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Möbius transformations and electronic transport properties of large disorderless networks
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We show that the key transport states, insulating and conducting, of large regular networks of scatterers can
be described generically by negative and zero Lyapunov exponents, respectively, of Möbius maps that relate
the scattering matrix of systems with successive sizes. The conductive phase is represented by weakly chaotic
attractors that have been linked with anomalous transport and ergodicity breaking. Our conclusions, verified for
serial as well as parallel stub and ring structures, reveal that mesoscopic behavior results from a drastic reduction
of degrees of freedom.
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We describe a remarkable relationship between electronic
transport in regular arrays of scatterers and a special class of
low-dimensional nonlinear dynamical systems characterized
by weak chaos [1,2]. This link between two disciplines throws
light onto the nature of the insulator-conductor transition
in condensed matter physics, while the currently studied
field of weak chaos that exhibits anomalous diffusion and
ergodicity breaking is provided with a physical application
[1,2]. Quantum transport properties have become of interest
due to their fundamental importance in the development
of nanotechnology; for example, the stability of spintronic
devices based on quantum networks has been investigated [3],
quantum interference phenomena such as Aharonov-Bohm os-
cillations in conductance, band formation, and metal-insulator
transition in disorderless networks have been studied both
experimentally and theoretically [4–7]. Quantum networks are
also important as theoretical models of molecular devices [8]
and mesoscopic systems [9,10]. The latter are experimentally
available due to the advancement in microfabrication as well
as to availability of auxiliary tools in the microwave, acoustic,
elastic, and optical domains [11–14].

In spite of the importance of understanding the propaga-
tion of electron waves through large networks of quantum
wires with regular or disordered structures, the study of the
interplay between the individual scatterers and their geometric
arrangement, that as a whole results in complex electronic
transport behavior [15], has been the object of less exploration.
It is, therefore, pertinent to develop a procedure to explicitly
appraise the interrelations of these two nontrivial facets of
the scattering processes. A first step in this direction is the
determination of the generic features of transport due solely
to the network structural design. Recent advances [15–17]
on the study of coupled limit-cycle and chaotic oscillators
may serve, unsuspectingly, as a mirror of similar simplifying
features found here for electronic transport properties on large
disorderless networks. In the study of diffusively coupled
nonlinear oscillators [18], geometric network structures are
set up by coupling matrices, and the properties of these
matrices determine the dynamical behavior of these systems,
independently of the details of each individual oscillator. As
for globally coupled limit-cycle oscillators, the occurrence of
low-dimensional nonlinear dynamics in large phase-oscillator
systems, observed some time ago, has been explained only
recently by the role that Möbius maps play in controlling the

dynamics of these systems [17]. Since fractional linear trans-
formations are invertible, the possibility of chaotic behavior
would be evidently attributed to the time evolution of matrix
parameters.

In this Brief Report, we present a general phase transition
scenario in electronic transport in networks of scatterers
connected either in series or in parallel. Specifically, we
show, by using the scattering matrix approach, that the
conducting and insulating phases of the mesoscopic systems
under consideration can be predicted by the behavior of
the finite-time Lyapunov exponent of a nonlinear map in the
complex plane, of the Möbius group type, that represents the
recursive relation between the scattering matrices of successive
size generations of a network structure. If we regard the system
generation index n as the number of map iterations, then the
dynamical behavior can be used to describe in a quantitative
manner the electronic transport properties of the quantum
mesoscopic system.

We consider symmetrical networks constructed by putting
together a collection of individual scatterers as building blocks,
shown schematically in Fig. 1. The assembled networks have
only two end points and the single scatterers when connected
in series have two terminals, but when connected in parallel
have multiple terminals. A simple model for three-terminal
junctions (connectivity K = 2) is described by the scattering
matrix [19]

Snode =

⎡
⎢⎣

−(α + β)
√

ε
√

ε√
ε α β√
ε β α

⎤
⎥⎦ , (1)

where ε, α, and β are real parameters, related to the transmis-
sion and reflection amplitudes of the node: 0 � ε � 1/2, α =
−(1 − √

1 − 2ε)/2, and β = (1 + √
1 − 2ε)/2. When these

nodes are repeatedly connected in parallel, keeping one initial
terminal free, a Cayley tree [20] is formed, and the symmetrical
network with two end points consists of a double Cayley tree
joined by two-terminal individual scatterers described by the
matrix

Sb =
(

rb t ′b
tb rb

)
, (2)

which is 2 × 2, where rb and tb are reflection and transmission
amplitudes, respectively. Then the scattering matrix Sn+1 of a
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FIG. 1. Construction of regular mesoscopic networks of scatter-
ers in parallel (a) or in series (b) by means of three-terminal (a) or
two-terminal (b) junctions, where a is the lattice constant.

network of 2(n + 1) scatterers obtained by doubling the size of
a previous generation network of 2n scatterers with scattering
matrix Sn is given by [7]

Sn+1 = −1

1 − √
1 − 2ε e2ikaSn

(
√

1 − 2ε1 − e2ikaSn), (3)

where 1 is the 2 × 2 unit matrix and a is the lattice constant.
Clearly, the network with serial connections is a chain. The

scattering matrix Sn+1 of a chain network of 2(n + 1) scatterers
obtained by connecting end to end two identical scatterers Sb

with scattering matrix Sn of 2n scatterers is given by

Sn+1 = 1

1 − e2ikarbSn

[
rb1 − e2ika

(
r2
b − tbt

′
b

)
Sn

]
. (4)

For elastic scattering the matrix Sn must be unitary as a
result of flux conservation, and has the general form

Sn =
(

rn t ′n
tn rn

)
, (5)

which can be diagonalized through the similarity transforma-
tion S ′

n = USnU
†, where U is the unitary matrix

U = 1√
2

(
1

√
t ′n/tn

−√
tn/t ′n 1

)
, (6)

and

S ′
n =

(
eiθn 0

0 eiθ ′
n

)
, (7)

where θn and θ ′
n are the eigenphases, which are related to

the reflection and transmission amplitudes through eiθn = rn +√
tnt ′n, eiθ ′

n = rn − √
tnt ′n, and consequently, the dimensionless

conductance (electronic conductance G in units of 2e2/h) can
be written as gn = |tn|2 = |t ′n|2 = 1

4 |eiθn − eθ ′
n |2.

We rewrite the recursive relations (3) and (4) as one-
dimensional maps for the eigenphases: θn+1 = f (θn) (the
map for θ ′

n is identical). These maps are fractional linear
transformations of the form

zn+1 = F (zn) = Azn + B

Czn + D
, (8)

where zn = eiθn and A, B, C, and D are complex numbers:
A = e2ika , B = −√

1 − 2ε, C = −√
1 − 2ε e2ika , and D = 1

for the double Cayley tree, while for the chain network
A = −(r2

b − t ′btb)e2ika , B = rb, C = −rbe
2ika , and D = 1.

The transformation F (z) and its inverse are analytic on the unit
circle in the complex plane, and via functional composition
define a subgroup (called Möbius group) that maps one to one
the unit circle onto itself. The finite n Lyapunov exponent λn

associated to this map is defined by

λn = 1

n
ln

∣∣∣∣df (θn)

dθ0

∣∣∣∣ ≡ 1

n
ln

∣∣∣∣dzn+1

dθ0

∣∣∣∣, (9)

where θ0 is an initial condition.
The general form (8) is due to the symmetry of the networks

together with the uniform distribution of scatterers, and for this
reason, in principle, we can generalize the model networks to
a class of networks whose growth in size is characterized by
successive scattering matrices generated by Möbius actions.
In what follows we report numerical results that verify the
relationship between the conductance of a network and the
finite n Lyapunov exponent of its associated map f (θn), for
which the number of iteration time steps is the generation index
n that measures the size of the network. To demonstrate the
generality of such a relationship we consider different types
of junctions.

(i) A double Cayley tree with connectivity K. The electronic
transport properties of this structure has been reported in
Ref. [7] for K = 2. Also, for this case, we consider the
following three different junctions (see Fig. 2): (a) A geometric
connection with the central scatterer defined by Sb = σxe

ika ,
with σx a Pauli matrix; (b) a stub or quantum gate of length L

defined by [21]

rb = − i

2 tan kL + i
, tb = t ′b = 2 tan kL

2 tan kL + i
; (10)

and (c) an Aharonov-Bohm ring threaded by a magnetic field
whose scattering matrix elements are given by [21]

rb = 1

�
[e−ik1�L + eik2�L − 4(e−i�kL1 + ei�kL2 )

+ 3(e−ik2L1−ik1L2 + eik1L1+ik2L2 )],
(11)

tb = 4

�
[e−i�kL1+ik2L2 − e−i�kL1−ik1L2

+ e−ik1�L+ik2L2 − eik2�L+ik1L2 ],

and t ′b = −rbtb/r∗
b , with � = e−ik1�L + eik2�L −

eik1L1+ik2L2 + 4(e−i�kL1 + ei�kL2 ) − 9(e−ik1L2−ik2L1 ), where
L1 and L2 are the lengths of the upper and the lower arm

a

L

L 2

L 1

Φ

(b)(a)

(c)

FIG. 2. Three different junctions described by a scattering matrix
Sb: (a) a geometric connection, (b) a stub, and (c) an Aharonov-Bohm
ring threaded by a magnetic field.
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FIG. 3. The dimensionless conductance gn (solid lines, n = 20)
and the finite n Lyapunov exponent λn (dashed lines, n = 100) are
plotted as a function of ka in a network formed by a double Cayley
tree, when the connecting scattering centers are given by (a) a perfect
conducting line, (b) a stub, and (c) a ring threaded by a magnetic
field (L = a, L1 = L2 = L/2, 	 = 0.1hc/e). (d) Convergence of
the finite n Lyapunov exponent λn to its limiting value λ. The
sign alternations for ka = 1.2 indicate the intermittent quality of
the conductive phase.

of the ring, and �L = L2 − L1. Here, the wave vectors are
given by k1 = k + 2π	e/hcL and k2 = k − 2π	e/hcL,
where L = L1 + L2, 	 is the magnetic flux through the ring,
and �k = k2 − k1 = −4πe	/hcL.

In Fig. 3 we show the relationship between the conductance
and the finite n Lyapunov exponent for very large n. We see
that for each case the Lyapunov exponent is negative for small
values of ka, approaches zero as ka increases, and the network
is in an insulating phase with gn = 0. The exponent λn reaches
zero at some critical value of ka, and at the same point the
mesoscopic system undergoes a transition from an insulating
to a conducting state. As ka is further increased gn > 0 while
λn = 0 [|dθn+1/dθ0|/n oscillates but becomes zero for n →
∞, as shown in Fig. 3(d)], until at a second critical value the
system returns to the insulating state and λn < 0. There is a
remarkable, perfect correspondence between the transport and
the dynamical behavior of the nonlinear maps that represent
the three different junctions in Fig. 2 [7].

An extrapolation of the expression for the recursive relation
of scattering matrix, or the eigenphase map f (θn), for the
general case of arbitrary K , indicates that the metal-insulating
transitions for K > 2 can be deduced from the K = 2 case
simply by replacing ε by 2ε/K .

(ii) A chain of serially connected scatterers. The chain
network when the scatterers are stubs, as in Fig. 2(b), has
been studied in Ref. [6] by using the transmission matrix
method. Here we analyze its phase transition properties via
the scattering matrix approach, and in this way reveal some
common transport properties of mesoscopic systems with
differing types of scatterers. Figure 4(a) exhibits the same
transition scenarios as observed in the double Cayley tree. A
linear network may appear to be a more realistic structure
than the double Cayley tree, but the characteristic behavior
of the Lyapunov exponent appears again to be a precise
indicator of the metal-insulating transitions [7]. For an array of
mesoscopic rings threaded by magnetic flux as in Fig. 2(c) the
elements of the building block scattering matrix are given by
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FIG. 4. The dimensionless conductance gn (solid lines, n = 20)
and the finite n Lyapunov exponent λn (dashed lines, n = 100) are
plotted as a function of ka in a network formed by a chain of serially
connected scatterers of (a) stubs, and (b) rings threaded by a magnetic
field.

Eqs. (11). The numerical results shown in Fig. 4(b) reveal
once more the transition scenarios described previously. The
positions where the Lyapunov exponent becomes zero indicate
quantitatively the locations of the metal-insulating transitions
that occur in the system of serially connected rings.

Clearly, our results provide convincing evidence that low-
dimensional dynamical transitions, from a stable fixed point
to weakly chaotic attractors, with negative and vanishing
Lyapunov exponents, respectively, are indicators of insulating-
conducting transitions occurring in solid-state model systems.
Interestingly, the vanishing of the ordinary exponent λ takes
place via intermittency in the sign of the finite n exponent λn,
a signature of weak chaos in maps with a tangency feature like
ours [2,7]. This constitutes a physical property of the conduct-
ing networks, i.e., the conductance oscillates when finite size is
changed. (A unit increment in n represents at least a doubling
of size in the linear chain). Our development also points out a
rare simplification in which there is a large reduction of degrees
of freedom: a system composed by many scatterers is described
by a low-dimensional map. This property is reminiscent of the
drastic reduction in state variables displayed by large arrays of
coupled limit-cycle oscillators, for which their macroscopic
time evolution has been shown [17] to be governed by
underlying low-dimensional nonlinear maps of the form
of Eq. (8). The parallelism between the transport properties
of the networks studied here and the dynamical properties of
arrays of oscillators can be made more specific by noticing
that in both problems the variables of interest are comparable:
phase shift of the scattered states and phase time change
of coupled oscillators, both determined by the action of the
Möbius group. In the scattering problem we arrive at the basic
nonlinear map by first constructing a family of self-similar
networks arranged by size, or generation n, and then relating
the scattering matrices of two consecutive generations. In the
case of coupled oscillators the puzzle of the drastic reduction
of variables finds a rationale in the identification of the role
of the Möbius group in the temporal evolution of the system.
Notice that the particulars of the scattering potentials appear
only through the coefficients in Eq. (8) while the structure of
the network gives the transformation its general form.

Because the basic recursive relation is a consequence
of special symmetries and an underlying group-theoretic
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FIG. 5. The dimensionless conductance gn (solid) and the finite n

Lyapunov exponent λn (dashed, n = 100) are plotted as a function of
ka for a chain of δ wells of imaginary intensity −iv where v = h̄2/2m.

structure, it is interesting to explore the relevance of our results
in other symmetric networks, including two-dimensional

arrays of interconnected scatterers. We notice that the corre-
spondence between zero Lyapunov exponent and conducting
phase does not hold for scattering with absorption. In this
case the scattering matrix is not unitary and, therefore, the
Möbius group theory does not apply; the corresponding results
are shown in Fig. 5. As for asymmetrical arrangements of
assemblies of scatterers it is expected that chaotic or other
complicated scenarios may be observed, as the recursive
relation might not be invertible.

Furthermore, a significant generic finding, as it is in-
dependent of the nature of the network scatterers, is that
the conducting phase is characterized by the features of
weak chaos, that is, ergocidity breaking, infinite invariant
measures, and anomalous transport. Experimental realizations
are feasible nowadays via the use of optical lattices as models
of condensed matter systems [22]. The effect of disorder is left
for future studies.
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[19] M. Büttiker, Y. Imry, and M. Ya. Azbel, Phys. Rev. A 30, 1982

(1984).
[20] C. Domb, in Phase Transitions and Critical Phenomena, edited

by C. Domb and M. S. Green (Academic, New York, 1974),
Vol. 3, Chap. 1.

[21] J.-B. Xia, Phys. Rev. B 45, 3593 (1992).
[22] E. Courtade, O. Houde, J.-F. Clément, P. Verkerk, and

D. Hennequin, Phys. Rev. A 74, 031403(R) (2006).

057202-4

http://dx.doi.org/10.1103/PhysRevLett.52.1936
http://dx.doi.org/10.1103/PhysRevLett.102.050601
http://dx.doi.org/10.1103/PhysRevLett.102.050601
http://dx.doi.org/10.1103/PhysRevB.80.125324
http://dx.doi.org/10.1103/PhysRevB.80.125324
http://dx.doi.org/10.1103/PhysRevLett.98.026807
http://dx.doi.org/10.1103/PhysRevLett.98.026807
http://dx.doi.org/10.1103/PhysRevB.80.205413
http://dx.doi.org/10.1103/PhysRevB.80.205413
http://dx.doi.org/10.1103/PhysRevB.50.11629
http://dx.doi.org/10.1103/PhysRevE.80.045201
http://dx.doi.org/10.1103/PhysRevE.80.045201
http://dx.doi.org/10.1021/jp8065986
http://dx.doi.org/10.1021/jp8065986
http://dx.doi.org/10.1063/1.1389287
http://dx.doi.org/10.1103/PhysRevLett.79.4794
http://dx.doi.org/10.1088/0305-4470/38/49/003
http://dx.doi.org/10.1088/0305-4470/38/49/003
http://dx.doi.org/10.1103/RevModPhys.73.401
http://dx.doi.org/10.1121/1.1509431
http://dx.doi.org/10.1103/PhysRevLett.94.127401
http://dx.doi.org/10.1063/1.3087132
http://dx.doi.org/10.1063/1.2930766
http://dx.doi.org/10.1063/1.3247089
http://dx.doi.org/10.1063/1.3247089
http://dx.doi.org/10.1103/PhysRevE.50.1874
http://dx.doi.org/10.1103/PhysRevE.50.1874
http://dx.doi.org/10.1103/PhysRevA.30.1982
http://dx.doi.org/10.1103/PhysRevA.30.1982
http://dx.doi.org/10.1103/PhysRevB.45.3593
http://dx.doi.org/10.1103/PhysRevA.74.031403

