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Wave-packet spreading dynamics under a noninstantaneous nonlinearity: Self-trapping,
defocusing, and focusing
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Special localized wave modes show up in several physical scenarios including BEC in optical lattices, nonlinear
photonic crystals, and systems with strong electron-phonon interaction. These result from an underlying nonlinear
contribution to the wave equation that is usually assumed to be instantaneous. Here we demonstrate that the
relaxation process of the nonlinearity has a profound impact in the wave-packet dynamics and in the formation of
localized modes. We illustrate this phenomenology by considering the one-electron wave packet spreading in a
C60 buckball structure whose dynamics is governed by a discrete nonlinear Schrödinger equation with a Debye
relaxation of the nonlinearity. We report the full phase diagram related to the spacial extension of the asymptotic
wave packet and unveil a complex wave-packet dynamical behavior.
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I. INTRODUCTION

The discrete nonlinear Schrödinger equation (DNSE) has
been frequently used to describe a wealth of nonlinear physical
phenomena associated with wave dynamics. The DNSE can
display a large class of topologically stable solutions such
as solitons, vortex rings, and breathers [1–6]. These solutions
have been largely explored in the context of Bose-Einstein con-
densates in optical lattices and light propagation in photonic
crystals [7–10]. The DNSE also captures some features related
to the electron-phonon interaction that can be effectively taken
into account by a nonlinear term in the electronic Hamiltonian
[11]. Nonlinearity was shown to breakdown the Anderson lo-
calization in low-dimensional disordered systems by promot-
ing a diffusive-like spread of the electronic wave packet [12].

The self-trapping of the wave function is one of the
most remarkable effects associated with the presence of a
nonlinear contribution to the discrete Schrödinger equation.
An initially localized wave packet spreads in the regime of
weak nonlinearities, but becomes trapped around its initial
position when the nonlinear coupling is above a threshold value
[13–15]. The self-trapping transition has been characterized in
one-dimensional and two-dimensional systems. The critical
nonlinear coupling is of the order of the energy bandwidth for
an initial wave packet fully localized in a single site of a linear
chain. In two-dimensional lattices, it increases as the initial
wave packet becomes wider [16]. Recently, the influence of
the nonlinear response time on the self-trapping transition has
been investigated in one-dimensional systems. By considering
a delayed nonlinearity, it has been shown that the critical
nonlinearity depends nonmonotonically on the response time
[17]. When the relaxation of the nonlinearity is described
by a Debye process, the typical response time drastically
affects the wave-packet dynamics. Much weaker nonlinearities
are needed to trap the wave packet [18]. It focalizes after
an initial spread exhibiting pronounced finite-size effects
including wave-packet fragmentation. The relaxation of the
nonlinearity also leads to the wave-packet relocalization in
disordered systems [19,20].

The wave-packet dynamics in nonlinear honeycomb and
some closely related lattices has been a subject of intense
recent investigations. These have been mainly motivated by

the ability to buildup optical lattices and photonic crystals with
these topologies, which allows the experimental observation of
several theoretically predicted phenomena, such as topology-
induced bistability [21], discrete localized modes and breathers
[22,23], conical diffraction [24,25], self-trapping of vortices,
gap vortices, and gap solitons [26]. Nonlinearity is also
expected to play a significant role in the dynamics of electronic
wave packets in carbon-based structures [27,28]. Recent
experiments have probed the electron-phonon interaction in
graphene which can account for an effective nonlinearity
[29]. Low-temperature scanning tunneling spectroscopy ex-
periments have been recently used to map the wave function
in graphene quantum dots [30], which opens the possibility to
experimentally observe many theoretically predicted nonlinear
effects in low-dimensional carbon-based structures. However,
most of the previous theoretical studies of nonlinear wave
dynamics in two-dimensional lattices do not include finite-size
effects and the relaxation of the nonlinearity which might play
important roles in nanoscaled structures.

In the present work, we show that both finite-size and finite
response-time effects have a strong impact on the wave-packet
spreading dynamics. We will follow the time evolution of
an initially fully localized wave packet whose propagation is
governed by a DNSE with Debye relaxation of the nonlinearity.
To illustrate the phenomenology, we consider the wave-packet
evolution over a C60 buckball. In this topology, all sites are
equivalent and the absence of borders avoids the superposition
of surface effects to the finite-size ones. We will report
the phase diagram in the two-dimensional parameter space
(nonlinear coupling χ and response time τ ), which unfolds a
quite complex structure with three distinct localized phases.

II. MODEL AND METHODS

A nonlinear contribution for the one-electron Schrödinger
equation results from the underlying electron-phonon inter-
action [11–16]. Within the adiabatic approximation, such a
nonlinear term can be considered as instantaneous. Going
beyond the adiabatic approximation, the effective nonlinear
term has been shown to obey a Debye relaxation process [31].
Within a tight-binding approach and considering a localized
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FIG. 1. (Color online) Schematic representation of the C60
buckball. Each site has two hexagon-hexagon bonds and one hexagon-
pentagon bond. C1 represents the site at which the wave packet is fully
localized at t = 0. C2 is the site diametrically opposite to the initial
position. C3 stands for the site targeted in Fig. 3(d).

orbitals basis, the dynamics of a one-electron wave packet can
be described by a DNSE with a relaxing nonlinearity, written
as

i�̇n(t) = εn�n(t) +
∑
m

Vnm�m(t) − Xn(t)�n(t), (1)

Ẋn(t) = − 1

τ
[Xn(t) + χ |�n(t)|2], (2)

where we used h̄ = 1. �n(t) is the coefficient of the wave
vector expanded in the localized orbitals basis |�(t)〉 =∑

n �n(t)|n〉. The relaxing nonlinearity X(t) is considered to
have a typical response time τ and strength coefficient χ . The
sum is taken over first-neighbor pairs of sites (n,m) that are
coupled by a hopping amplitude Vnm. εn’s represent the on-site
energies. In the limit of τ → 0, the nonlinearity becomes
instantaneous Xn(t) = −χ |�n(t)|2 and the usual DNSE is
recovered.

In what follows, we will solve the above nonlinear
dynamical equations for an initially localized wave packet
�n(t = 0) = δn,1. We will consider a C60 buckball topology
(see Fig. 1), which is composed of 20 hexagons and 12
pentagons. Each of the 60 equivalent sites have three bonds.
Two of them are between a hexagon and a pentagon and
the remaining one between two hexagons. In the real C60
molecule, the hexagon-hexagon bonds are slightly shorter than
the hexagon-pentagon bonds. This feature ultimately leads to
a small difference in the corresponding hopping amplitudes
which we will not consider in the present work. We will
take Vnm = V for every bond and will work in units of
V = 1. Further, we can also consider εn = 0 without any loss
of generality. The dynamical equations were solved using a
standard eighth-order Runge-Kutta algorithm and the norm
conservation was followed with a precision of 10−8 to ensure
the numerical accuracy.

To characterize the spacial extension of the wave packet,
we computed the participation function defined as

P (t) =
[

N∑
n=1

|�n(t)|4
]−1

, (3)

which gives a measure of the fraction of the lattice sites at
which the wave packet is spread at time t . It becomes equal
to N for an uniformly distributed wave packet. For a fully
localized state P = 1.

We also computed the wave packet average energy E =
〈�|H |�〉, which can be written in the localized orbitals basis
as

E = 〈�|H |�〉 =
∑

n

i�∗
n (t)�̇n(t). (4)

The energy time evolution over a finite disordered nonlinear
one-dimensional lattice has been recently used to characterize
the subdiffusive wave-packet spreading [32,33] and to explain
the wave-packet relocalization due to the relaxation of the
nonlinearity [20].

III. RESULTS

We followed the time evolution of the wave packet until
it reached a statistically stationary regime. We explored the
two-dimensional parameter space (τ,χ ) to buildup the phase
diagram regarding the spacial extension of the asymptotic
wave packet in the regime of a focusing nonlinearity χ > 0.
Four distinct phases were identified, as reported in Fig. 2.
There is a single extended phase, on which the wave packet
spreads uniformly over all sites of the buckball, and three
distinct localized phases. The extended phase prevails in the
regime of weak nonlinearities. However, narrow branches of
the extended phase are found between localized phases. While

FIG. 2. (Color online) Phase diagram concerning the spacial
extension of the asymptotic wave packet in the (τ,χ ) parameter
state. The extended phase with a uniformly distributed wave packet
occurs at small nonlinearities and two branches (black region). L1

[light blue (light gray)] corresponds to a phase with the wave packet
localized around its initial position. L2 [dark blue (dark gray)] is the
phase where the localization is concentrated in the site diametrically
opposite to the initial position. In the narrow L3 (white) phase,
the wave packet localizes in other sites. A complex sequence of
localization-delocalization transitions is observed at small τ values
and intermediate nonlinear strengths.
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these extended branches die out when the relaxation time
increases, the main extended phase becomes wider.

The predominant localized phase L1 corresponds to an
asymptotic wave packet that results localized mostly at the
initial position (site labeled C1 in Fig. 1). In this region, we
found the participation number to become slightly above unit
with the probability density concentrated at the initial position.
There are two main regions of the parameter space on which
the wave packet becomes trapped on the initial position. A
second localized phase L2 appears in between these two L1

regions. In this new localized phase, the participation function
is of the same order as in the localized phase L1. However, the
probability density is centered at the site that is diametrically
opposite to the initial position (labeled as C2 in Fig. 1). The
two branches of the extended phase are in between these
two localized phases. A third localized phase L3 occurs in
between L1 and L2. In this narrow phase, the wave packet
was found to become localized around other positions besides
the initial and the diametrically opposite sites. A complex
sequence of localization-delocalization transitions takes place
at small values of the relaxation time when one crosses the
regime of intermediate nonlinear strengths.

To follow the wave-packet dynamics on these distinct
phases, we plot the time evolution of the participation

(a) (b)

(c) (d)

FIG. 3. (Color online) Time evolution of the normalized par-
ticipation number P/N [black lines in (b), (c), and (d)] and the
relevant occupancy probabilities |�i(t)|2 [red (gray) lines in (b),
(c), and (d)] for representative values of the physical parameters.
(a) Extended phase: χ = 5.5 and τ = 0.22,0.45, and 1.50 (from right
to left) being, respectively, on the first, second, and third extended
regions. Notice that the expanding wave packet develops breathing
oscillations. (b) Localized L1 phase: after the initial expansion, the
wave packet self-focuses and relocalizes around its initial position.
(c) Localized L2 phase: the wave packet relocalization occurs around
the site diametrically opposite to its initial position. Localized L3

phase: the relocalization occurs around the site labeled as C3 in Fig. 1.

function and the relevant occupation probabilities for some
representative values of the parameters, as shown in Fig. 3.
The dynamics in the extended phase is illustrated in Fig. 3(a)
for parameter values covering the two branches and the
main extended region. The normalized participation function
converges to P/N = 1 indicating that the asymptotic wave
packet is uniformly distributed over all buckball sites. The
convergence to this state is achieved after an oscillatory
(breathing) transient regime.

In Fig. 3(b) we depict the typical wave-packet dynamics in
the L1 localized phase. We show the time evolution of both
the participation number and the occupancy probability of the
initial site |�1(t)|2. In the initial transient, the wave packet
spreads in an oscillatory fashion and occupies a finite fraction
of the buckball sites. After this transient, the wave packet
self-focuses and relocalizes. The increase of |�1(t)|2 indicates
that the wave packet relocalizes around its initial position.
A very similar phenomenon occurs in the localized phases
L2 and L3, as illustrated in Figs. 3(c) and 3(d), respectively.
However, the self-focusing drives the wave packet toward the
site diametrically opposite to its initial position in phase L2.
In the localized L3 phase, the wave packet spreads almost
uniformly over the lattice before starting to self-focus. In this
case, the position of the asymptotic localized state is very
sensitive to values of the physical parameters. For the values
used in Fig. 3(d), the wave packet relocalizes around the site
labeled as C3 in Fig. 1.

We report the time evolution of the wave-packet energy
in Fig. 4. For the initial condition used in our study (a
fully localized state and vanishing nonlinearity), the wave-
packet initial energy is E = 0. The relaxation process of the
nonlinearity promotes an energy drift [20]. In Fig. 4(a), we
show the energy time evolution for three cases corresponding
to asymptotically extended wave packets. In all cases, the
wave-packet energy evolves toward a value slightly above
E = 3. This is consistent with Fig. 3(a) that shows the
asymptotic wave packet uniformly spreading over the lattice.
The nearest-neighbors hopping terms are responsible for the
main wave-packet energy (these account for E = 3). The
nonlinear term gives a small correction to the energy in the case

(a) (b)

FIG. 4. (Color online) (a) Time evolution of the energy for three
representative cases of an asymptotically extended wave packet
(decreasing values of τ from left to right). The convergence to a value
close to E = 3 is consistent with a uniformly extended state. (b) The
same for the three cases of localized states shown in Figs. 3(b)–3(d)
[decreasing values of χ from top to bottom in the long-time regime].
The energy becomes larger than in the localized phase reflecting the
predominant role played by the nonlinear contribution.
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(a) (b)

FIG. 5. (Color online) (a) Asymptotic normalized participation
function P/N (black curve) and occupancy probabilities |�i(t)|2
at the initial (i = 1) [red (gray) solid curve] and diametrically
opposite (i = 2) [dashed curve] sites as a function of the nonlinear
coupling for τ = 0.0625. The system depicts a complex sequence of
localization and delocalization transitions. (b) The time evolution of
the normalized participation function for τ = 0.0625 and two slightly
different nonlinear strengths. Notice a dynamical transition that leads
to distinct phases.

of an extended wave packet. In Fig. 4(b), we show the energy
time evolution for the same three cases of asymptotically
localized states addressed in Figs. 3(b) through 3(d). One can
observe that the wave-packet energy develops a plateau during
the time period on which it remains spread over the lattice.
After this intermediate regime, a dynamic transition leads to
the ultimate localization reflected by the fast increase of the
wave-packet energy as the nonlinear contribution becomes
predominant.

Finally, we closely analyze the wave-packet dynamics in the
parameter region where a complex sequence of localization-
delocalization transitions occurs within the main extended
region (see Fig. 5). We first plot the asymptotic normalized
participation function and occupancy probabilities of the initial
and diametrically opposite sites as a function of the nonlinear
coupling and a fixed relaxation time τ = 0.0625, as shown
in Fig. 5(a). P/N = 1 in the extended phase, as expected
for a uniformly delocalized wave packet. However, before
the ultimate localization transition that traps the wave packet
around its initial position, a complex sequence of localization-
delocalization transitions takes place. The position of the
localized wave packet appears to randomly jump between the
initial and diametrically opposite sites. For other small values
of the relaxation time, we verified that the wave packet can
eventually relocalize around other sites. The high sensitivity
of the wave-packet dynamics on the precise values of the
parameters in this region is illustrated in Fig. 5(b). One
observes that, while the orbits of two cases with slightly
different parameters remain quite close to each other during
some time, a dynamical transition takes them apart. It is
worth recalling that a similar dynamical transition has been

previously reported to occur in a two-level system driven by a
relaxation process of the nonlinearity [31].

IV. SUMMARY AND CONCLUSION

In summary, we showed that the wave-packet spreading dy-
namics displays a rich phenomenology including self-trapping,
defocusing, and focusing when the relaxation process of an
effective third-order nonlinearity is taken into account. A C60
buckball structure was used to illustrate this phenomenology.
By considering a fully localized initial state, we provided the
phase diagram for the spacial extension of the long-time wave
packet. The phase diagram shows a complex structure with
three distinct phases of localized wave packets, besides the
extended phase in which the wave packet spreads uniformly
over all buckball sites. In the localized phases, the wave packet
was shown to relocalize after an initial spreading over a finite
fraction of the network sites. Besides the usual relocalization
of the wave packet around its initial position, focalization on
the diametrically opposite site takes place in a large stripe of
the phase diagram. A narrow phase where the wave packet
relocalizes around other sites was also identified. A complex
sequence of localization-delocalization transitions was shown
to occur at small relaxation times as a function of the nonlinear
coupling. These were associated to a dynamical transition
which is strongly sensitive to the parameter values in this
region. A stability analysis of the stationary states would be
to shed light on the underlying mechanism that drives these
transitions.

The main aspects of the here-reported phenomenology are
expected to show up in general nonlinear physical systems
where the wave-packet dynamics are driven by a relaxation
process of an underlying nonlinearity. These include electronic
states in nanosized clusters with strong electron-phonon
coupling, BEC in optical lattices, and light propagation in
nonlinear photonic crystals. The present work leaves open the
quest of investigating the possible influence of open boundaries
and saturation effects that might also be relevant in optical
and BEC experiments in finite planar lattices. Further efforts
would be to evaluate the relative relevance of these ingredients
to the wave-packet dynamics in the presence of a relaxing
nonlinearity.
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