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We propose a method for efficient simulations in extended ensembles, useful, e.g., for the study of problems
with complex energy landscapes and for free energy calculations. The main difficulty in such simulations is the
estimation of the a priori unknown weight parameters needed to produce flat histograms. The method combines
several complementary techniques, namely, a Gibbs sampler for the parameter moves, a reweighting procedure
to optimize data use, and a Bayesian update allowing for systematic refinement of the free energy estimate.
In a certain limit the scheme reduces to the 1/t algorithm of B. E. Belardinelli and V. D. Pereyra [Phys. Rev.
E 75, 046701 (2007)]. The performance of the method is studied on the two-dimensional Ising model, where
comparison with the exact free energy is possible, and on an Ising spin glass.
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I. INTRODUCTION

The complex behavior of models with rough energy land-
scapes (such as spin glasses, biopolymers, etc.) is an important
but challenging problem. In many situations progress is
possible only using computer simulations, but this too is a
notoriously difficult problem. In order to efficiently sample
the equilibrium distribution of such models it is necessary to
overcome the barriers separating different metastable minima,
a process which can be very slow if the temperature is low.
A particularly fruitful strategy to enhance the sampling is to
enlarge the configuration space to include some well-chosen
parameter(s) in the model. In simulated tempering [1], e.g.,
the temperature is promoted to a dynamical variable, whereby
the system heats up and cools down randomly and gets a
good chance to explore the energy landscape. Such extended
ensemble or generalized ensemble methods have gained much
attention recently and are routinely used in simulations of
such diverse problems as spin glasses, biomolecules, and
problems in statistics. The methods are also highly useful
for free energy calculations and for the estimation of the
probability of extreme events. An attractive feature is that they
can easily be incorporated into existing simulation methods.
The downside is, however, that in order to work properly
they require fine tuning certain a priori unknown weights.
The weights must be tuned to ensure that each parameter
value (e.g., temperature) of the extended ensemble is visited
equally often on average. They are simply related to the free
energy at the given parameter value, and therefore they are
a highly useful byproduct of the simulation, if they can be
estimated efficiently using some scheme. While several such
schemes have been constructed [1,2] there is a strong need for
improvements. In this paper we propose one such scheme with
a number of distinct advantages.

Section I gives a brief background on extended ensem-
bles and discusses some shortcomings of existing methods.
Section II introduces an improved method, the accelerated
weight histogram method. In Sec. III the method is tested and
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benchmarked on two model problems, the two-dimensional
Ising model and a three-dimensional Ising spin glass.

A. Extended ensembles

We consider a model described by a probability distribution
πλ(x), which depends on one or more parameters λ. Typically
we want to study the model for a whole range of parameter
values. In an extended ensemble simulation, states are sampled
according to a joint distribution P (x,λ), which we express,
without loss of generality, as

P (x,m) = 1

Z efm−Em(x), (1)

where x ∈ X denotes the configuration of the system and we
assume a discrete set of preselected parameter values λm ∈
M = {λ1,λ2, . . . ,λM}. The weights efm introduced in Eq. (1)
allow tuning the marginal distribution P (m) to approach any
desired form. We assume that we have a way of generating
samples from the conditional distribution

P (x|m) ≡ πm(x) = eFm−Em(x) (2)

at fixed parameter λm, using, e.g., Markov chain Monte
Carlo (MC) or molecular dynamics (MD) methods. Generally,
this can be done without knowledge of the normalization
constants e−Fm . In physics applications Eq. (2) is often the
ordinary canonical distribution ∼e−E/T , where we absorbed
the temperature into the energy in order to treat it on equal
footing as any other parameter of the system. Likewise, Fm

denotes the dimensionless free energy [3]. In Bayesian statis-
tics problems Eq. (2) is typically the a posteriori distribution
for the model parameters and possibly missing data given a set
of observations.

The ordinary (MC or MD) moves are then complemented
with transitions in parameter space, which in most cases consist
of a nearest neighbor random walk. The weights efm need to
be adjusted to make the marginal distribution

P (m) =
∑

x

P (x,m) = 1

Z efm−Fm (3)
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of m approximately flat [4]. This requires fm ≈ Fm, where
Fm is the exact (dimensionless) free energy at λm, which is
unknown at the beginning of the simulation.

Quite generally, existing methods to estimate the weights
efm can be divided into two different classes, iterative and
dynamic. In an iterative method the weights are produced
in a sequence of preliminary runs, each run giving a better
estimate than the old, until sufficient accuracy is reached. On
the other hand, in a dynamic scheme the weights are being
continuously updated during a long simulation. The dynamic
schemes have potential for faster convergence, but since the
weights are constantly changing, detailed balance is violated
and the samples collected cannot therefore be safely used to
estimate average values of interest. In the iterative scheme the
weights are fixed during each run, and they are only updated
between the runs.

B. The Wang-Landau and 1/ t methods

One particularly elegant dynamic scheme is the Wang-
Landau method [2], originally developed for simulations
in the closely related multicanonical ensemble [5]. In this
ensemble the state space is not extended, but instead one
replaces the Boltzmann weights of the ordinary canonical
ensemble with a different one aimed at producing a flat
histogram of some quantity λ(x), usually the energy. From
an algorithmic point of view the main difference is that the
elementary moves x → x ′ also change the value of λ(x), e.g.,
the energy, whereas in the extended ensemble method they
can be performed at constant λ. The latter allows for more
flexibility when choosing the parameter moves, something we
exploit below. The Wang-Landau method is straightforward to
adapt to extended ensemble simulations (as demonstrated in
Ref. [6]). Each time the system visits a particular parameter
m, the corresponding free energy parameter fm is decreased
by a certain amount, fm ← fm − δf . A histogram of visited
parameter values is collected and δf is reduced by a factor
δf ← δf/2, when the histogram meets a certain flatness
criteria. Then the histogram is reset and the process starts
over with the reduced modification constant. The scheme
where δf is halved each iteration anticipates an exponential
convergence of fm to its true value Fm. Unfortunately, this
is not the case. Instead, the error saturates at a level where
reasonably flat histograms are produced, but the free energy
estimate no longer improves since δf becomes too small [7,8].
It has been realized [7] that the modification factor should
rather be decreased at a slow steady rate δf ∼ 1/t , where t

is the Monte Carlo time, without regard to any histograms, at
least during the later stages of a simulation. The resulting 1/t

method turns out to perform very well, both in multicanonical
and extended ensemble simulations.

C. Open issues

Nevertheless, there is still plenty of room for improvements.
What is, for example, the most efficient way to move around
in parameter space? How can the data collected during the
simulations be used most effectively to produce an estimate of
the free energy needed for uniform sampling? How should the
estimates from different iterations, perhaps run in parallel, be

combined in an optimal way? How should the set of parameters
M be chosen? Most often the parameter moves form a nearest
neighbor random walk, and then the choice of the spacing
between adjacent values may be a critical issue. Having
too large gaps between adjacent values may lead to small
acceptance rates and therefore very slow dynamics along the
parameter axis. Having too densely spaced parameter values,
on the other hand, can make the dynamics of the random walk
itself a limiting factor, again slowing down the dynamics.

II. THE ACCELERATED WEIGHT HISTOGRAM METHOD

In this paper we propose an iterative scheme—the accel-
erated weight histogram method (AWH)—which combines
several different complementary techniques to give a very
efficient method which addresses the issues mentioned above.
First of all, we allow large parameter steps by the use of a Gibbs
sampler (also referred to as a heat bath algorithm). This is
combined with a reweighting procedure which makes optimal
use of the information collected during the moves. Together
these make it possible to choose a rather densely spaced set of
parameters, without being limited by slow diffusion. The free
energy parameters are updated based on a histogram of weights
(rather than a histogram of visited parameter values) combined
with the information collected during previous iterations.

The parameter moves are carried out as follows. In the
simplest case we allow transitions m → m′ to any new
parameter value λm′ , with a probability given simply by the
conditional probability of m′ given the current configuration
x,

wm′m(x) = P (m′|x) = e−Em′ (x)+fm′∑
k∈M e−Ek (x)+fk

. (4)

The transition probabilities just calculated are accumulated in
a histogram of weights

Wk ← Wk + wkm(x), ∀ k. (5)

Further, they can be used for on-the-fly reweighting of sampled
observables,

〈A〉k =
∑

t A(xt ,k)wkmt
(xt )∑

t wkmt
(xt )

, (6)

where {xt ,mt } denote the time series of visited configurations.
The averages 〈A〉k at a particular value λk thus get contribu-
tions from a whole range of parameter values. Note that the
validity of Eq. (6) does not depend on the fm being converged.
This reweighting scheme is akin to the optimal multihistogram
reweighting technique of Ferrenberg and Swendsen [9] (but
with no need to solve a nonlinear equation system).

The update procedure continues in an iterative way. During
each iteration a certain number, say NI , of samples are
collected and then the free energy parameters are updated as
fk ← fk + �fk,∀ k, with

�fk = − ln

(
WkM

N

)
, (7)

where N is the total number of samples collected so far. The
weight histogram is then updated to reflect this change:

Wk ← Wke
�fk = N/M; (8)
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i.e., the total weight collected is distributed evenly among the
M parameter values, and the next iteration starts. Note that
the identity N = ∑

k Wk holds before and after the update.
The histogram is thus not reset to zero after the iteration but
continues to grow. This makes the updates from Eq. (7) become
smaller and smaller and allows for finer and finer details of the
free energy to be resolved.

Equations (4) to (8) form the core of the algorithm, which
can be summarized as follows:

(1) Perform Nx updates of the configurations x at fixed
parameter value λm.

(2) Perform a parameter move m → m′ using the Gibbs
sampler, Eq. (4).

(3) Update the weight histogram using Eq. (5) and sample
any observables of interest using Eq. (6).

(4) Repeat steps 1–3 until NI samples have been obtained.
(5) Update the free energy parameters fm using Eq. (7) and

the weight histogram using Eq. (8).
(6) Start a new iteration from step 1 unless the desired

accuracy has been reached.

One possible concern is that step 2 of the algorithm requires
the computation of M = |M| different quantities, which can
become time consuming if the set M is large (as can easily
happen in the case of two- or higher-dimensional parameter
spaces). In practice, wm′m(x) will be exponentially small
except for a range of m′ close to m. If this is the case one may
limit the search for the new state to a neighborhood � ⊂ M
of m by replacing step 2 with

(2′) Choose a subset of parameter values � with probability
P (�|m). Perform a parameter move m → m′ ∈ � using the
Gibbs sampler [Eq. (4), but with the sum restricted to �].

Detailed balance is maintained if P (�|m) = P (�|m′) for all
m,m′ ∈ �. A simple choice (in the one-dimensional case)
is to select a range of parameter values as an interval
� = {m − L, . . . ,m − L + R} ∩ M, where L is a random
uniformly distributed integer in [0,R] and R is a predetermined
range. The generalization to higher-dimensional parameter
spaces is straightforward.

A. Bootstrapping the simulation

Clearly, the update equation (7) requires an initial guess
for fk and a positive value of Wk = Wprior at the start of the
simulation. This latter value can be seen as a Bayesian prior
of our initial guess of fk , which is later on updated as new
data become available. If we have reason to believe that the
starting estimate of the free energy is good (e.g., because the
free energy is expected to have small variations), we can use a
large Wprior. In many applications, however, our initial guess is
going to be poor and we need some kind of bootstrap to get an
acceptable prior. We propose the following heuristic scheme:
Carry out the same steps in the simulation as above, but in
addition check, after each iteration has completed (after step
5), whether all parameter values have been visited a certain
fixed (usually small ∼1–10) number of times. If not, reset
the number of samples N ← M ′, where M ′ is the number
of parameters visited so far, and let Wk ← N/M = M ′/M . In
this way the weight histogram does not start to accumulate data

until M ′ = M whereby the free energy parameters will get rel-
atively large updates at the initial stages. Also one should avoid
sampling observables during this initial stage. Alternatively,
one may use free energy perturbation or a few Wang-Landau
iterations to get a reasonable initial estimate of fm. After this,
the simulation may proceed with an initial prior Wk = 1.

It is further recommended to make each iteration quite
short, consisting of only NI ∼ 100–1000 parameter moves,
during this initial stage. (Later on it may be increased.) It
is also advisable to monitor the histogram Hm of visited
parameter values, although it is not used directly to update
the free energy. The robustness of the algorithm can then be
increased by restarting the simulation if the histogram gets too
skewed, e.g., if the minimum value Hmin is less than a certain
fraction of the mean. This could be an indication that initial
nonequilibrium transients have distorted the distribution of the
collected samples, which would violate the main assumption
of the algorithm, namely that the samples collected during each
iteration follow Eq. (3). If this happens one should reset the
weight histogram and the effective number of samples (e.g.,
Wk ← Hmin, N ← MHmin or perhaps even Wk ← 1, N ←
M), to allow the simulation to recover from that situation.

B. Combining several simulations

Often it is advantageous to run simulations in parallel to
make efficient use of computational resources. The scheme
introduced above can easily be adapted to such situations.
Each computing node (n) runs an independent simulation
(consisting of Nn samples), leading to an estimate f (n)

m of
the free energy parameters. These may then be combined into
a best estimate F̄m,

e−F̄m = N
∑

n

Nne
−f

(n)
m Z (n), (9)

where Z (n) = ∑
k ef

(n)
k −F̄k and N is an unimportant normal-

ization constant. This equation is easily solved by iterating

F̄m ← F̄m − ln

(
M

∑
n Nne

F̄m−f
(n)
m Z (n)∑

m,n NneF̄m−f
(n)
m Z (n)

)
, (10)

starting from one of the f (n)
m (and this usually converges within

2–5 iterations). This way of organizing the simulation also has
the advantage that statistical errors can be estimated using the
standard jackknife method [10] applied to Eq. (10).

C. Relation to the 1/ t method

Many variations of the basic algorithm are possible and may
be related to other methods. For example, the basic algorithm
reduces to the 1/t method in the limit obtained by the following
modifications: (1) Replace the Gibbs sampler by a simple near-
est neighbor Metropolis step. (2) Replace the weight histogram
Wm by a simple histogram Hm of visited m. (3) Update the free
energy parameters after every step. Since the histogram after a
visit to m is Hk = N/M + δkm, the free energy update be-
comes �fk = − ln[HkM/(N + 1)] = − ln(1 + δkmM/N) +
ln(1 + 1/N ) ≈ −δkmM/N + 1/N , where the approximation
holds when N � M . The last term represents a constant shift
of all fk and can be dropped. The resulting update rule is thus

056708-3



JACK LIDMAR PHYSICAL REVIEW E 85, 056708 (2012)

simply fm ← fm − M/N , leaving all other fk unmodified.
This corresponds exactly to the 1/t method [7] discussed
earlier and provides a new perspective on and additional
justification for that update scheme.

III. BENCHMARKS OF THE METHOD

To study the performance of the method and compare it
with other ones we apply it to the Ising model and a spin
glass. We carry out a simulated tempering simulation; i.e.,
we choose as parameter λ the temperature. The algorithm
alternates between ordinary canonical Metropolis MC updates
in which randomly chosen spins are flipped with probability
min(1,e−β�E ) and updates which change the temperature,
leaving the spin configuration and the energy E unchanged.
In the latter ones a new temperature Tm′ = 1/βm′ is chosen
with the probability

wm′m(E) = e−βm′E+fm′∑
k e−βkE+fk

. (11)

A. Two-dimensional Ising model

The two-dimensional (2D) Ising model is a common
test case, since its free energy can be calculated exactly
[11]. We choose M = 128 temperatures evenly spaced in
the interval [1.8,3], which includes the critical temperature
Tc = 2/ ln(1 + √

2) ≈ 2.27. The system size is L = 64 and
we use 100 000 iterations, each lasting for 1000 MC sweeps,
in total 108 sweeps, where each MC sweep corresponds to one
update trial per spin. A temperature move is attempted after
each MC sweep.

During the initial stages we use the scheme discussed in
Sec. II A to get an initial guess for the fm and a prior weight
Wprior: At the start of the simulation we set fk = βkE0, where
E0 = −2L2 is the ground-state energy and Wk = 1/M . Then
we check, after each iteration, whether all M temperatures
have been visited at least twice during the simulation so far. If
not, the effective number of samples is reset to N = M ′/M ,
where M ′ is the number of temperatures which actually were
visited twice. When all temperatures have been visited we
have a reasonable initial guess of fm, and we continue the
simulation as described in Sec. II, with Wk � 1. Furthermore,
we also monitor the histogram of visited temperatures to
look for anomalous deviations, which would indicate that the
initial guess was not so good after all. Thus, we restart the
simulation (i.e., we set N = M and Wk = 1 and reset the cal-
culations of any observables, but we do not touch the fk)
should the histogram of visited temperatures Hm at some
point fall below 2% of its mean. This happened in about
half of the simulation runs, typically within the first 50
iterations.

To benchmark the method we plot, in Fig. 1(a), the mean
absolute deviation

δF = 1

M − 1

M−1∑
m=1

|fm+1 − fm − Fm+1 + Fm| (12)

of consecutive free energy differences against the number of
samples. Here Fm = F(Tm)/Tm is the exact dimensionless

free energy. For comparison we also include results from sim-
ulations using Wang-Landau iterations (with flatness criteria
Hmin > 0.4Hmean) and the 1/t method. For large times, the
error for both the 1/t and our method decrease as 1/

√
N ,

whereas it saturates for the Wang-Landau method. For a given
number of samples, the accuracy of the AWH method is almost
one order of magnitude better than that of the 1/t method. The
inset shows the difference between the final estimate, obtained
by combining 40 independent simulations using Eq. (10), and
the true free energy over the temperature range. The error bars
are estimated using the jackknife method.

Another useful measure of the efficiency is the tunneling
time, i.e., the time to go from the highest temperature to the
lowest or vice versa. This time was significantly reduced,
nearly by a factor of 2, from ∼40 000 MC sweeps for the
1/t to ∼21 000 for the AWH method. It should be noted
that the dynamics suffer severely from critical slowing down
in the vicinity of the phase transition, which constitutes a
bottleneck for the movement along the temperature axis. While
the extended temperature ensemble methods are effective for
crossing energy barriers, they do not overcome this slowing
down by themselves. In this sense the 2D Ising model (using
single spin flip dynamics) is not a particularly favorable
test case. However, the methods can easily be combined
with cluster methods, if available, which do overcome the
critical slowing down. Replacing the single spin flip moves
by, e.g., Wolff cluster updates [12] for |Tm − Tc| < 0.1 (the
cluster moves being most effective in the critical region) in
the example above practically eliminates the bottleneck and
further reduces the tunneling time by an additional factor ≈10
to about 2200, for the AWH method. The 1/t method on the
other hand only gained a factor of 2.

As discussed in Sec. II one of the advantages of the AWH
method is the insensitivity to the spacing of parameter values
λm. Indeed, varying the number of temperatures from M =
32,64,128 up to 256 had negligible effect on the performance
of the algorithm, in terms of both the accuracy of the final
free energy estimate and the tunneling time, while the increase
in the run time of the simulation was marginal (and could
be practically eliminated using the update rule 2′). Upon
decreasing M below 16, on the other hand, the performance
quickly dropped.

B. Three-dimensional Ising spin glass

Next we apply the method to the three-dimensional Ising
spin glass with Gaussian couplings. This model has a disorder-
dominated glass phase at low temperatures T < Tg ≈ 0.95
[13], with a very rough energy landscape, making it extremely
challenging to study using conventional simulations. The
system size is L = 8, and we use M = 200 temperatures
logarithmically spaced in [0.7,3.5]. Figure 1(b) compares the
convergence of the different methods for one particular random
realization of the couplings. As there is no exact solution to
compare with we use as reference instead the best estimate
obtained from 80 different runs (with an estimated standard
error <0.002). Here, the gain in accuracy, compared to the 1/t

method, is more than an order of magnitude. The tunneling
time, i.e., the time to go between the high- and low-temperature
extremes, is also significantly shorter, by nearly a factor of 20.
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FIG. 1. (Colors online) (a) Mean absolute deviation of estimated and exact free energy differences δF of the 64 × 64 Ising model as
a function of number of samples, N . From top to bottom: results from Wang-Landau iterations, the 1/t method, and the AWH method.
Also included is the average behavior of the AWH method and a curve showing a 1/

√
N dependence. Inset: Difference between estimated

and exact free energy. The error bars (the shaded area) represent one standard deviation. (b) As in (a), but for an 8 × 8 × 8 Ising spin
glass.

IV. SUMMARY AND CONCLUSIONS

Let us reiterate the advantages of the AWH method:
Allowing for large steps gives a fast diffusion along the
parameter axis. As a result, the spacing between neighboring
values in the discretized parameter space is not critical as long
as it is small enough and does not require any fine tuning to
perform well. We make efficient use of the data collected at all
stages of the simulation. This is done by reweighting on the
fly the samples taken at the current parameter value to a whole
range of different parameter values. The information needed
for this reweighting procedure is essentially the same as what
enables the large steps. The data taken at earlier iterations are
not thrown away, but instead they are used together with the
new data to refine the estimate of the free energy parameters.
Since the weights are constant during each iteration, the data
collected will, after an initial relaxation, be in equilibrium and
can be used for the calculation of any desired averages.

Altogether, these properties make up a very convenient
method for sampling models with rough energy landscapes,
and for the calculation of free energy differences. It should be
emphasized that it is the combination of the Gibbs sampler,
the reweighting scheme, and the update rule using the weight
histogram which leads to the dramatic improvements. The
method is very general, is simple to implement, and can be
applied to a broad range of problems in statistical physics,
biophysics, statistics, etc. Further improvements are likely,
especially when it comes to the heuristic scheme used during
the early-stage bootstrap.
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