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Finding stable minima using a nudged-elastic-band-based optimization scheme
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H. Lustfeld
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Optimization is essential in many scientific and economical areas, but it is often too complex to be tackled by
simple straightforward calculations or by trial and error. Two well-known methods to find low-lying minima in
such complex systems are simulated annealing and the genetic algorithm. In these methods artificial fluctuations
control the probability of the system to overcome a local minimum having a certain depth. Here we present a
complementary scheme that is based on the nudged-elastic-band method ordinarily used to find saddle points and
we apply the scheme to find the most stable isomers of the phosphorus P4, P8 molecules and the corresponding
molecules of Asn, Sbn, and Bin (n = 4,8) in the framework of the density functional theory. In the case of n = 8
we have found stable and metastable configurations, some of which are new and have similar energies. As a
by-product we obtained an upper bound for the energy barriers between these configurations.
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I. INTRODUCTION

Finding new stable configurations is important for the fun-
damental understanding of material properties, for developing
new stable materials with novel properties, and, in general,
whenever optimization is necessary, e.g., in engineering and
economics. However, the optimization problem can become
very complex due to many local minima in a high dimensional
phase space. Simple minimum search procedures often fail,
and sophisticated optimization schemes are required. Many of
these rest on simulated annealing [1] and the genetic algorithm
[2].

In simulated annealing the annealing process of condensed
matter is imitated to find stable configurations. This is
achieved by introducing a temperature parameter T controlling
temperature fluctuations. At high T the fluctuations are
large and it is possible to overcome large energy barriers
between local minima. By decreasing T the fluctuations are
diminished and lead to a more stable minimum than can be
found with simple search methods. The extent of application
possibilities are immense for simulated annealing. Some of
many applications are finding stable isomers of phosphorus
clusters [3], designing heterogeneous catalytic reactors [4],
three-dimensional face recognition [5], the optimization of
electric discharge machining [6], the inverse calculation of
experimental scattering data [7], or a search algorithm for
structures and substructures of proteins in a database [8]. A
similar method is the simulated quenching, which has been
applied for example to the design of optical elements [9].

In the genetic algorithm a set (population) of different
configurations is considered. In addition to small random
variations of the configurations (mutations), the properties of
the most successful states are melded to find even more stable
ones, thus imitating inheritance in genetics. Also, the genetic
algorithm has been used for many different applications:
finding of Sb clusters [10], finding stable alloys based
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on density functional theory (DFT) out of 19 016 possible
combinations [11], or finding crystal structures in constrained
systems [12]. Although simulated annealing and the genetic
algorithm address the problem of local minima, there can be
no guarantee that the configuration obtained by these methods
is the global minimum. Therefore, there is a need for other,
complementary methods.

In this paper, we propose a scheme to find low-lying minima
in complex systems that employs the nudged-elastic-band
(NEB) method [13–15]. The key points of our method are
(a) due to the band not only one single point of the phase space
is selected but a series of points (images) that communicate
with each other, (b) local minima are easily overcome by
using the so-called nudging of images, and (c) randomness
can be included by using different, random starting positions,
while at the same time increasing knowledge during the search
process can be incorporated when selecting configurations as
new starting points in phase space.

In the next section we emphasize the features of the NEB
method that make it useful for our purpose, i.e., by avoiding
irrelevant local minima. In Sec. III, we present the algorithm
and, in Sec. IV, we show that (i) the NEB-based optimizer
reproduces well-known minima of the P4 cluster [16] and
(ii) by applying it to the P8 cluster [17–19] we find a new
most stable isomer. We also apply our method to find the most
stable configuration of chemically similar compounds in the
same main group, i.e., Asn, Sbn, and Bin (n = 4,8). As a
by-product we obtain an upper bound for the energy barriers
between these configurations. All calculations are done in the
framework of DFT.

II. NEB IN THE NEIGHBORHOOD OF A MINIMUM

Any scheme searching for global minima can succeed only
if it (i) can overcome local minima and (ii) can find the low-
lying minima. We now show that appropriate use of the NEB
method can do both, although it was not developed for this
purpose. Images of the system are connected by straight lines

056709-11539-3755/2012/85(5)/056709(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.056709


J. A. HIRSCHFELD AND H. LUSTFELD PHYSICAL REVIEW E 85, 056709 (2012)

starting from a first image i = 1 up to the last image i = N .
The band constructed in this way moves through the phase
space, while three kinds of forces act [13] upon each image
(1 < i < N) at position Ri ,

Fi = Fi1 + Fi2 + Fi3

= −∇E(Ri) + τ̂ i τ̂ i · ∇E(Ri) + τ̂ iαi . (1)

Ei is the energy and Fi1, the force acting on each image due
to the local potential, is also used in the drag method [14]. Fi2

and Fi3 are, however, special to the NEB method and are quite
important. Fi2 cancels the force Fi1 along the direction of the
normalized “tangent” vector

τ̂ i = τ i/ |τ i | (2)

of the band and replaces it by Fi3, an artificial spring force in
the same direction, obtained from

αi = k (|Ri+1 − Ri | − |Ri − Ri−1|) , (3)

with the spring constant k. τ i is obtained from the requirement
that the additional terms Fi2 and Fi3 must not change the length
of the band, yielding [15]

τ i = Ri − Ri−1

|Ri − Ri−1| + Ri+1 − Ri

|Ri+1 − Ri | . (4)

This construction of Fi has distinct consequences for images
within the range of a minimum, which depend on the choice of
the parameter k and distance between two successive images.
Using the total length of the band Lband, the average distance
S is obtained by

S = Lband/(N − 1). (5)

Let us first turn to the parameter k. As shown in Fig. 1 an
image i can pass an equipotential surface around an attracting
minimum only if

|Fi1| sin2(γ ) < |Fi3| cos(γ ). (6)

Here γ is the angle between the normal of the equipotential
surface and the tangent vector τ̂ i . γ can assume any value in the

FIG. 1. (Color online) Passing of an equipotential surface: the
force F1 is perpendicular to the equipotential surface (black). γ

is the angle between F1 and the tangent τ . F′
1 is the resulting

force component pulling the image toward the minimum. F′
3 is the

component of the artificial spring force pushing the image out of the
attractor. If

∣
∣F′

1

∣
∣ <

∣
∣F′

3

∣
∣, the image will pass the equipotential surface,

i.e., depart from the minimum.

FIG. 2. (Color online) Sketch of the band in the neighborhood
of a minimum. In (a) S > Ra ; in (b) S < Ra . In both cases image i

can escape from the range of attraction if, e.g., image (i + 2) nudges
sufficiently to the right. In (a) the band will then escape from the
minimum; in (b) it will not.

interval ] − 90◦, + 90◦[, and sin2(γ ) < 0.1 for |γ | � 20◦. If k

is not small, the probability of a trapped image escaping from a
local minimum is not small. On the other hand, the probability
vanishes for k → 0 and thus the band cannot escape the range
of attraction Ra of the minimum.

If k is not too small, the motion of the images can easily
be understood, since the distances between all images are
approximately equal and given by S. Figure 2 shows a snapshot
where image i is in the range of attraction Ra of a local
minimum. If the image (i + 2) is nudged to the right, for
example, all the images m < (i + 2) will move along their
tangent vectors τ̂m, and the image i can escape easily from the
local minimum. At the same time, however, image (i − 1) has
moved closer to the local minimum. If S � Ra , image (i − 1)
will not enter the range of attraction, and the band has escaped
from the local minimum. For S � Ra , image (i − 1) has a high
probability of entering the range of attraction. The net result is
that the image i has escaped from the local minimum, whereas
the band has not.

As S decreases, the probability increases that the band,
once in the range of a local minimum, does not escape. For
S → 0, this is true for all k, as the following argument shows:
for S → 0 the band becomes a smooth curve, the vectors τ̂ i

become the genuine tangent vectors of the curve, and Fi3

cannot change the shape of the band. If the band now enters
the range of attraction of a local minimum, Fi1 + Fi2, being
orthogonal to the curve, will pull the band in the direction of the
minimum (Fig. 3). The only effect of Fi3 is to move images
along the band, so that some images may escape from the
local minimum. But this is irrelevant because the band remains
captured.
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FIG. 3. (Color online) If S → 0, Fi3 can only move the images
along the band but cannot change its shape, and the band cannot
escape from the minimum.

To summarize, the escape of the band from a minimum
depends on (i) the value of the parameter k, (ii) the value of
the length S, and (iii) the nudging process. The corresponding
algorithm will now be described.

III. THE ALGORITHM

The NEB method, introduced to change saddle-point
problems into minimum-finding problems, is used here to
find the stable configurations of molecules which requires
modification. In the original method, the first and the last image
of the band are usually relaxed to ensure that the bottom of
the potential well is reached. In our case, however, it is not
necessary to start or end in a minimum, and the first and last
image of the band can be chosen (i) as random configurations
(ii) from known stable or metastable configurations of this or
related compounds (iii) exploiting knowledge from previous
calculations. However, the first and the last image of the band
should be distinctly different. This can be achieved by choosing
at least one configuration randomly or by starting with two
states with quite different symmetries, as in a molecule. Known
configurations can be included as the first or last image of the
band. After specifying these images the band is created by
(N − 2) additional images. N determines S [see Eq. (5)], the
mean distance between the images, and hence the minima that
can be overcome, because their range of attraction Ra � S.
Assuming that Ra of the stable state in question is of the same
order of magnitude as that of known stable states of this or
similar systems one can choose N correspondingly or start
with a small value.

The motion of the band occurs in cycles in each of which the
band is first relaxed as in a typical NEB for nr ionic relaxation
steps following Eq. (1). Equation (3) implies that the images
do not relax independently, but “nudge” each other and begin
to scan an area around the initial band. Nudging is crucial
in our method and is implemented by moving, removing, or
adding images after the nr relaxation steps: either the image
with highest energy is removed and a new one is set to the
position with lowest energy in the band (even cycles), or a
new image is set at the lowest point of the band, increasing
the number of images in the band (odd cycles). A different
situation arises if neighboring images relax to degenerate
minima that transform into each other by translations or
rotations of the system. If there are images located in such
a minimum, they usually cannot escape and even attract more
images into it, which makes them inactive for the optimization
process. All but one of these degenerate images are discarded,
and a new image is generated at the position of the band
with lowest energy. These manipulations (adding, moving,
and removing images) end a cycle and may lead to a new
N . The steps executed in the ordinary use of NEB are
contrasted in Table I to the steps taken in the new optimization
scheme.

The nudging dynamics is retained from cycle to cycle,
enabling the images to overcome local minima along the
tangential direction τ̂ i independent of the barrier height, and
to relax perpendicular to τ̂ i toward the global minimum (cf.
Fig. 2).

S is by no means a constant in an optimization run, even
for constant N . In fact, due to the relaxation of the band
perpendicular to τ̂ i the length of the band varies and fluctuates.
At the beginning of an optimization run, S can increase even
if the number of images increases. This effect is certain to
occur if a straight line connects the first with the last image at
the beginning of an optimization run, and relaxation can only
prolong the band. When the band approaches more relaxed
states, the addition of images will reduce S, but fluctuations of
S remain part of the nudging process. This does not matter, at
least as long as S does not change by an order of magnitude.
Moreover, the reduction of S below a threshold Sconv appears
to be unnecessary as long as one can estimate Ra of the stable
state.

An alternative way to reduce the chance to escape local
minima is given by decreasing k throughout the optimization
process [Eq. (6)]. Inspired by simulated annealing, this

TABLE I. Comparing the steps of the classic NEB and our optimization method (possible changes of k have not been entered in the table).

Step Classic NEB Optimization scheme

1 Choose initial and final configuration Choose initial and final configuration possibly
having barrier of interest in between randomly and sufficiently different

2 Relax initial and final state
3 Interpolate between states Interpolate between states
4 Use NEB to relax band to MEP until convergence Use NEB to relax band for nr steps
5 Determine saddle point as the maximum of the MEP Add image to low part of the band
6 Use NEB to relax band for nr steps
7 Delete image with highest energy and

add image to low part of the band
8 Go back to step 4
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FIG. 4. (Color online) Different types of minima have distinct
consequences in simulated annealing and in our method.

reduction could follow an exponential law, e.g., for the k value
of the j th cycle,

kj = kinitexp [−A(j − 1)] , (7)

with a scaling factor A. In this way k goes to zero as j increases.
Such procedures are necessary if there are limits on the number
of images. It is important to point out that the reduction of
k can be achieved in different manners and the choice of
exponential decay implies by no means that k corresponds to
the temperature parameter of simulated annealing. In systems
of modest size, we found that it was more efficient to increase
the numbers of images. We note that it may be desirable
to stabilize or destabilize parts of the band, and this can be
achieved by locally decreasing or increasing the k values.

In simulated annealing the probability that a point in phase
space escapes from a minimum depends on its depth and the
temperature T . In our scheme the probability for the band to
escape from a minimum depends on its range of attraction Ra ,
k, and S. The consequences of this difference become clear
when we examine how the methods behave in the vicinity
of various types of minima (Fig. 4). In simulated annealing
the chance to escape the basin of attraction of the minimum
in the dashed (red) lined potential is lower than in the black
one, while there is little difference between the minima in
the solid (black) lined and the dash-dotted (green) potential.
The larger attractor size means that the opposite is true for
the NEB-based optimizer. The minimum in the dash-dotted
(green) potential is harder to escape from than from the one in
the solid lined (black) potential, while the chances to escape
from the minimum in the deeper (red) potential is equal to the
one of the solid lined (black) potential. This distinction shows
that our scheme complements other procedures. It should
be mentioned that—as in any NEB procedure—the method
provides an upper bound for the stability of the obtained
minimum by providing the barrier along the final band.

With our method it is also possible to obtain metastable
configurations of high energy but the optimization must be
executed slightly differently: the newly added images are
not set to the lowest energy of the band but are randomly
distributed over the band.

In this paper we restrict ourselves to molecular applications
and present examples to show the effectiveness and power

of the algorithm, but we emphasize that our scheme can be
applied to quite different optimization problems.

IV. APPLICATIONS

The algorithm has been tested for simple molecules, e.g.,
H2O starting from an oxygen atom and a hydrogen molecule,
where it is easy to find the minimum. Further tests have
been carried out with more complex molecules: the P4 and
P8 clusters and the corresponding molecules of arsenic,
antimony, and bismuth. The P4 and the P8 molecules have been
investigated by simulated annealing [3] and are satisfactory
benchmark systems. We used the NEB method as implemented
in the Vienna Ab Initio Simulation Package (VASP) without
any modifications to the code. Except for the final relaxation to
the minimum we used intermediate precision to achieve a high
efficiency of the method. Increasing the precision further does
not yield more information and only decreases the efficiency
of the method.

A. Finding the most stable isomer of the P4 cluster

The P4 cluster minimum has a steep basin of attraction,
and it is not easy to find in simulated annealing. Typically
a “roof”or “butterfly”structure is obtained by these methods.
In our method the minimum can be found in a few cycles
beginning from only one pair of starting configurations.

We start by randomly placing the four phosphorus atoms far
from each other in a 10 Å × 10 Å × 10 Å cell and initializing
the last image i = N accordingly, noting that the images i = 1
and i = N need to be quite different. The initial band is
obtained by a linear interpolation connecting the initial images
by a straight line in phase space. A Monkhorst-Pack K-point
mesh of 6 × 6 × 6 and an energy cutoff of 270 eV has been
used in the local density approximation (LDA). The electronic
structure is calculated by including five valence electrons
(3s23p3). The ions are described by the projector augmented
wave (PAW) method by Blöchel.

The initial band had a total length of Lband = 8.5 Å and we
started with N = 4 leading to an initial Sinit value of 1.7 Å.
Although Sinit was small in comparison to the expected range
of attraction of the stable state Ra ≈ 2.4 Å, the initial strong
increase in S was accounted for in this way (after the first cycle,
S = 2.2 Å). In fact, with the convergence parameters nr = 40
and a constant k = −5 eV/Å

2
, the most stable isomer of the

P4 was found after 11 cycles (cf. Fig. 5). In the vicinity of the
minimum we also found the “roof”structure.

B. Finding the most stable isomer of the P8 cluster

In 1990 Jones and Hohl found a new most stable wedgelike
(C2v symmetry, Fig. 7) isomer of the P8 cluster [3]. Previously,
it had been assumed that the high symmetry of the cubic
structure would be favored.

We again set up the initial images with different random
positions of all eight P atoms in both a 10 Å × 10 Å × 10 Å
computational cell using a 6 × 6 × 6 K-point mesh and a
12 Å × 12 Å × 12 Å computational cell using a 3 × 3 × 3
K-point mesh with the same computational parameters as in
the P4 calculation. Linear interpolation of the atomic positions
was used to obtain the initial band. With Sinit = 1.8 Å we
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FIG. 5. (Color online) Optimized P4 cluster is a tetrahedron. (The
atomic viewer XCrysDen has been used to create this picture [20].)

again started with a value smaller than the expected range of
attraction, Ra ≈ 3.5−5 Å to compensate the initial rise in S

(cf. Fig. 6). In the small unit cell we reproduced the structure
of Jones and Hohl, showing that our scheme can quickly
reproduce well-known stable structures without including any
assumptions. In the larger unit cell, however, we have obtained
a configuration that is more stable than the previous one (cf.
Fig. 7), namely a dimer of two P4 clusters. We have relaxed
this structure with higher accuracy (900 eV energy cutoff in
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FIG. 6. (Color online) Development of S throughout the opti-
mization of the P8 cluster as a function of the cycle number j (bottom
panel) and the number of images in the band (top panel). At point A
the dimer structure is observed the first time and persists as the lowest
energy state through the following optimization. At point B and C the
procedure was changed to reduce S further.

FIG. 7. (Color online) Low-energy states of the P8 cluster as
found by our optimization scheme in DFT. Top: new dimer structure;
bottom: wedgelike structure found by Jones and Hohl. (The atomic
viewer XCrysDen has been used to create this picture [20].)

a 20 Å × 20 Å × 20 Å computational cell), and the energies
in LDA and in the generalized gradient approximation (GGA)
using the Perdew-Burke-Ernzerhof (PBE) functional are given
in Table II.

In Fig. 6, the development of S throughout the optimization
of P8 in the 12 Å × 12 Å × 12 Å unit cell is shown. Up to cycle
18, the algorithm led first to a strong increase of S and then

TABLE II. Energies (in eV) of the P8 cluster in different
configurations.

LDA E − 2EP4 PBE E − 2EP4

2EP4 − 44.6964 0 − 41.9968 0
Edim − 44.9726 − 0.2762 − 42.0295 − 0.0327
Ewedge − 44.8755 − 0.1791 − 41.5674 0.4294
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to a decrease, until it oscillates around a value of about 4.5 Å.
After the strong initial rise of S, the increase of Lband slows
down and S is then decreased by the increase of images. To
systematically decrease S further nr is reduced to 10 and a new
image added after every cycle. Since parts of the band always
enlarge further in the phase space, this procedure will also
approach its limit. If S has to be decreased further, another very
efficient way is to remove unimportant high energy parts of
the band, while redistributing the number of images removed
over the remainder. This has been done at cycle 26 (cf. Fig. 6
point C) decreasing S from 4.0 Å to 1.9 Å, after which S

does not change considerably. Although one has the option to
decrease S systematically in this way, it was unnecessary in
our cases, since the most stable isomer was typically found
much faster (the lowest energy was found here after only
11 cycles).

The size of the computational cell affects the path of the
optimization process and can affect the final structure. In the
unit cell with a side length of 10 Å only the wedgelike structure
was found. It is very hard to find the dimer structure in this
cell, while in the 12 Å cell it was found quickly. The reason
is the spatial extent of the structures. In the small cell the
available phase space is too limited for the dimer structure
to develop, while the more compact wedgelike structure can
develop. Although the dimer structure is also more stable than
the wedgelike configuration in the small cell, it cannot be found
easily by the optimization scheme. A cell that is too large
is also not ideal, since it is computationally more expensive
and one or more atoms can be pushed away from the others
by the artificial spring forces. Such atoms are unlikely to
be incorporated into the molecule, but appropriate periodic
boundary conditions can prevent this. The cell size (phase
space) has to be experimented with in practice to discover new
structures.

Due to the chemical similarity of the elements in the
group 15 (except nitrogen) we also applied our optimization
algorithm to the four and eight atom clusters of As, Sb,
and Bi. In these systems we also found either the wedgelike
configuration or the dimer configuration. Also in these cases
the cell-size dependence arises: the dimer structure was found
only in large cells, while in the smaller cells only the wedgelike
structure occurred. We compared the energies of the two stable
isomers in all cases (cf. Table III) and found that As8 is
also more stable in the dimer structure, Sb8 is more stable
in the wedgelike structure, and in Bi8 both structures have
nearly the same energy. In LDA, however, the wedgelike

TABLE III. Energies (in eV) of the Sb8, As8, and Bi8 clusters in
wedge and dimer configurations. All calculations are done in GGA-
PBE with 600 eV energy cutoff and a k-point mesh of 3 × 3 × 3 in
a cubic computational cell with the side length of 13 Å (As8), 14 Å
(Sb8), or 20 Å (Bi8).

As8 Sb8 Bi8

Edim − 35.878 − 30.681 − 29.829
Ewedge − 35.703 − 30.734 − 29.827
Edim − Ewedge − 0.175 0.053 − 0.002

TABLE IV. Energies (in eV) of the Sb8, As8, and Bi8 clusters in
wedge and dimer configurations. All calculations are done in LDA;
other parameters are as stated in Table III.

As8 Sb8 Bi8

Edim − 39.362 − 33.961 − 31.883
Ewedge − 39.453 − 34.961 − 31.977
Edim − Ewedge 0.091 0.219 0.095

structure is always more stable in these compounds (cf.
Table IV).

Although both structures are very similar in energy in all
systems, the transition from one structure to the other is very
unlikely. In fact, due to the different symmetries the energy
barrier between the structures is very high. Following the direct
process proposed by Chen et al. [17], the pathway passes an
intermediate state leading to a two barrier transition, with both
barriers being at least 2 eV high.

The work of Janoschek [21] in 1992 corroborates our
findings. He showed that in MP2 + ZPE no P8 cluster is more
stable than two separated P4 clusters. If two P4 tetrahedron
approach each other, the energy of the two-cluster system will
drop slightly indicating that the dimer structure is in fact lower
in energy than any other P8 cluster. In 1993 Kumar et al.
reported [22,23] a new most stable isomer in the Sb8 system.
They found the same dimer cluster we found for the P8 cluster.
However, in our calculations of the Sb8 cluster we could not
reproduce the dimer configuration as the most stable isomer
neither in LDA nor in PBE.

Although the long bond between two P4 clusters may not
be described well in DFT, it is clear that this structure is more
stable than all previously found structures in DFT, showing
that our method can quickly discover new minima in a given
phase space.

V. SUMMARY

We have proposed an optimization scheme based on the
nudged-elastic-band (NEB) method. Contrary to the initial
intention of the method, we do not search for saddle points but
for stable minima. Our scheme can overcome local minima by
the NEB’s particular distribution of images along the band. The
real forces tangential to the band are replaced by an artificial
spring force that moves the images through the phase space
without being hindered by potential barriers along the way.
At the same time the images relax along the real potential
perpendicular to the band. Local minima can be escaped from
by adding and removing images in the band systematically.
This enforces continual dynamics along the band, while
relaxing toward the global minimum perpendicular to the
band remains undisturbed. The method complements energy-
based schemes, such as simulated annealing and the genetic
algorithm. Our method is force based and the probability of
an image escaping from a local minimum does not depend on
the depth of the minimum but on its attractor width. Metastable
states can then be found. We showed that our method finds the
well-known most stable isomer of P4 and a new most stable
isomer in the P8 system. The method has also been successfully
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applied to the corresponding clusters of arsenic, antimony,
and bismuth and can be applied to any generic optimization
problem, as long as the phase space is continuous or can
be continuously interpolated. For simplicity we manipulated
the band by hand between the NEB runs, but for other
systems it is possibly advantageous to automatize the proposed
scheme.
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