an interface [57,58] or the distribution of critical forces at
depinning [49], should now be obtainable in a purely algebraic
way.

The second method arises from the study of the Brownian
force model (BFM). That model has the unique property that
“its mean-field treatment is exact”; i.e., summation of the tree
diagram yields (almost) the exact result. We have argued that
this property holds in any d. We also proved the stability,
i.e., attractive character, of this model under RG to one loop,
but we believe it to be valid more generally. In d = 0 this
model identifies with the Burgers equation with a (stationary)
Brownian initial condition. We recalled results from the
mathematical literature: At all times the velocity field remains
a Lévy process, implying that the shocks are uncorrelated.
Furthermore it was shown that the Lévy exponent of this
process obeys itself a Burgers evolution equation in time,
the Carraro-Duchon equation. We then pointed out a more
general connection between the Carraro-Duchon equation and
the mean-field theory of elastic manifolds, not restricted to
the BFM, which allowed us to (i) show that avalanches in
elastic manifolds at and above their upper critical dimension
are described by a Lévy process; and (ii) derive a generalized
Carraro-Duchon functional equation, which is in essence the
exact RG equation satisfied by the mean-field theory, i.e.,
the sum of all tree graphs. This allows us in particular to
recover very efficiently most of the results of the first method
at the level of the mean-field theory. Extensions including
loop corrections were presented, but their study was left for
the future. They should in principle lead to another, maybe
more powerful method to study loop corrections.

Both methods presented here have recently been extended
to a manifold with an N -component displacement field, and
the results are presented in [31,33].
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APPENDIX A: GENERAL NONUNIFORM wx

In the general case of the 2-point function (45) at points
wx = ±w

2 f (x) we need to analyze Eq. (29). Expanding for
small w, we find∫

x ′
g−1

xx ′ [y(x ′) − f (x ′)] = 2R′′′(0+)|y(x)|U (x). (A1)

The other equation to be satisfied is∫
x ′

g−1
xx ′U (x ′) − R′′′(0+) sgn(y(x)) U (x)2 = λx. (A2)

These equations can first be studied as an expansion in small
λx :

y(x) = f (x) + 2R′′′(0+)
∫

x ′x ′′
gxx ′ |f (x ′)|gx ′x ′′λx ′′ + . . . ,

(A3)

U (x) = gxx ′λx ′ + R′′′(0+)gxx ′sgn(f (x ′))(gx ′x ′′λx ′′ )2 + . . . .

(A4)

The second-order part of U (x) allows us to retrieve the second
moment of local avalanche sizes, from (51),

ρ
f

0 〈SxSx ′ 〉 = 2R′′′(0+)gxx ′′gx ′x ′′ |f (x ′′)|. (A5)

These equations were studied in [20] in the case f (x) = 1 and
λx = λδ(x). In that case y(x) > 0 does not change sign and
the equation (A2) can be studied separately. More generally
however, we see from (A3) that if f (x) changes sign, y(x)
will also change sign (at least for small enough λx), but not
necessarily at the same location. A general analysis of these
equations demands a more thorough study.

APPENDIX B: DIAGONALIZATION
OF REPLICA MATRICES

1. 1-point formulas

Consider a replica matrix M as in (117) specified by the
four components M11, M1a = Ma1 =: M1 for a �= 1, Maa =:
Mc + M , and Mab =: M , where a �= b are two arbitrary
replica indices distinct from 1. The eigenspaces can be split
into two groups:

(i) A 2-dimensional subspace of vectors of the form

V =
(

v1

v �ω
)

, �ω =

⎛
⎜⎜⎝

1
...

1

⎞
⎟⎟⎠ . (B1)

There the action of M reduces to a simple 2 × 2 matrix:

MV =
(

v′
1

v′ �ω
)

, (B2)
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(
v′

1

v′

)
=
(

M11 (n − 1)M1

M1 Mc + (n − 1)M

)(
v1

v

)
. (B3)

(ii) n − 2 eigenvectors associated to the eigenvalue μ = Mc:

Vp =
(

0

�ω(p)

)
, �ω(p) =

⎛
⎜⎝

ω
(p)
1

. . .

ω
(p)
n−1

⎞
⎟⎠ , (B4)

with ω
(p)
j = epj 2iπ

n−1 , (j = 1, . . . ,n − 1; p = 1, . . . ,n − 2), the
(n − 1)-vector constructed from the (n − 1)th root of unity,
with

∑n−1
j=1 ω

(p)
j = 0.

To summarize, the eigenvalues and multiplicities are for
n → 0

μ = Mc, multiplicity − 2, (B5)

μ = 1
2 (μ̄ ± √

AB), multiplicity 1 for each sign, (B6)

with

μ̄ = M11 + Mc − M, (B7)

A = M11 + M − Mc − 2M1, (B8)

B = M11 + M − Mc + 2M1. (B9)

2. 2-point formulas

The same analysis can be repeated for the 2n × 2n

symmetric matrix M, with

Mκ
ab =

(
Mκ

ab P κ
ab

P κ
ab Mκ

ab

)
. (B10)

Since the 2 × 2 structure is obviously diagonalized by the
symmetric ( 1

1 ) and antisymmetric ( 1−1 ) combination, the task
reduces to finding the eigenvalues of P κ ± Mκ ; hence the first
−4 eigenvalues are for n → 0 obtained from (B5),

μ = Mc + Pc, multiplicity − 2, (B11)

μ = Mc − Pc, multiplicity − 2. (B12)

The remaining four eigenvalues are according to (B3) the
eigenvalues of the two following 2 × 2 matrices

U+ =
(

M11 + P11 −(M1 + P1)

M1 + P1 Mc − M + Pc − P

)
, (B13)

U− =
(

M11 − P11 −(M1 − P1)

M1 − P1 Mc − M − Pc + P

)
. (B14)

These four eigenvalues are

μσ,± = 1
2 (μ̄σ ± √

AσBσ ), (B15)

with σ = ±1, and

μ̄σ = M11 + Mc − M + σ (P11 + Pc − P ),

Aσ = M11 + M − Mc − 2M1 + σ (P11 + P − Pc − 2P1),

Bσ = M11 + M − Mc + 2M1 + σ (P11 + P − Pc + 2P1).

(B16)

APPENDIX C: �1[u,v]

The general expression of �1[u,v] for 2-point observables
is an extension of (105):

�1[u,v] = 1

2
Tr ln

(
g−1δab1 − W 1

ab

)
− 1

2
Tr ln

(
g−1δab1 − W 0

ab

)
+ I2

4
Tr[(W 1)2 − (W 0)2], (C1)

W κ
ab =

(
W

κ,uu
ab W

κ,uv
ab

W
κ,vu
ab W

κ,vv
ab

)
(C2)

with

W
κ,uu
ab,xy = 1

T
δxy

[
δab

∑
c

R′′(uac(x)) − κR′′(uab(x))

+ δab

∑
c

R′′(ua(x) − vc(x))

]
, (C3)

W
κ,vv
ab,xy = 1

T
δxy

[
δab

∑
c

R′′(vac(x)) − κR′′(vab(x))

+ δab

∑
c

R′′(va(x) − uc(x))

]
, (C4)

W
κ,uv
ab,xy = − 1

T
δxyR

′′(ua(x) − vb(x)) = W
κ,vu
ab,xy . (C5)

APPENDIX D: DIAGRAMMATIC REPRESENTATION
OF 1-LOOP CORRECTIONS

Let us recall the graphical interpretation of the (improved)
tree-level self-consistency equation. As already discussed in
the text ZMF = λ + SmZ2

MF is graphically written as

ZMF =

... ...
λ

...

(D1)

As indicated, the blob denotes Z itself. Note that we work
in rescaled variables, where �′(0+) = −1, and in order to
lighten the notation, we count the lower vertex as 1 instead of
�′(0+) = −1, which explains the change in sign with respect
to Eq. (80).

Let us now consider loop corrections. More details can
be found in [20]. A graphical interpretation of the dressed
propagator 1/(k2 + m2 − 2SmZ), appearing, e.g., in (157) is

:=

...
...

...

...
...

(D2)
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The notation on the right-hand side of the equation is as
follows: The left vertex of each disorder is at 0, the right one at
w. This is a graphical representation of the antiferromagnetic
rule described in [20]. The outgoing lines all end in a factor of
Z which is explicitly drawn.

There appear two classes of diagrams, corresponding to the
first and second line (of the integral) in Eq. (157). The first
class, denoted C1 in [20], can be written as

C1 =

... ...

+

... ...

= Δ′′(0)[Δ(w) − Δ(0)]
∫

k

Z2

(k2 + m2 − 2Z)2
+ O(w2) .

(D3)

The diagrams on the second line (of the integral) of Eq. (159)
are termed class C2 in [20]. They look like a correction to the
critical force and can be represented as follows:

C2 =

...

= [Δ′(w) − Δ′(0+)]
∫

k

Z

(k2 + m2 − 2Z)
− Z

k2 + m2
.

(D4)

Indeed it should be viewed as a loop of �′, of which exactly
one is expanded in w, leading to a loop with one marked vertex.
This is the vertex drawn above. Note that the double line needs
at least one �′(w); otherwise it cannot start at 0 and go to w as
indicated. This leads to the last term in (D4) being subtracted.

If one wants the expression in terms of the renormalized
disorder, one has to subtract the contribution proportional
to

∫
k

1
(k2+m2)2 , giving an additional term −[�′(w) − �′(0+)]∫

k
2Z

(k2+m2)2 .

APPENDIX E: BROWNIAN FORCE MODEL:
MANY-POINT CORRELATIONS

In this appendix we derive the correlation function of
the center-of-mass displacement for the BFM model for an
arbitrary number of points, thereby giving another derivation
of its Lévy process character discussed in the text. We provide
both a discrete derivation (of the p-point correlation) and a
continuum one (functional average). To simplify notations,
we set d = 0, which amounts to omitting the factor of Ld ,
restored in the main text. Of course this is achieved within tree
level, since we have argued that this be exact for the BFM.

1. Discrete calculation

We start with the tree-level equations (56), derived for
arbitrary R(u) and specify them to R′′′(u) = σ sign(u). In this
section, for notational simplicity we set m2 = 1, R′′′(0+) =

σ = 1 and denote �(0) := −R′′(0). We must solve the
following system of equations for Ui and u1i :

u1i − wi +
∑

j

|u1i − u1j |Uj = �(0)
∑

j

Uj ,

Ui +
∑
j �=i

sgn(u1i − u1j )UiUj = λi. (E1)

Insert the result in

e
∑

i λi [u(wi )−wi ]
tree = e

∑
i (λi− 1

2 Ui )(u1i−wi ). (E2)

We choose the wi ordered as w1 < w2 < · · · < wn. The
second equation above implies

∑
i Ui = ∑

i λi . Hence we
can shift u1i → u1i + �(0)

∑
i λi and eliminate �(0) without

changing the equations. Thus the dependence on �(0) is trivial,
and we now compute the rest setting �(0) = 0:

e
∑

i λi [u(wi )−wi ]
tree

= e
1
2 �(0)(

∑
i λi )2

e− 1
2

∑
ij (λiUj +λj Ui−UiUj )|u1i−u1j |∣∣

�(0)=0 . (E3)

The solution of the first equation of (E1) for n points satisfies

ui+1 − ui = wi+1 − wi

1 + ∑i
j=1 Uj − ∑n

j=i+1 Uj

, 1 � i � n − 1.

The second set of equations in (E1) can be rewritten as

λi = Ui

(
1 +

i−1∑
j=1

Uj −
n∑

j=i+1

Uj

)
, 1 � i � n. (E4)

Its solution is

2U1 = −1 +
n∑

j=1

λj +
√

�1, (E5)

2Ui =
√

�i −
√

�i−1, 2 � i � n − 1, (E6)

2Un = 1 +
n∑

j=1

λj −
√

�n−1, (E7)

with

�i = 1 +
(

n∑
j=1

λj

)2

+ 2

(
i∑

j=1

λj −
n∑

j=i+1

λj

)
. (E8)

Hence we find

ui+1 − ui = wi+1 − wi√
�i

. (E9)

This allows us to rewrite

−1

2

∑
ij

(λiUj + λjUi − UiUj )|u1i − u1j |

= −
n−1∑
i=1

ui+1,i

[
i∑

j=1

λj

n∑
j=i+1

Uj+
i∑

j=1

Uj

n∑
j=i+1

(λj − Uj )

]

= −
n−1∑
i=1

wi+1,i

4
√

�i

[(
n∑

j=1

λj

)2

+ (1 −
√

�i)
2

+ 2(1 −
√

�i)

(
i∑

j=1

λj −
n∑

j=i+1

λj

)]
. (E10)
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Using now twice the definition of �i it can be rewritten and
simplified to

e
∑n

i=1 λi [u(wi )−wi ]
tree

= e
1
2 �(0)(

∑
i λi )2

e
1
2

∑n−1
i=1 wi+1,i (1+∑i

j=1 λj −
∑n

j=i+1 λj −
√

�i ).

(E11)

This proves formula (180) in the main text.
Consider now Xi = u(wi) − wi and choose

λ1 = −μ1 + 1
2μ, λ2 = μ1 − μ2, . . . ,λn = μn−1 + 1

2μ.

(E12)

We then find

e
∑n−1

i=1 μi (Xi+1−Xi )+ 1
2 μ(X1+Xn)

tree

= e
1
2 �(0)μ2+ 1

2

∑n−1
i=1 wi+1,i (1−2μi−

√
1+μ2−4μi ); (E13)

i.e., the variables Xi+1 − Xi are still independent for fixed μ,
but are not independent of X1 + Xn. However, if one considers
the rescaled variable (X1 + Xn)/

√
�(0), then for large �(0)

one recovers statistical independence. A similar result holds
with (X1 + X2 + · · · + Xn)/

√
�(0).

2. Continuous version

Let us consider Eqs. (60), (61) in the main text, and specify
to the BFM model, with σ = R′′′(0+). One must solve

m2[u1(w) − w] + σ

∫
w′

|u1(w) − u1(w′)|U (w′)

= �(0)
∫

w′
U (w′), (E14)

m2U (w) + σ

∫
w′

sign(u1(w) − u1(w′))U (w)U (w′) = λ(w),

(E15)

and insert into

−Sλ =
∫

w

[
λ(w) − m2

2
U (w)

]
[u1(w) − w]. (E16)

Here and below
∫
w

= ∫∞
−∞ dw. We now restrict to test

functions such that
∫
w

λ(w) = 0; hence
∫
w

U (w) = 0. We
define

U (w) = V ′(w), λ(w) = −μ′(w). (E17)

Let us assume that μ(w) vanishes sufficiently fast at w = ±∞;
hence the same holds for V (w) and no boundary term arises
in any integration by part. The first equation becomes

m2[u1(w) − w] + σ

∫
w′

sign(u1(w) − u1(w′))

× u′
1(w′)V (w′) = 0.

Now assume that

sign(u1(w) − u1(w′)) = sign(w − w′), (E19)

and take a derivative with respect to w, leading to

u′
1(w) = m2

m2 + 2σV (w)
. (E20)

Hence monotonicity holds indeed as long as −1 < 2σ
m2 V (w),

which we now assume, and discuss below. The second equation
gives

V ′(w)

[
m2 + σ

∫
w′

sign(u1(w) − u1(w′))V ′(w′)
]

= λ(w).

(E21)

Using monotonicity (E19) and integration by part yields

V ′(w)[m2 + 2σV (w)] = λ(w) = −μ′(w). (E22)

Hence

m2V (w) + σV (w)2 = −μ(w), (E23)

which can be solved as

V (w) = m2

2σ

[√
1 − 4

σ

m4
μ(w) − 1

]
. (E24)

Note that m2V (w) = −Z(μ(w)) with Z given in (17). Inte-
grating by parts we find

−Sλ =
∫

w

[
−μ′(w) − m2

2
V ′(w)

]
[u(w) − w]

= 2σ

∫
w

[
−μ(w) − m2

2
V (w)

]
V (w)

m2 + 2σV (w)

= σ

∫
w

V (w)2 =
∫

w

Ẑ(μ(w)). (E25)

Here Ẑ(μ) = m4

σ
ˆ̃Z( σ

m4 μ) and

ˆ̃Z(μ) = 1
2 (1 − 2μ −

√
1 − 4μ), (E26)

which shows formula (181) in the text. Note that the above
monotonicity condition for u1(w) is equivalent to 4σ

m4 μ(w) < 1,
the usual analyticity domain where the generating function is
convergent.

3. Cumulants of u(w) − w (Burgers velocity)

It is equivalently interesting to obtain, for the BFM model,
the expression for the cumulants of the renormalized pinning
force. These were defined in [20], Sec. III B, as

m2nh1h2 . . . hn
c = L−(n−1)d (−1)nĈ(n)(w1, . . . ,wn), (E27)

hi := u(wi) − wi. (E28)

We will choose w1 < · · · < wn. For simplicity, we use
dimensionless units setting m = 1, R′′′(0+) = 1, and d = 0,
all factors being easily recovered. The lowest moments can
be computed using the tree-level formula (61) in [20], which
should be the exact result for the BFM model according to our
conjecture, giving the following simple expressions:

Ĉ(2)(w1,w2) = w1 − w2 − R′′(0), (E29)

−Ĉ(3)(w1,w2,w3) = 2(w1 − 2w2 + w3), (E30)

Ĉ(4)(w1,w2,w3,w4) = 3! (w1 − 3w2 + 3w3 − w4) . (E31)
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Higher cumulants have been recalculated and we find that the
general result can be written as

(−1)nĈ(n)(w1, . . . ,wn) = (n − 1)!
n∑

i=1

(
n − 1

i − 1

)
(−1)i+1wi.

(E32)

Equivalently

(−1)nCn(w1, . . . ,wn) = (n − 1)! a(1 − a)n−1|ai→wi
, (E33)

where the rule ai → wi means to expand in powers of a,
and to replace the ith power of a by wi . This formula has
been checked against the Kolmogorov cumulants Kn(w) :=
〈(h2 − h1)n〉c = an(w2 − w1) obtained in (96) of [20].

We have also checked that this result is consistent with the
result for the n-point generating function (E11).

APPENDIX F: DERIVATION OF THE
CARRARO-DUCHON FORMULA

In this appendix we give a physicist’s derivation of Eq. (185)
entering (183). For a mathematical derivation see [35]. We use
the notation

∫
w

= ∫∞
−∞ dw, and recall that our conventions are

summarized in Table I.
Consider the Burgers velocity field to be a Lévy process at

time t . Then the Lévy-Khintchine theorem [55] implies that

e
∫
w

vt (w)�(w) = e
∫
w

φt (ω(w))

�(w) = −ω′(w), ω(w) =
∫ ∞

w

dw1 �(w1) (F1)

for any function ω(w) such that ω(±∞) = 0. Below we also
assume that �(w) vanishes (sufficiently fast) at infinity.

Let us assume that it remains of this form at all times,
and check that it is correct provided that φt satisfies some
differential equation. To show this, first take ∂t on both sides
and use the Burgers equation ∂tvt (w) + 1

2∂w[vt (w)2] = 0. This
leads to∫

w

∂tφt (ω(w))e
∫
w′ φt (ω(w′))

=
∫

w

�(w)∂tvt (w)e
∫
w′ vt (w′)�(w′)

= −1

2

∫
w

�(w)∂wvt (w)2e
∫
w′ vt (w′)�(w′)

= 1

2

∫
w

�′(w)vt (w)2e
∫
w′ vt (w′)�(w′)

= 1

2

∫
w

�′(w)
δ2

δ�(w)2
e
∫
w′ vt (w′)�(w′)

= 1

2

∫
w

�′(w)
δ2

δ�(w)2
e
∫
w′ φt (ω(w′))

= 1

2

∫
w

∫
w1

�′(w)
δ

δ�(w)
θ (w−w1)φ′

t (ω(w1))e
∫
w′ φt (ω(w′)).

(F2)

We have used that δ
δ�(w)ω(w′) = ∫∞

w′ dw1δ(w − w1) = θ (w −
w′); then we obtain∫

w

∂tφt (ω(w)) = 1

2

∫
w

∫
w1

∫
w2

�′(w)θ (w − w1)θ (w − w2)

×φ′
t (ω(w1))φ′

t (ω(w2)) + 1

2

∫
w

∫
w1

�′(w)

× θ (w − w1)φ′′
t (ω(w1)), (F3)

where we have divided by e
∫
w′ φt (ω(w′)). Integration by parts

leads to∫
w

∂tφt (ω(w)) =
∫

w

∫
w1

ω′(w)θ (w − w1)φ′
t (ω(w1))φ′

t (ω(w))

+ 1

2

∫
w

ω′(w)φ′′
t (ω(w))

=
∫

w

∫
w1

θ (w − w1)φ′
t (ω(w1))

d

dw
φt (ω(w))

+ 1

2
[φ′

t (ω(w))]∞−∞

= −
∫

w

φ′
t (ω(w))φt (ω(w)), (F4)

since ω(w) vanishes at infinity (and φt vanishes in zero). Since
this is true for any function ω(w), it implies

∂tφt (ω) + φt (ω)∂ωφt (ω) = 0. (F5)

This is nothing but Eq. (185).

APPENDIX G: BEYOND THE CARRARO-DUCHON
FORMULA: INCLUDING LOOPS

1. Evolution equation

We now give the more general evolution equation, valid
beyond Lévy processes. We define, as in the text,

eẐt := e
∫
w

�(w)vt (w), (G1)

where Ẑt is a priori an arbitrary functional of �(w), and we
only assume that �(w) vanishes at infinity [i.e.,

∫
w

�(w) is not
necessarily zero]. Similar manipulations as above in (F2), (F3)
using the Burgers equation yield the exact evolution equation

∂t Ẑt = 1

2

∫
w

�′(w)

[
δ2Ẑt

δ�(w)2
+ δẐt

δ�(w)

δẐt

δ�(w)

]
. (G2)

Inserting (195) and expanding in �, this equation provides
yet another derivation of the exact RG equations (223) for
the cumulants Ĉ(n). (See Appendix H for a derivation using
replicas.)

To make contact with our Eq. (198), we note that �(w) and
u(w) always appear together, and thus

δ

δu(w)
Ŷt [�,u] = �(w)

u′(w)

∂

∂w

δ

δ�(w)
Ŷt [�,u]. (G3)

Setting Ŷ [�,u]|u(w)=w → Ẑt [�] [possible since we no longer
derive with respect to u(w)], inserting this into (198), and
integrating by part yields the second term in (G2).

The first term in (G2) corresponds to loop corrections and
to the first term in the more general equation (225). One can
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see that these are equivalent as follows:

−
∫

w

lim
w′→w

[
δ

δ�(w′)
δ

δu(w)
Ŷt [�,u]

]

= −
∫

w

lim
w′→w

[
δ

δ�(w′)
�(w)

u′(w)

∂

∂w

δ

δ�(w)
Ŷt [�,u]

]
. (G4)

Replacing u(w) → w [possible since we no longer derive with
respect to u(w)] yields

−
∫

w

lim
w′→w

[
δ

δ�(w′)
�(w)

∂

∂w

δ

δ�(w)
Ẑt [�]

]

= −1

2

∫
w

lim
w′→w

�(w)

[(
∂

∂w
+ ∂

∂w′

)
δ

δ�(w)

δ

δ�(w′)
Ẑt [�]

]

= −1

2

∫
w

�(w)
∂

∂w

δ2

δ�(w)2
Ẑt [�]

= 1

2

∫
w

�′(w)
δ2

δ�(w)2
Ẑt [�]. (G5)

Thus (G4) is the 1-loop correction (in d = 0) to be added to
(198).

2. Lévy processes and Brownian force model

We now study some particular solutions of the evolution
equation (G2). The first one corresponds to the Lévy pro-
cesses discussed above. Suppose one restricts to the case
where

∫
w

�(w) = 0, and where Ẑt is a function of ω(w) =∫∞
w

dw′ �(w′),

Ẑt =
∫

w

φt (ω(w)). (G6)

Using that δ
δ�(w) = ∫

dw1 θ (w − w1) δ
δω(w) , one recovers

equation (F5). Equation (G2) could thus be used to study
deviations from Lévy processes.

For a Lévy process, we note that the first term in (G2)
vanishes when

∫
w

�(w) = 0, i.e., there are no loop corrections
to averages of velocity differences, and the tree approximation
is exact for such observables.

An interesting generalization, within Lévy processes, is to
allow for

∫
w

�(w) �= 0, i.e., study observables which involve
the full velocity and not simply velocity differences. In
particular, we want to know the full solution for the BFM. In
the case of discrete p-point correlations of the BFM this was
done in Appendix E. A generalization of the Carraro-Duchon
approach allows us to treat that case for continuum observables
such as Ẑt [�]. An interesting output is that we will recover
quite simply the full loop corrections for this model obtained
via ERG in Appendix H.

We define as before ω(w) = ∫∞
w

dw′ �(w′), but now
ω(−∞) = ω∞ := ∫∞

−∞ dw′ �(w′) may be nonzero, while
�(w) still vanishes at infinity. We show that (178) is replaced
by

Ẑt = ft (ω∞) +
∫

w1

φt (ω(w1),ω∞). (G7)

For the integral over w1 to be convergent at ±∞ we need the
function φt (x,y) to satisfy

φt (0,y) = 0, φt (y,y) = 0, (G8)

which we assume from now on, and which our solution (G20)
given below satisfies. Upon differentiation this also implies
∂2φt (0,y) = 0 and ∂1φt (y,y) + ∂2φt (y,y) = 0, which we use
below.9

Let us prove that (G7) is indeed a solution of (G2):

δẐt

δ�(w)
= f ′

t (ω∞) +
∫

w1

[θ (w − w1)∂1φt (ω(w1),ω∞)

+ ∂2φt (ω(w1),ω∞)], (G10)

δ2Ẑt

δ�(w)2
= f ′′

t (ω∞) +
∫

w1

[
θ (w − w1)

(
∂2

1 φt (ω(w1),ω∞)

+ 2∂1∂2φt (ω(w1),ω∞)
) + ∂2

2 φt (ω(w1),ω∞)
]
.

(G11)

Let us first compute the loop contributions,
using that

∫
w

�′(w) = 0, and d
dw

[A(ω(w),ω∞)] =
−�(w)∂1A(ω(w),ω∞):

1

2

∫
w

�′(w)
δ2Ẑt

δ�(w)2

= −1

2

∫
w

�(w)
[
∂2

1 φt (ω(w),ω∞) + 2∂1∂2φt (ω(w),ω∞)
]

= 1

2
[∂1φt (0,ω∞) + 2∂2φt (0,ω∞)

−∂1φt (ω∞,ω∞) − 2∂2φt (ω∞,ω∞)]

= 1

2
[∂1φt (0,ω∞) + ∂1φt (ω∞,ω∞)]. (G12)

We now compute the tree contribution 1
2

∫
w

�′(w) δẐt

δ�(w)
δẐt

δ�(w) = A + B:

A =
[
f ′

t (ω∞) +
∫

w1

∂2φt (ω(w1),ω∞)

]

×
∫

w,w2

�′(w)θ (w − w2)∂1φt (ω(w2),ω∞)

=
[
f ′

t (ω∞) +
∫

w1

∂2φt (ω(w1),ω∞)

]
× [φt (0,ω∞) − φt (ω∞,ω∞)] = 0, (G13)

9Note that assuming the disorder to be statistically translational
invariant (STS) can be expressed as a Ward identity∫

w

�′(w)
δẐt

δ�(w)
= 0 (G9)

obtained by performing the change of variables w → w + a in all w

integrals appearing in Ẑt , e.g., in its definition (195). It implies that
if Ẑt is a solution of (G2) then Ẑt + F (

∫ ∞
−∞ �(w)), where F (y) is an

arbitrary function, is also a solution, with a different initial condition.
This invariance corresponds to adding the so-called Larkin random
force in the language of interface pinning. One easily checks that STS
is satisfied by our ansatz. Inserting (G7) into (G9) one finds that it
vanishes after integration by part because of (G8).
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B = 1

2

∫
w,w1,w2

�′(w)θ (w − w1)θ (w − w2)

× ∂1φt (ω(w1),ω∞)∂1φt (ω(w2),ω∞)

= −
∫

w,w1

�(w)θ (w − w1)∂1φt (ω(w1),ω∞)

× ∂1φt (ω(w),ω∞)

= −
∫

w

φt (ω(w),ω∞)∂1φt (ω(w),ω∞). (G14)

Hence we find that if the unknown functions φt (x,y) and ft (y)
satisfy the following two equations, then (G2) is satisfied:

∂tφt (x,y) = −φt (x,y)∂1φt (x,y), (G15)

∂tft (y) = 1
2 [∂1φt (0,y) + ∂1φt (y,y)]. (G16)

Consider now the BFM. The initial condition is

φt=0(x,y) = σx2 − σxy, (G17)

ft=0(y) = 1
2�(0)y2. (G18)

This can be seen by rewriting

Z0[�] = 1

2

∫
w1,w2

�(w1)�(w2)�(w1 − w2)

= 1

2
�(0)

(∫
�

)2

− σ

∫
w1>w2

�(w1)�(w2)(w1 − w2)

= 1

2
�(0)

(∫
�

)2

− σ

∫
w1>w2

ω(w1)�(w2)

+σ [ω(w1)�(w2)(w1 − w2)]w1=∞
w1=w2

. (G19)

Using that ω(∞) = 0, the boundary term is zero and one
obtains (G17), (G18).

The solution of the system (G15)–(G16) with this initial
condition is

φt (x,y) = 1

2σ t2

[
1 + 2σ t

(
x − y

2

)

−
√

1 + 4σ t
(
x − y

2

)
+ σ 2t2y2

]
, (G20)

ft (y) = 1
2 ln(1 − t2s2y2) + 1

2�0(0)y2. (G21)

One checks that φt (x,y) satisfies the conditions (G8), and that
this recovers the loop corrections obtained by the ERG method
in (H8)–(H13).

APPENDIX H: ERG EQUATIONS AND THEIR
MEAN-FIELD VERSION

It is instructive to compare the equations (223) with the
known exact RG equations; we restrict here to d = 0. In
Ref. [25] Sec. IV A2 (arXiv version) the ERG equations for
the cumulant of the renormalized potential Ŝ(n)(w1, . . . wn) =
(−1)nV̂ (w1) . . . V̂ (wn)

c

were obtained. It was shown that the
function

Û (wa) =
∑

n

1

n!T n

∑
a1,...an

Ŝ(n)(wa1 , . . . wan
) (H1)

satisfies

2∂t Û = T
∑

a

∂2
wa

Û +
∑

a

(
∂wa

Û
)2

. (H2)

Hence the Ŝ(n) satisfy at T = 0

2∂t Ŝ
(n)(w1, . . . wn)

= n
[
Ŝ

(n+1)
110...0(w1,w1, . . . wn)

] +
∑

p,q,p+q=n+1

n!

(p − 1)!(q − 1)!

× [
Ŝ

(p)
10...0(w1, . . . wp)Ŝ(q)

10...0(w1,wp+1 . . . wn)
]
, (H3)

where we have used that∑
a1,...,ap

∂2
wa

Ŝ(p)(wa1 , . . . ,wap
)

= p
∑

a1,...,ap

δaa1 Ŝ
(p)
20...0(wa,wa2 , . . . ,wap

) + p(p − 1)

×
∑

a1,...,ap

δaa1δaa2 Ŝ
(p)
110...0(wa,wa,wa3 , . . . ,wap

). (H4)

We now use that Ĉ(n)(w1, . . . ,wn) = (−1)n∂w1 . . . ∂wn

Ŝ(n)(w1, . . . ,wn) to obtain

∂t Ĉ
(n)(w1, . . . ,wn) = −n

2
[∂w1Ĉ

(n+1)(w1,w1, . . . ,wn)]

− 1

2

∑
p,q,p+q=n+1

n!

(p − 1)!(q − 1)!

× [∂w1 (Ĉ(p)(w1, . . . ,wp)

× Ĉ(q)(w1,wp+1, . . . ,wn))]. (H5)

This formula works when the Ĉ are continuous functions
of their arguments.10 Hence we see here that if one takes
out the first term one recovers exactly the mean-field RG
equation (223) of the main text. Hence this provides a further
derivation of this equation.

In the STS case the lowest-order ERG equations (including
loops) are

∂t Ĉ
(2)(w1,w2) = − 1

2∂w1Ĉ
(3)(w1,w1,w2)

− 1
2∂w2Ĉ

(3)(w1,w2,w2), (H6)

∂t Ĉ
(3)(w1,w2,w3) = − 1

2∂w1Ĉ
(4)(w1,w1,w2,w3)

− 1
2∂w2Ĉ

(4)(w1,w2,w2,w3)

− 1
2∂w3Ĉ

(4)(w1,w2,w3,w3)

− ∂w1Ĉ
(2)(w1,w2)Ĉ(2)(w1,w3)

− ∂w3Ĉ
(2)(w2,w3)Ĉ(2)(w1,w3)

− ∂w2Ĉ
(2)(w1,w2)Ĉ(2)(w2,w3). (H7)

An exact solution including loop corrections exists for all
Ĉ(n) in the STS-Brownian case (stationary BFM discussed in

10Here we study only the case with STS (translation invariance). The
non-STS case, e.g., a two-sided Brownian force landscape starting
at zero, violates this condition at the origin and requires a special
treatment, which is left for the future.
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Sec. V). It reads

Ĉ(1)(w1) = 0, (H8)

Ĉ(2)(w1,w2) = σ (w1 − w2) − σ 2t2, (H9)

Ĉ(3)(w1,w2,w3) = −2tσ 2 (w1 − 2w2 + w3) , (H10)

Ĉ(4) = 3!t2σ 3(w1 − 3w2 + 3w3 − w4) − 6σ 4t4, (H11)

Ĉ(5) = −4!t3σ 4(w1 − 4w2 + 6w3 − 4w4 + w5), (H12)

Ĉ(6) = 120t4σ 5(w1 − 5w2 + 10w3 − 10w4 + 5w5 − w6)

− c6σ
6t6. (H13)

One has thus a constant part −cnσ
ntn with cn = (n − 1)! for n

even and cn = 0 for n odd. If one sets cn to zero one recovers the
expressions in (E33). The fact that this simple exact solution
exists in that case is a consequence of the property that � = S
in the sense discussed in Sec. I2.

APPENDIX I: FRG PROPERTIES OF THE BFM MODEL

1. Stability of the BFM fixed point

Let us express the FRG equation using the rescaled force
correlator �̃(u) = −R̃′′(u) defined in (66). To one loop (first 2
lines) and 2 loops (third line) the FRG flow for �̃′(u), derived
in [15–17], is

−m∂

∂m
�̃′(u) = (ε − ζ )�̃′(u) + ζu�̃′′(u)

−3�̃′(u)�̃′′(u) − �̃′′′(u)[�̃(u) − �̃(0)]

+1

2
∂3
u[(�̃(u) − �̃(0))(�̃′(u)2 − λ̃�′(0)2)]

(I1)

with λ̃ = 1 for the statics (the BFM model studied here) and
λ̃ = −1 for depinning (the ABBM model generalized to an
interface). In both cases, there is a fixed point corresponding
to ζ = ε with

�̃′(u) = −σ̃ sign(u), �̃(0) − �̃(u) = σ̃ |u|. (I2)

We note that 1- and 2-loop corrections identically vanish for
the flow of �̃′(u) at this fixed point—even for its generalization
to an N -component field [59]. This is in fact more general, and
we claim it to be true to all loop orders. Indeed, it is easy to
see that higher loops bring more derivatives, hence vanishing
contributions. For the statics, it can be checked to four loops
in d = 0 [25]. Hence we conjecture that this property holds
for any d.

Note that some parts of the effective action are flowing. For
instance, one has, in the BFM model,

−m∂m�̃(0) = −ε�̃(0) − σ̃ 2. (I3)

Hence �̃(0) = Cmε − σ̃ 2

ε
, i.e., �(0) = C − σ̃ 2m−ε

ε
, and the

constant C = �0(0) has to be chosen sufficiently large. This is
consistent with the fact that the model, defined with statistical
translational invariance, must be defined with a regularization,
e.g., a periodic box of size much larger than any other scale,
as discussed in the text. Another regularization would be to
choose a Brownian force with origin at u = 0, i.e., V ′(0) = 0,

but this leads to a different FRG equation which we leave for
future investigations.

Let us now show that the above fixed point is attractive,
at least for a class of perturbations (defined precisely below)
which are at most of the same range as the BFM model. It thus
defines a universality class in any d. The stability analysis is
performed to first order in ε = 4 − d, within the 1-loop FRG
equation. We look for perturbations of the form

�̃′(u) = −σ̃ + g(u). (I4)

Physically acceptable solutions for g(u) must vanish at infinity
and have a regular Taylor expansion in powers of |u| at u = 0.
One then obtains to linear order in g(u)

−m∂mg(u) = (ε − ζ )g(u) + ζug′(u) + 3σ̃ g′(u) + g′′(u)σ̃ |u|.
(I5)

Using ζ = ε we can rescale a → εa, σ̃ → εσ̃ , and u → σ̃ u.
Thus one must solve for u > 0

−m∂mg(u) = (u + 3)g′(u) + ug′′(u) = −ag(u). (I6)

As indicated, we search for eigenvalues a, where a > 0 are
stable and a < 0 unstable modes. We find a general solution,
noting La

n(x) the generalized Laguerre-L polynomial and
U (a,b,z) the confluent hypergeometric function

g(u) = C1e
−uU (3 − a,3,u) + C2e

−uL2
a−3(u). (I7)

The first solution e−uU (3 − a,3,u) behaves as u−2 at small u

(not physically acceptable), except when a − 3 = 0,1, . . . is a
positive integer, in which case the two solutions are linearly
dependent. Hence we set C1 = 0. The remaining solution is
the second independent function, indexed by a,

ga(u) := e−uL2
a−3(u) ≡ L2

−a(−u), (I8)

which has a regular Taylor expansion at u = 0 for all a. It is
thus a physically acceptable solution. For noninteger a,

ga(u) ∼ u−a for u → ∞. (I9)

Thus for a > 0 this is a long-ranged (attractive) perturbation
of (I2). The cases of integer a > 0 must be treated separately,
because then L2

−a(−u) either vanishes identically, or is a short-
ranged solution (see below). Taking the derivative of Eq. (I6)
with respect to a with the solution (I8) in mind yields

−m∂m [∂aga(u)] = −a [∂aga(u)] − ga(u). (I10)

For a = 1,2, ga(u) vanishes, and ∂aga(u) is a long-range
correlated eigenfunction of the RG flow. For a = 3,4,5, . . . we
can restrict our analysis to the 2-dimensional space spanned
by ga(u) and ∂aga(u). It has a Jordan block structure and the
general solution of the flow equation is

g̃a(u) = c1(m)[∂ag(u)]|m=m0 + c2(m)g(u)|m=m0 (I11)

with

c1(m) =
(

m

m0

)a

c1(m0), (I12)

c2(m) =
(

m

m0

)a [
c2(m0) + ln

(
m

m0

)
c1(m0)

]
. (I13)
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Note that for a = 3,4,5, . . .∂aga(u) ∼ u−a for u → ∞,
whereas ga(u) is short-ranged, as we discuss now:

ga=3(u) = e−u, (I14)

ga=4(u) = e−u(3 − u), (I15)

ga=5(u) = e−u(6 − u)(2 − u). (I16)

The functions ga(u) for a = 1,2 vanish. For negative a,
there are polynomial solutions, consistent with the asymptotic
behavior (I9),

ga=−1(u) = 3 + u, (I17)

ga=−2(u) = 1
2 (2 + u)(6 + u), (I18)

ga=−3(u) = u3

6
+ 5u2

2
+ 10u + 10. (I19)

These solutions are unstable and physically unacceptable,
since they grow stronger than |u| at large u. They correspond
to models with even longer-ranged correlations than the BFM.

For instance the leading short-ranged eigenmode a = 3
reads

�(0) − �(u) = ε|u| + b(1 − e−|u|)

=
∫

dq

2π

(
2ε

q2
+ 2b

q2 + 1

)
[1 − cos(qu)];

(I20)

hence it has a positive Fourier transform (as long as b > −ε),
and thus corresponds to a physical disorder direction.

The question remains whether we have found the complete
spectrum for all physically allowed perturbations. We argue
that this is indeed the case: First of all, we have found a
complete basis for short-ranged perturbations, the functions
ga(u) for integer a. Functions decaying as a power law can
be expanded in the basis ga(u) for noninteger a, or ∂aga(u)
for integer a. As perturbations depending on m, they decay
to 0, either as a power law (noninteger a) or with additional
logarithmic corrections (integer a). In conclusion, the BFM
fixed point is stable with respect to perturbations of R′′′(u)
which decay at least as a power law at infinity.

2. More on loop expansion

To obtain a deeper understanding of the properties of the
BFM we must look at its replicated effective action functional
�[u], with u ≡ {ua(x)}a=1,...,n;x∈Rd . The statement that the
(improved) tree level is exact means that for any replica field
ua(x),

�[u] = SR[u]. (I21)

The flow of the exact R(u) was discussed above, with the claim
that R′′′(u) = σ sign(u) does not flow (i.e., is independent of
m), while R′′(0) flows, but its flow is unimportant. (It is part
of the regularization required to define the model.)

Let us examine the meaning and validity of the property
(I21). The exact RG flow (as a function of m in any d) of
the p-replica part of �[u], S(p)(u12,...,1p) was written in [25];
see Eqs. (384), (385) of the arXiv version. We want to study
the force correlator (corresponding in d = 0 to the Burgers

velocity), hence look at ∂u1 . . . ∂up
S(p)(u12,...,1p) ≡ ∂pS(p). By

analogy with the second moment, where we found that
∂3S(2) = R′′′ does not flow (away from coinciding arguments),
we want to examine ∂p+1S(p). If we assume that all ∂4R

and higher derivatives vanish, it is clear from these equations
that the feeding term for this quantity vanishes. The natural
conclusion is thus that ∂p+1S(p) is zero for all p � 3 for the
BFM model. Hence (I21) holds in the sense of derivatives,
i.e., up to terms O(up) in the p-replica terms. These terms
are called random force terms since they can be set to zero
by a STS transformation ua(x) → ua(x) + gxx ′f (x ′) where
f (x) is a (Larkin) random force, coupling linearly to the
displacement field. In d = 0 this is sufficient to ensure that
the tree calculation is exact for the BFM model. Recently we
also showed this property for the dynamics in d = 0 [29].

In d > 0 one should worry about x (i.e., space) dependent
fields, i.e., nonlocal parts of the functionals S(p). From
Eq. (104) (see also (461) of [25], arXiv version) where
the complete local+nonlocal two-replica functional p = 2 is
obtained from the exact RG equations to order R2, one finds
for the BFM model

R′′
xy[uab] = σ 2g2

xysign(uab(x))sign(uab(y)). (I22)

If we take a third derivative it vanishes away from the singular
points. Thus naively there is no nonlocal part for ∂3S(2) and the
same will be true for higher p. This leaves open the question
of how the derivatives act on the singular points (where two
replica fields coincide for some values of their argument x).
We will not attempt to answer this question here, but leave it for
future research. However, we emphasize that the fact that the
tree level is exact for “sufficiently reasonable,” i.e., uniform or
nearly uniform, field configurations is sufficient for computing,
e.g., center of mass observables using tree-level formulas. This
can be seen from (I22) since if uab(x) does not change sign,
i.e., the replicas are in partially ordered configurations, taking
a third derivative again gives zero. Hence we can safely assume
that (I21) holds in any d for (i) the needed derivatives of the
p-replica part and (ii) partially ordered configurations. This is
sufficient to argue that tree calculations are exact for the BFM
model in most applications.

APPENDIX J: TOY MODEL: MARKOVIAN AND POISSON
PROCESS FOR AVALANCHES

In this appendix we describe two simple toy models:
(i) avalanche positions being a Markov process and (ii)
avalanche positions and sizes being a totally uncorrelated
process (Poisson process).

First consider a Markovian model where the location wn

of avalanche n depends only on the previous one, with the
“waiting time” or interval between avalanche � = wn+1,n =
wn+1 − wn distributed according to a distribution Q(�) with∫∞

0 d�Q(�) = 1. Given that a first avalanche occurs in w1, the
probability that the n subsequent ones occur in

∏n
i=2[wi,wi +

dwi] is thus Q(wn,n−1) . . . Q(w2,1)dw2 . . . dwn, also normal-
ized to unity. Also assume statistical translation invariance
with a uniform density of avalanches, noted ρ0; hence a given
avalanche can occur anywhere with the same probability.

For this model one shows that the probability that the
interval [0,w] with w > 0 contains n avalanches and that

061102-26



FIRST-PRINCIPLES DERIVATION OF STATIC . . . PHYSICAL REVIEW E 85, 061102 (2012)

their positions are 0 < w1 < w2 < · · · < wn < w is given for
n � 1 by

p(n)
w (w1, . . . ,wn) = 1

〈�〉
∫

dw0dwn+1θ (−w0)

× θ (wn+1 − w)
n∏

i=0

Q(wi+1,i)

= 1

〈�〉Q̃(w1)
n−1∏
i=1

Q(wi+1,i)Q̃(w − wn), (J1)

with Q̃(w) = ∫∞
w

d�Q(�). To prove this one notes that
the probability that the origin belongs to an interval of
size w1,0 is w1,0Q(w1,0)

〈�〉 ; hence the probability that the
first positive shock occurs in [w1,w1 + dw1], w1 > 0, is

1
〈�〉

∫
dw0

θ(w1,0−w1)
w1,0

w1,0Q(w1,0)
〈�〉 = 1

〈�〉Q̃(w1). Inserting the factors

1 = ∏∞
i=1[θ (w − wi) + θ (wi − w)] and

∏∞
j=1 Q(wj+1,j ) and

expanding one gets (J1). The probabilities that there are n

avalanches in [0,w] are thus

p(n) =
∫

dw1 . . . dwn p(n)
w (w1, . . . ,wn), (J2)

p(0)
w = 1

〈�〉
∫ ∞

w

dw1

∫ ∞

w1

dw10Q(w10)

= 1

〈�〉
∫ ∞

w

dw1(w − w1)Q(w1). (J3)

These expression are easier written Laplace transformed, and
one finds for pn(s) = ∫∞

0 dw e−wsp(n)
w

pn(s) = 1

〈�〉s2
(1 − Q(s))2Q(s)n−1 for n � 1, (J4)

p0(s) = 1

〈�〉s2
(Q(s) − 1 + s〈�〉), (J5)

with Q(s) = ∫∞
0 dw e−swQ(w) and 〈�〉 = −Q′(0), which sat-

isfy the normalization
∑∞

n=0 pn(s) = 1/s; i.e.,
∑∞

n=0 p(n) = 1.
The case where avalanches are fully independent events,

i.e., a Poisson process of density ρ0, corresponds to Q(w) =
ρ0e

−ρ0w and 〈�〉 = 1/ρ0. Then Q(s) = ρ0

s+ρ0
and one finds

pn(s) = ρn
0

(s+ρ0)n+1 and, not surprisingly,

p(n) = 1

n!
(ρ0w)ne−ρ0w (J6)

for n � 0, i.e., the Poisson distribution for the number of
shocks in the interval. More precisely one finds

p(n)
w (w1, . . . ,wn) = ρn

0 e−ρ0wθ (0 < w1 < · · · < wn < w),

(J7)

i.e., a uniform distribution for the positions of the shocks.
Let us now add information about avalanche sizes. Assume

that the process contains only positive jumps u(w) − u(0) =∑
α Sαθ (0 < wα < w); then

eλ[u(w)−u(0)]

=
∞∑

n=0

∫
wi,Si

p(n)
w (w1, . . . ,wn; S1, . . . ,Sn)eλ(S1+···+Sn). (J8)

If we further assume that the avalanche sizes are independent
events uncorrelated with their location,

p(n)
w (w1, . . . ,wn; S1, . . . ,Sn) = p(n)

w (w1, . . . ,wn)
n∏

i=1

P (Si),

(J9)

where P (S) is a normalized probability distribution, one finds

eλ[u(w)−u(0)] =
∞∑

n=0

p(n)
w 〈eλS〉n, (J10)

〈eλS〉 :=
∫

dS P (S)eλS. (J11)

The case of a general Q(w) can be solved in Laplace,∫ ∞

0
dw e−sweλ[u(w)−u(0)]

= 1

s
+ 1

〈�〉s2

[1 − Q(s)][〈eλS〉 − 1]

1 − 〈eλS〉Q(s)
. (J12)

For the Poisson process, we find that (J12) simplifies into
[s + ρ0(1 − 〈eλS〉)]−1; hence

eλ[u(w)−u(0)] = eρ0w
∫

dS P (S)(eλS−1)

= ew
∫

dS ρ(S)(eλS−1) = ewZ(λ) (J13)

in agreement with our general result (we have set d = 0).
Although here we have assumed ρ0 finite (which is the case,
e.g., in numerical simulations [28]) the above formula remains
valid when the total density of shocks is infinite as long as
the density for a given size ρ(S) [also noted n(s) in the text]
is finite and

∫
dS Sρ(S) is finite. One then recovers the Lévy

process formula for the case of only positive jumps. For a
proper mathematical formulation see [35,36].

We observe that in the Poisson case (for d = 0) Z(λ) →
−ρ0L

−d at large negative λ. This is dominated by the
probability that there is no avalanche in the interval w. This
limit can also be written as Z(−∞) = −1/〈S〉. Hence the
mean-field formula (17) is valid only for λ > −1/Smin, where
Smin is a typical small-scale cutoff for the avalanche size, as
discussed in Sec. V E of [20].

APPENDIX K: PERIODIC CASE

We now solve Eqs. (60) and (61) for the case where R(u)
is periodic. It is sufficient to choose λ(w) = −μ′(w) on the
interval [0,1] with μ(0) = μ(1). Indeed since in the periodic
case we know that u1(w) − w is periodic of period 1, we can
write

〈
e
∫
w

λ(w)[u1(w)−w)]
〉 = 〈

e
∫ 1

0 dw [u1(w)−w)]λ̃(w)
〉
, (K1)∑

n

λ(w + n) = λ̃(w), (K2)

with
∫ 1

0 dw λ̃(w) = 0. Using u1(w + n) = u1(w) + n one
finds for w ∈ [0,1] that Eqs. (60) and (61) hold where all
integrals are over w′ ∈ [0,1] and U (w) → Ũ (w). We define
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again for w ∈ [0,1]

λ̃(w) = −μ′(w), Ũ (w) = V ′(w). (K3)

Note that since λ̃(0) = λ̃(1) and
∫ 1

0 dw λ̃(w) = 0 one has
μ(0) = μ(1) and similarly V (0) = V (1). The second equation
in (60) gives after integration by part

V ′(w)

[
m2 +

∫ 1

0
dw′R′′′′(u1(w) − u1(w′))u′

1(w′)V (w′)
]

= −μ′(w). (K4)

The boundary term [R′′′(u1(w) − u1(w′))V (w′)]1
0 vanishes

only if the integral goes from 0− to 1−, i.e., contains the delta
function at 0, a convention which we use here. Noting that for
the periodic case

R′′′′(u) = R′′′′(0) +
∑

n

2R′′′(0+)δ(u − n), (K5)

we obtain for w ∈ [0,1][
m2 + R′′′′(0)

∫ 1

0
dw′u′

1(w′)V (w′) + 2R′′′(0+)V (w)

]

×V ′(w) = −μ′(w). (K6)

Integration yields

V (w)

[
m2 + R′′′′(0)

∫ 1

0
dw′u′

1(w′)V (w′)
]

+R′′′(0+)V (w)2 = −μ(w). (K7)

(Note that a possible integration constant has been dropped
since it does not enter any physical observable.) The first

equation in (60) gives after integration by part

m2[u1(w) − w]

+
∫ 1

0
dw′R′′′(u1(w) − u1(w′))u′

1(w′)V (w′) = 0. (K8)

Taking a derivative and using again Eq. (K5), we finally arrive
at the system of two equations:

u′
1(w) = m2

m2+R′′′′(0)
∫ 1

0 dw′u′
1(w′)V (w′)+2R′′′(0+)V (w)

,

(K9)

V (w)

[
m2 + R′′′′(0)

∫ 1

0
dw′u′

1(w′)V (w′)
]

+R′′′(0+)V (w)2 = −μ(w). (K10)

Noting σ = R′′′(0) and r4 = R′′′′(0) we obtain, multiplying
u′

1(w) from (K9) with V (w) given by (K10),

u′
1(w)V (w) = −m2μ(w)

[m2 + r4A + 2σV (w)][m2 + r4A + σV (w)]
.

(K11)

We have defined A = ∫ 1
0 dw′ u′(w′)V (w′). We can now close

the system of equations. This gives the result quoted in the text
with r4 = −2σ . The action becomes

−Sλ =
∫ 1

0
dw

[
− μ′(w) − m2

2
V ′(w)

]
[u1(w) − w]

=
∫ 1

0
dw

[
μ(w) + m2

2
V (w)

]
[u′

1(w) − 1]

= −
∫ 1

0
dw [μ(w) + m2V (w)] − 1

2
r4A

2 (K12)

as quoted in the text.
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