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Simulation of static critical phenomena in nonideal fluids with the lattice Boltzmann method
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A fluctuating nonideal fluid at its critical point is simulated with the lattice Boltzmann method. It is demonstrated
that the method, employing a Ginzburg-Landau free energy functional, correctly reproduces the static critical
behavior associated with the Ising universality class. A finite-size scaling analysis is applied to determine the
critical exponents related to the order parameter, compressibility and specific heat. A particular focus is put on
finite-size effects and issues related to the global conservation of the order parameter.
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I. INTRODUCTION

The theory of critical phase transitions has received
considerable attention and seen remarkable progress in the
past decades [1–5]. The importance of critical phenomena
stems from the fact that systems, whose microscopic behavior
can be very diverse, nevertheless share the same universal
properties close to their critical points and thus belong to
the same universality class. Universality classes are defined
only by a few characteristic properties, such as the number
of components of the order parameter, the dimensionality of
space, the couplings to other dynamical quantities in the system
and the presence of conservation laws. It is important to realize
that universality classes are different regarding static and
dynamic critical properties: While, for instance, the uniaxial
ferromagnet and a pure fluid both show Ising-type static critical
behavior, their critical dynamics is decisively different [4].

Most critical properties for standard bulk systems, such as
critical exponents and amplitude ratios, are nowadays known
with high precision due to the combined effort of experimental,
theoretical, and simulation approaches. Thus, in recent years,
the focus has moved on to the study of critical phenomena
in more complex situations, such as under nonequilibrium
conditions [6], at surfaces [7–9], or in complex fluids [10].
Here, it is hoped that peculiar fluctuation induced effects,
such as the critical Casimir effect [11,12], can be utilized for
novel applications. Due to the increasing complexity of such
systems, simulation approaches to critical dynamics in fluid
systems thus become an indispensable tool.

While dynamic critical phenomena of fluids have been
extensively studied theoretically and by experiment [4,5,13],
their simulation has only been recently approached via
molecular dynamics [14–19]. However, system sizes are rather
limited and certain transport coefficients, such as the shear
viscosity, are notoriously hard to determine with sufficient
accuracy. Recently, the lattice Boltzmann (LB) method—
being a well-established and efficient solver of the Navier-
Stokes equations—has been extended to deal with thermal
fluctuations in liquid-vapor systems [20] as well as binary
fluids [21]. Thus, the LB method appears to be a promising
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candidate for the simulation of critical phenomena in simple
and complex fluids.

As a first step toward this aim, the current work presents
simulation results on the static critical behavior of a nonideal
fluid obtained with the fluctuating LB model introduced in
Ref. [20]. Dynamic critical properties will be discussed in
a separate paper [22]. In the present model, the fluctuating
hydrodynamic equations for the density and momentum of an
isothermal, nonideal fluid are solved via a Langevin approach.
All simulations are performed in two dimensions (2D),
which—besides computational efficiency—has the advantage
that critical properties can be much easier assessed than in
3D, as fluctuation effects are generally more pronounced
in lower dimensions. Since the model is governed by a
one-component Ginzburg-Landau φ4-free energy functional,
the static critical properties are expected to be described by
the 2D Ising universality class [23–26]. This prediction is
indeed borne out by the present LB simulations, which are
also in line with previous Monte Carlo investigations of the
2D φ4 model [27–35]. A crucial issue in a hydrodynamics
based simulation approach is the global conservation of the
order parameter (here, the density), which complicates the
application of the finite-size scaling technique used to extract
critical properties in a finite system [36,37]. The aim of the
present work is to provide a thorough assessment of the LB
method in the critical fluctuation regime and demonstrate that,
despite the above-mentioned complications, the method is
able to successfully simulate critical fluctuations in fluids.
At the same time, important issues that might be useful
for further applications and extensions of the method shall
be highlighted. The paper is written in a self-contained
manner and is hoped to provide also a researcher unac-
quainted with critical phenomena with sufficient background
information.

The outline of the paper is as follows. In Sec. II, the critical
properties of the Ginzburg-Landau theory are reviewed. In
particular, the effects of a finite system size and the global
conservation of the order parameter are discussed. Also, the
order-parameter distribution as a fundamental quantity to
extract information on critical as well as noncritical properties
is introduced. Section III discusses the simulation method
and contains a number of remarks on the correct choice of
simulation parameters. In Sec. IV, simulation results on the
structure factor and important thermodynamic quantities are
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presented and compared to theoretical predictions and previous
works.

II. THEORY

A. Ginzburg-Landau model

1. Introduction

As the present simulation approach to critical phase transi-
tions is based on fluctuating hydrodynamics (see Sec. III), the
fundamental quantity for our purpose is the density field of the
fluid, ρ(r). From the density, an order parameter φ(r) can be
defined as

φ(r) = ρ(r) − ρ0

ρ0
, (1)

where the reference density ρ0 is taken as the global average,
ρ0 = ∫ drρ(r)/V , with V being the system volume. The
equilibrium behavior of the order parameter is governed by
a Ginzburg-Landau free energy functional

F[φ] =
∫

dr
[
κ

2
|∇φ|2 + f0(φ) − hφ

]
, (2)

with f0 being a Landau potential

f0(φ) = r

2
φ2 + u

4
φ4, (3)

and h an external field which is used to define response
functions. As usual, κ and u are strictly positive, while the
coefficient r of the quadratic term can be either positive or
negative, leading to either a single minimum or a double-well
form of the Landau free energy. Thermal fluctuations lead to
a equilibrium distribution of the order parameter according to
the probability density

P [φ] = 1

Z
e−F[φ]/kBT . (4)

Here, kB is the Boltzmann constant and T is the temperature.
Note that no dependence of the coefficient r in the Landau
potential on the temperature T is assumed. Rather, r is consid-
ered as an independent quantity representing the appropriate
temperature measure in the context of the Ginzburg-Landau
model (see next section). The partition sum Z is given by

Z =
∫

Dφe−F[φ]/kBT , (5)

where
∫
Dφ denotes the integration over all possible realiza-

tions of the order parameter distribution. On a d-dimensional
lattice of volume V with a total of N lattice points, the
order parameter φ is specified by its N values φi ≡ φ(ri) and
the functional integral is regularized as

∫
Dφ → �N

i=1

∫
dφi .

Discrete equivalents for the derivative operators can be found
in Ref. [20]. The partition sum (5) makes it possible to define a
thermodynamic Helmholtz free energy F and a corresponding
density f in the usual way as

F = f V = −kBT ln Z. (6)

From the free energy [Eq. (6)], a global, ensemble-averaged
order parameter M and an associated susceptibility χ can
be formally defined as response functions with regard to the

external field:

M = −∂f

∂h
= 1

V

∫
dr〈φ(r)〉 = 〈m〉, (7)

χ = −∂2f

∂h2
= 1

kBT V

∫
drdr′[〈φ(r)φ(r′)〉 − 〈φ(r)〉〈φ(r′)〉]

= V

kBT
(〈m2〉 − 〈m〉2), (8)

where m ≡ ∫ drφ/V and the brackets denote average with re-
spect to the distribution P ; that is, 〈g(φ)〉 ≡ 1

Z

∫
Dφg(φ)P [φ]

for an arbitrary function g of φ. A further quantity of interest
is the spatial correlation function of the order-parameter
fluctuations (structure factor),

C(r)δ(r − r′) = 〈(φ(r) − 〈φ〉)(φ(r′) − 〈φ〉)〉, (9)

and its Fourier transform C(k). Note that translational invari-
ance is assumed in the above equation. Related to the corre-
lation function is a nonlocal susceptibility χ (r) = C(r)/kBT ,
which can be defined analogously to Eq. (8) via the linear
response to a spatially dependent external field. The definition
of the specific heat, which quantifies the thermal response,
requires some care, since a temperature change can be effected
in several ways, depending on the parametrization of the
model. Here, the field theoretic convention [1,25] is followed
and the specific heat is defined as the response with respect to
a change of the coefficient r ,

cH = ∂2f

∂r2
= 1

4kBT V

∫
drdr′[〈φ2(r)φ2(r′)〉

−〈φ2(r)〉〈φ2(r′)〉] = V

kBT
(〈E2〉 − 〈E〉2), (10)

where E ≡ ∫ drφ2/2V represents the most singular part of
the local energy F .

It is often convenient to rewrite the Ginzburg-Landau free
energy in terms of a minimal number of parameters. To this
end, we note first that the temperature only appears as an
overall scale factor in the Boltzmann weight [Eq. (4)] and can
thus be absorbed in the definition of the coupling constants.
Second, the coefficient of the square-gradient term can be
fixed to 1/2 by rescaling the order parameter field as φ =
φ̃/

√
κ/kBT . The reparameterized free energy functional reads

F̃[φ̃]=F[φ]/kBT =
∫

dr
(

1

2
|∇φ̃|2+ r̃

2
φ̃2 + ũ

4
φ̃4 − h̃φ̃

)
,

(11)

where

r̃ = r

κ
, ũ = ukBT

κ2
, (12)

are the two remaining independent coupling constants. Corre-
spondingly, the Boltzmann weight in Eq. (4) becomes e−F̃ [φ̃].
The functional (11) is the usual starting point for field-theoretic
studies of the Ginzburg-Landau model [1,25,26]. In the
following, both parametrizations [Eqs. (2) and (11)] of the
model shall be used (dropping the tilde on φ̃ and h̃ for
readability).
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2. Critical behavior

Theoretically, the Ginzburg-Landau free energy functional
of Eq. (2) can be obtained as a coarse-grained description
of some microscopic degrees of freedom, for example, spins
on a lattice or molecules of a fluid. Accordingly, the order
parameter is defined as an average over some coarse-graining
length. In this regard, the free energy functional F can be
considered as an effective Hamiltonian from which a partition
function and a corresponding Helmholtz free energy can be
obtained. Close to the upper critical dimension dc = 4 of
the Ginzburg-Landau model, standard renormalization group
arguments show that all terms of higher order than the φ4

term are irrelevant at the critical point and the simple Landau
potential of Eq. (3) indeed describes the universal critical
properties of all systems with the same symmetry property
of the order parameter [1,23,25,26]. Monte Carlo simulations
[27–35] as well as theoretical arguments invoking conformal
invariance [38–40] have confirmed that the 2D φ4 model with
a scalar order parameter belongs to the 2D Ising universality
class.

In the context of liquid-vapor criticality, a few remarks
on the applicability of the Ginzburg-Landau model to a
real critical fluid are in order: In general, the coexistence
curve of a real fluid is not symmetric; instead the liquid
and vapor densities follow a relation which, in its simplest
form, is known as the “law of rectilinear diameter” (see,
e.g., Eq. [41]). Such asymmetry is, for instance, predicted
by the van der Waals equation of state [42] and could be
accounted for in a Ginzburg-Landau scheme by adding a
term ∝φ5 to the Landau potential [43]. The asymmetry is
caused by the fact that the relevant ordering- and thermal
scaling fields, h and r [Eq. (3)], which are characteristic for
an Ising-like system possessing a “particle-hole” symmetry,
are linear combinations of the physical variables temperature
and chemical potential. Similarly, the order parameter φ and
the energy density (which, in the present case, is not an
independent field but related to φ2) are linear combinations
of the physical mass and energy density [44–46]. Recently,
it has been shown that also the mixing of the pressure into
the scaling fields is important in order to account for certain
critical anomalies [47–50]. The critical behavior of real fluids
is thus described by the Ising-universality class in the sense of
a mapping relation between physical and Ising variables.

Neglecting thermal fluctuations and evaluating the partition
sum (5) only along its saddle point, defines the mean-field
approximation, for which the critical point occurs for r̃ =
r = 0. However, when the Landau potential becomes very
shallow, thermal fluctuations can significantly contribute to
the functional integral in Eq. (5), leading eventually to a
breakdown of mean-field theory. The critical point of the
full Ginzburg-Landau model, in fact, occurs at a slightly
negative r̃ , which, due to the nonlinear interactions between
the fluctuations, depends on the nonlinear coupling ũ [51] (see
below). The “distance” to the critical point r̃c can be defined
in terms of a reduced dimensionless temperature,

θ ≡ r̃c − r̃

r̃c

= rc − r

rc

, (13)

where fixed κ and T are assumed in the last equation.
The above definition ensures that θ > 0 in the disordered
phase (supercritical regime) and θ < 0 in the ordered phase
(subcritical regime). In mean-field theory, r̃c = rc = 0; thus,
definition (13) must be replaced by θ = r/a, where a is a
suitable constant in order to make θ dimensionless.

Close the critical point, thermodynamic quantities typically
show a power-law dependence on the reduced temperature θ ,
with exponents that are identical for all systems within the
same universality class [2,51]. Two-scale factor universality
implies that the singular dependence of the Helmholtz free en-
ergy [Eq. (6)] on the two relevant scaling variables temperature
θ and external field h is given by

fsing(θ,h) = |θ |2−αf±(h/|θ |βδ), (14)

where f± is a universal scaling function (up to metrical factors)
and α and δ are critical exponents. From the above relation,
the critical behavior of the order parameter, susceptibility, and
specific heat follows as

M 
 B(−θ )β (θ < 0),

χ 
 �±|θ |−γ , (15)

cH 
 A±|θ |−α 2D−→ A± ln(θ ),

where �±, B, and A± are nonuniversal amplitudes (± refers to
whether the critical point is approached from above or below).
In the 2D Ginzburg-Landau model, the specific heat has a
logarithmic divergence (which is conventionally indicated by
an exponent α = 0).1 The correlation length ξ diverges as

ξ ∝ θ−ν, (16)

while the correlation function at criticality assumes a power
law,

Ccrit(k) ∝ k−2+η, (17)

expected to be valid for k � 1/ξ [52–54]. The values of the
critical exponents are collected in Table I.

From the reparameterized free energy [Eq. (11)] we see
that, in contrast to the Ising model, where only one coupling
constant and thus a single critical point exists, the Ginzburg-
Landau model entails a line r̃c(ũ) of critical points [51]. The
universal critical properties of all points on the critical line are
controlled by the renormalization group fixed point, which is
expected to belong to the Ising universality class. The critical
line of the Ginzburg-Landau model on a square lattice has
been obtained in previous works via Monte Carlo simulations
[30–33,35]. Figure 1 shows the corresponding phase diagram
taken from [31]. Note that the critical value for r̃ decreases
with increasing interaction strength ũ.

Two particular limits on the critical line deserve further
remarks [55]: In the “order-disorder limit” (Ising limit),
which is reached for r̃ → −∞, ũ → ∞ with r̃/ũ = const.,
the potential has two minima separated by an infinitely
high barrier and the lattice free energy functional becomes
formally identical to the Ising Hamiltonian. On the other
hand, the case r̃ → 0, ũ → 0 defines the so-called “displacive

1For other parametrizations of the temperature dependence of the
model, there can also be a regular contribution to the specific heat.
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TABLE I. Critical exponents for the mean-field and the 2D-Ising universality class. θ is the reduced temperature. The specific heat is
discontinuous in mean-field theory and logarithmically divergent in the 2D Ising case.

Exponent α β γ ν η

Quantity Specific heat Order parameter Susceptibility Correlation length Structure factor
Definition cH ∝ θ−α M ∝ θβ χ ∝ θ−γ ξ ∝ θ−ν C(k) ∝ k−2+η

Mean field 0 (disc.) 1/2 1 1/2 0
2D Ising 0 (log.) 1/8 7/4 1 1/4

limit,” where the free energy functional is dominated by the
gradient-term interaction and the central potential barrier is
low compared to the thermal energy. This limit is particularly
important in the case of structural phase transitions [55]. For an
infinite system, critical properties of all points on the critical
line are universal and of Ising type, except in the displacive
limit, where Gaussian critical behavior is expected. For finite
systems, close proximity to the displacive limit can lead to an
undesired masking of Ising-type critical behavior [1,30,55].

In the parametrization (11) of the Ginzburg-Landau model,
dimensional analysis shows that the length dimension of φ̃

is [φ̃] = L1−d/2, which immediately fixes the dimensions of
the coupling constants as [r̃] = L−2 and [ũ] = Ld−4. Thus, a
dimensionless coupling constant can be defined as

λ ≡ ũ

r̃ (4−d)/2
. (18)

In 2D, r̃ and ũ have the same dimensions and definition (18)
becomes particularly simple:

λ = ũ

r̃
= u kBT

rκ
. (19)

Below, some important analytical approximations to the
Ginzburg-Landau model, which will be useful in analyzing
the simulation results, is recapitulated briefly.

3. Mean-field theory

In the mean-field approximation, fluctuations around the
order-parameter distribution φ̄ that globally minimizes the
Ginzburg-Landau functional are neglected [2,51]. This ap-
proximation underlies most nonideal fluid LB models without
thermal fluctuations and has been studied extensively in this
context (see, e.g., Refs. [56,57]). The mean-field free energy
is given by F0 = F(φ̄) and admits for two fundamental
equilibrium solutions. One corresponds to a spatially uniform

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2

u

r

disordered

ordered

FIG. 1. Phase diagram for the φ4 model on a square lattice. Data
(symbols) are taken from [31]. The critical line continues to the Ising
limit, ũ → ∞, r̃ → −∞.

value of the order parameter given by

φ̄ =
{

0 (r � 0),
±√−r/u (r < 0),

(20)

and an associated mean-field susceptibility,

χ =
{
r−1 (r > 0),
(−2r)−1 (r < 0).

(21)

In this case, the mean-field free energy amounts to F0 =
Vf0(φ̄). In addition, for r < 0, there exists a solution describ-
ing an interface between the two free energy minima of the
form

φ̄(z) =
√

−r/u tanh(z/w), (22)

with

w = (−2κ/r)1/2 (23)

being the interface width. Note that, for the present definition of
the interface profile, w is related to the mean-field correlation
length ξ [Eq. (26)] by w = 2ξ . The surface tension associated
with the planar interface solution (22) is given by

σ = 2

3

√
−2κr3

u2
. (24)

4. Fluctuations

Thermal fluctuations around a uniform state can be sys-
tematically studied by splitting the order parameter into a
uniform mean-field part and a spatially inhomogeneous part
φ(r) = φ̄ + δφ(r), where φ̄ = 〈φ〉 represents the average order
parameter. Expanding F in the fluctuations δφ and treating
the quartic anharmonicity as a perturbation makes it possible
to compute the correlation function as a series of Gaussian
averages, which can be conveniently represented in terms of
Feynman diagrams. To zeroth order in the nonlinear coupling
u, one obtains the Ornstein-Zernike (or Gaussian) expression
for the correlation function,

C0(k) = kBT

cr + κk2
= kBT

κ

1

ξ−2 + k2
= kBT χ

1 + k2ξ 2
, (25)

where c = 1 for r > 0 and c = −2 for r < 0. In the phase-
coexistence regime, the constant c accounts for the leading
order contribution of the nonlinear term to the correlation
length. It is important to emphasize that, due to the assumption
of translational invariance, the above expression for the
structure factor for r < 0 holds only in homogeneous states.
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In the above equation,

ξ = √
κχ =

{√
κ/r (r > 0),√
κ/−2r (r < 0),

(26)

is the mean-field correlation length and χ is the mean-field
susceptibility [Eq. (21)], which is related to the correlation
function by χ = limk→0 C0(k)/kBT .

In Sec. II A2 it was shown that the properties of the
fluctuating Ginzburg-Landau model are basically governed
by the dimensionless coupling constant λ of Eq. (19). It is
informative to express this constant in terms of the physically
more relevant parameters correlation length ξ , susceptibility
χ , surface tension σ , and order parameter φ̄:

λ ∼ −kBT χ

φ̄2ξ 2
∼ −kBT φ̄2

σ 2χ
. (27)

This shows that increasing the noise temperature T in the
ordered state (small negative λ) brings one always closer to
the critical point, unless, for instance, the surface tension or
the density ratio (φ̄) is increased accordingly.

According to the Ginzburg criterion, mean-field theory
remains valid as long as the mean amplitude of fluctuations δφ

around the average order-parameter value φ̄ [Eq. (20)] remains
much smaller than φ̄ itself,√

〈δφ2〉 � φ̄. (28)

By Eq. (25), 〈δφ2〉 = 〈δφ(r)δφ(0)〉r=0 = ∫ dqC(q) ∼
kBT χξ−d , and using ξ = √

κ/2|r| [Eq. (26)], χ = 1/2|r|
[Eq. (21)], and φ̄ = √|r|/u, the Ginzburg criterion amounts
to (neglecting numerical prefactors)

kBT

κd/2
� r2−d/2

u
. (29)

We see that, for d > 4, the right hand side diverges for small
r , and thus mean-field theory remains valid near the critical
point. In contrast, for d < 4, the Ginzburg criterion is violated
for sufficiently small r , indicating a breakdown of mean-field
theory. Comparing definition (18) with the Ginzburg criterion,
one finds that fluctuation corrections to mean-field theory
become significant for |λ| � O(1).

5. Perturbation theory

Not too close to the critical point, the effects of fluctuations
on observable quantities are—at least qualitatively—captured
by perturbation theory, which shall be briefly summarized here
[1,26,51,58]. The effect of the nonlinear interactions between
the fluctuation modes can be captured in terms of a self-
energy �(k), which is defined by the resummed perturbation
expansion (“Dyson equation”) of the full correlation function
C as [1,25,26,58]

C(k) = 1

C−1
0 (k) + �(k)

. (30)

� is given by the sum of all two-point one-particle irreducible
diagrams. In the symmetric phase, the diagrammatic expansion
of the self-energy in self-consistent scheme up to second order
in the coupling u is shown in Fig. 2, where the solid lines

FIG. 2. Expansion of the self-energy � in a self-consistent
scheme up to O(u2). Thick lines represent the full correlation function
C. Dashed lines indicate amputated legs carrying the external wave
vector k.

represent the full correlation function C. The one- and two-
loop contributions to the self-energy are given by Refs. [1,25,
26,58]

�(1) = 3u

kBT

∫ � dq
(2π )d

C(q), (31)

�(2)(k) = −6

(
u

kBT

)2 ∫ � dq1

(2π )d
dq2

(2π )d

×C(q1)C(q2)C(k − q1 − q2). (32)

The notation
∫ � indicates that the integral has to be cut off at a

wave number �. In the present case, the cutoff is provided by
the lattice constant and above integrals are to be understood as
sums, ∫ � dq

(2π )d
→ 1

V

∑
q,q =0

. (33)

The sum runs over all permissible wave vectors on the lattice
except the zero mode, which must be excluded owing to the
global conservation of the order parameter. Note that �(1) is
independent of the external wave vector k.

In a self-consistent treatment, the full correlation function
C is taken to be of the same form as C0 but with renormalized
parameters r ′, κ ′, that is,

C(k) = kBT

r ′ + κ ′k2 + O(k2)
. (34)

Since � itself depends on the renormalized r ′ and κ ′, Eq. (30)
represents a system of two coupled integral equations for the
determination of r ′ and κ ′ from the bare parameters r and
κ . The wave-vector-independent part of the self-energy, �(0),
obviously renormalizes the susceptibility parameter r ,

r ′ = r + kBT �(0). (35)

The wave-number-dependent part of �, which is of two-
loop order, renormalizes the square-gradient parameter κ

and ultimately gives rise to a nonzero anomalous dimension
η at the critical point. At criticality, �(k) scales as k2−η.
Analogously, the fluctuation contributions to the coupling
constant u can be determined from the vertex corrections to
the four-point correlation function, which are also at least of
two-loop order. Taken together, one obtains a system of three
coupled integral equations for r ′, κ ′, and u′ in dependence
of the bare parameters. For the present purposes, however,
it is sufficient to focus only on the dominant effect, which
resides in the renormalization of r . Using Eqs. (31) and (32),
the self-consistency equation for the renormalized temperature
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(a)

(b)

FIG. 3. Perturbation theory in the broken phase. (a) Contributions
to the expectation value of φ to O(u). (b) Contributions to the self-
energy of the order parameter in the broken phase, �σ , to O(u). In the
broken phase, a new φ3 interaction with a coupling uv appears. Note
that, as v ∼ u−1/2, the first contribution to �σ is, in fact, of O(u).

parameter r ′ follows as

r ′ = r + 3ukBT

∫ � dq
(2π )d

1

r ′ + κq2
− 6u2(kBT )2

×
∫ � dq1

(2π )d
dq2

(2π )d
1

r ′ + κq2
1

1

r ′ + κq2
2

× 1

r ′ + κ(q1 + q2)2
, (36)

which can easily be solved numerically. In practice, Eq. (36)
is used to find, for a given r employed in a simulation,
the corresponding value of r ′, which will then allow one to
compute the physical (renormalized) susceptibility χ = 1/r ′
and correlation length ξ = (κ/r ′)1/2. This will give sufficiently
accurate predictions in the crossover regime from mean-field
to the critical region to be compared to simulation results.

Below the critical point, the order parameter acquires a
nonzero expectation value 〈φ〉, which, at the mean-field level,
is given by Eq. (20). Fluctuation corrections, however, lead
to a reduction of the mean-field expectation value. This effect
can be isolated by splitting the order parameter as

φ(r) = v + σ (r), (37)

where v = 〈φ〉 is enforced by requiring a vanishing expecta-
tion value of the fluctuation [59,60]

〈σ 〉 = 0. (38)

Inserting Eq. (37) into the free energy functional (2) leads to
(up to an unimportant constant)

F[v + σ ] =
∫

dr
[
κ

2
|∇σ |2 + 1

2
(r + 3uv2)σ 2

+ (rv + uv3)σ + uvσ 3 + 1

4
uσ 4

]
. (39)

The last three terms can be considered as a perturbation around
the Gaussian part given by the terms quadratic in σ [59,60].2 To
first nontrivial order, Eq. (38) is represented in diagrammatic
form by Fig. 3(a) and follows as

0 = 〈φ〉 = rv + uv3 + 3uv

∫
dq

(2π )d
kBT

κq2 + (r + 3uv2)
, (40)

2To the order of perturbation expansion that will be considered here,
a distinction between the bare and the renormalized r in Eq. (39) is
not necessary.

which defines an implicit equation to be solved for the true v.
Note that the first two terms lead to the mean-field result for
v, vMF = (−r/u)1/2, while the last term gives the first-order
fluctuation correction. The correlation function of the shifted
field σ is obtained from Eq. (39) as

Cσ (k) = kBT

κk2 + rσ + kBT �σ (k)
, (41)

where rσ = r + 3uv2 represents the inverse bare susceptibility
of σ and the leading-order self-energy corrections are given
by the diagrams in Fig. 3(b), amounting to Refs. [58–61]

�σ (k) = −18u2v2kBT

∫
dq

(2π )d
1

κ(k − q)2 + rσ

1

κq2 + rσ

+ 3u

∫
dq

(2π )d
1

κq2 + rσ

. (42)

From Eq. (41) one obtains the true, renormalized susceptibility
χ ′ = 1/r ′

σ with

r ′
σ = rσ + kBT �σ (0). (43)

Analogously to the situation in the symmetric state one
could increase the accuracy of the perturbation expansion
by replacing all appearances of rσ in the self-energy �σ (0)
by r ′

σ , thereby taking implicitly into account the fluctuation
corrections to the correlation function given by the diagrams
in Fig. 3(b) to all orders. However, to the order of perturbation
theory set up in Eq. (42), the difference between the two
expressions is negligible.

B. Finite-size effects

On approaching the critical point in an infinite system,
various intensive thermodynamic quantities display power-law
divergences (see Table I). In a finite system, any quantity
must necessarily stay finite and the critical divergences appear
rounded [1,62,63]. Typically, deviations from the true critical
behavior set in once the correlation length ξ ∝ θ−ν of the
hypothetical infinite system exceeds the system size S. In this
case, one enters the so-called finite-size scaling (FSS) regime,
where the physical correlation length scales with the system
size S. Standard FSS theory [1,62,63], which is summarized
here, asserts that in this regime, the power-law dependence
on the temperature of a thermodynamic observable O in the
infinite system, O ∼ θ−x , essentially transfers to a power-law
dependence on the system size

O ∼ Sx/ν g̃O(S/ξ ) ∼ Sx/νgO(S1/νθ ), (44)

where gO and g̃O are universal scaling functions.3 To
ensure that the correct asymptotic limit for the infinite
system is reached, one must have gO(z) ∼ AO±|z|−x as z →
±∞ [where AO± denotes the corresponding amplitude; cf.
Eq. (15)], while gO(z) must be regular for z → 0. Note that
if O represents the order parameter, only the limit z → −∞
is relevant, since the order parameter is zero in the symmetric
phase. For the specific heat in 2D, FSS theory predicts that

cH ∼ ln(S)gC(S1/νθ ). (45)

3A universal scaling function can depend on its argument as f (a0z),
where a0 is a nonuniversal constant [1].

056707-6



SIMULATION OF STATIC CRITICAL PHENOMENA IN . . . PHYSICAL REVIEW E 85, 056707 (2012)

In a finite system, the temperature value rc,O(S) for which an
observable O reaches a maximum (or, in case of the order
parameter, vanishes) defines an apparent critical point, which
is typically found at a slightly different temperature r than the
critical point rc of the infinite system. The latter can be inferred
by extrapolating the apparent critical point to the limit S → ∞
using rc,O(S) = rc(1 + a0S

−1/ν), with a constant a0 [1]. For the
infinite system, all apparent critical points must merge.

In the present simulation approach, the density is globally
conserved, implying that the global order parameter mS =∑

i φi/S
d and all derived quantities, such as the susceptibility,

χS = Sd

kBT
(〈m2

S〉 − 〈mS〉2) , are trivially zero. Therefore, a
standard FSS study based on the total system size S, as in
Eq. (44), is not possible in this case. Instead, ideas origi-
nally developed for grand-canonical simulations of the Ising-
model [64,65]—which have been later successfully applied
to canonical-ensemble simulations (employing Kawasaki-type
dynamics) of lattice gas models and off-lattice fluids [36,37]—
shall be followed here. These methods essentially consist of
dividing the total system of length S into subsystems (blocks)
of smaller length L = S/2i for integer i and computing the
quantities of interest in these subsystems.4 In particular, a
coarse-grained order parameter can be defined as

m
(b)
L = 1

Ld

∑
i∈b

φi, (46)

where i runs only over the lattice nodes that lie in the given
subsystem b. For L = 1, each block corresponds only to a
single lattice site and thus m

(b)
L becomes identical to the field

variable φi at that site. Note that, while the coarse-grained
order parameter m

(b)
L exhibits fluctuations, its average 〈mL〉

gives information only on the global asymmetry between the
amounts of the two phases that are present; in particular, it
can still be zero even in the phase-coexistence regime. Thus,
instead the quantity

ML ≡ 〈|mL|〉 = 1

Ld

〈∣∣∣∣∑
i∈b

φi

∣∣∣∣
〉

(47)

is considered as the appropriate block order parameter for all
temperatures, in agreement with the convention employed in
the Monte Carlo method [66]. Note that, in a finite system,
ML will be nonvanishing even in the disordered phase, but
will approach zero in the thermodynamic limit L → ∞. In
Eq. (47), the average is performed over all blocks b with the
same size L and over the statistical ensemble, or, alternatively,
over time.

To define a susceptibility based on the coarse-grained
order parameter, the disordered and ordered regimes have to
be considered separately [66]. In the disordered phase, the
standard definition,

χL = Ld

kBT

(〈
m2

L

〉− 〈mL〉2
)

(θ > 0), (48)

is employed. In the ordered phase, a slightly modified
definition has to be used to ensure that χL only measures

4In principle, one could also allow arbitrary integer divisions of the
system size instead of only powers of 2.

fluctuations around the equilibrium order-parameter value:

χL = Ld

kBT

(〈
m2

L

〉− 〈|mL|〉2
)

(θ < 0). (49)

For deep quenches into the ordered regime, pronounced
interfacial effects, however, prohibit a direct application
of definition (49). In these cases, we find here that the
interfacial contributions have to be explicitly removed from the
underlying order-parameter distribution (see below) in order to
obtain a reliable estimate for the susceptibility. It is important
to realize that in the noncritical regime, where the correlation
length is much smaller than L, above sub-box susceptibility
disagrees from the true susceptibility (as obtained, for instance,
from the correlation function) by a boundary correction
proportional ∼ξ/L [36,37]. Finally, in complete analogy to
the susceptibility, a coarse-grained specific heat can be defined
as

cH,L = Ld

kBT

(〈
E2

L

〉− 〈EL〉2
)
, (50)

where

E
(b)
L = 1

2Ld

∑
i∈b

φ2
i

is the average of the energylike parameter field in a sub-box.
When applied to the above block observables OL, the

original FSS ansatz [Eq. (44)] must be extended by an
additional scaling variable L/S [37]. This is necessitated
by the fact that, for L = S, order-parameter fluctuations are
absent and, consequently, corrections to scaling are expected
to depend on the ratio L/S. Thus, we can write

OL ∼ Lx/νgO(L1/νθ,L/S), (51)

and similarly for the specific heat. Strictly, this FSS ansatz is
expected to be valid only for θ → 0 and 0 � L � S, with
L → ∞, while, outside this range, the influence of further
corrections to scaling (for example, induced by the presence
of irrelevant scaling fields) will become noticeable [62,67].
However, in the case of Monte Carlo simulations, it is often
found that the simple FSS relation (51) works surprisingly well
already for rather small lattice sizes [65]. The relation (51) will
therefore be relied upon in this work as well.

The utility of the above FSS relations is based on the
fact that they allow for a determination of universal critical
parameters, such as exponents and amplitude ratios, provided
that the location of the critical point is known. If the critical
point is not known, one might still obtain reasonable estimates
for the exponents and the critical temperature by trying
different values until a good scaling of the data is achieved.
Relation Eq. (51) is particularly useful in a case where the
exponents are already known and instead the critical point has
to be located. In this case, one plots OL−x/ν for different L

versus the coupling u for a fixed value of r . By Eq. (51), we
have (neglecting the dependence on L/S)

OL−x/ν ∼ fO(L1/νθ ), (52)

and thus, all curves cross through the same point when the
critical coupling uc is passed [35,68].
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C. Order-parameter distribution

Quantities such as the coarse-grained order parameter or
susceptibility can be generally defined from the moments
of an underlying order-parameter distribution function PL

corresponding to a given subsystem size L [64,65],〈
mk

L

〉 = ∫ mkPL(m)dm. (53)

The distribution function is particularly useful in the crit-
ical regime, where the order-parameter fluctuations have
a pronounced non-Gaussian character that cannot be fully
captured by the low-order moments of PL alone. In the phase-
coexistence regime, the distribution moreover contains crucial
information on surface tension [65,69] and phase equilibria
[70]. Through its intimate connection to a coarse-grained free
energy, it is also of fundamental importance in the description
of nucleation and spinodal decomposition processes [70–73].
Practically, PL is obtained in a simulation by creating a
histogram of the coarse-grained order parameter m

(b)
L from

all subsystems. The above order-parameter distribution is
therefore a coarse-grained quantity, and should thus not be
confused with P [φ] of Eq. (4), which is a functional of the
order-parameter field φi ; that is, P [φ] = P [{φi}] depends on
all values of φ on the lattice. Formally, the coarse-grained
distribution PL can be defined as a constrained average over
all order-parameter fluctuations compatible with a given value
of the average order parameter mL in a cell of size L,

PL(m) = 1

Z

∫ ∏
i

dφi δ

(
m − 1

Ld

∑
i∈b

φi

)
e−F[φ]/kBT , (54)

where Z is a normalization factor. For instance, for L = 1,
the distribution PL is obtained by integrating the proba-
bility functional P [{φi}] over all φi except one, P1(φj ) =∫ ∏

i =j dφiP [{φi}].
The connection of the constrained distribution PL(m) of

Eq. (54) to thermodynamics can be made explicit by defining
a constrained Helmholtz free energy FL(m) via [65,74–76]

FL(m) = −kBT ln(PL(m)Z) = −kBT ln PL(m) + F, (55)

where relation (6) has been used. The thermodynamic
Helmholtz free energy F [Eq. (6)] is obtained from FL by

exp(−F/kBT ) =
∫ +∞

−∞
dm exp[−FL(m)/kBT ]. (56)

It must be emphasized that FL is in general different from
the bare Landau potential f0 [Eq. (3)], as the former is
derived from an integral over the full probability functional
and therefore includes (due to the gradient term) also the
effects of interactions between the fluctuations. Exceptions
are the limit T → 0 as well as F1 in the Ising limit, since
in these cases the interaction between different cells can
be neglected. In the large volume limit, the constrained free
energy can be shown to be equivalent to the so-called effective
potential often employed in field theory [77]. Above the critical
point, the constrained free energy is a direct measure for
fluctuations of the coarse-grained order parameter mL around
the equilibrium state. Below the critical point this picture
breaks down, as PL will then not only receive contributions

from homogeneous fluctuations but also from the presence of
two-phase states. Nevertheless, FL is often found to be well
approximated by a simple Landau form, that is, a low-order
polynomial in m [75,76,78–80]. An often invoked alternative
characterization of the order-parameter distribution that avoids
fitting a potential is based on its higher-order cumulants [65].
However, it is found that, in the present case, the standard
cumulant ratio U3 does not appear to have a well-defined
L-independent limit at the critical point. This is most likely
caused by interfacial effects, as argued in Ref. [37]. The
cumulant analysis will therefore not be pursued in the present
work.

The shape of the coarse-grained distributions PL and the
corresponding free energies FL can be anticipated based on
simple physical arguments [65,78]. Far above the critical
point, nonlinear effects are small and thus the order-parameter
distribution is expected to be well approximated by a Gaussian
centered around the average order-parameter value 〈m〉 = 0
[65],

PL(m) = 1(
2π
〈
m2

L

〉)1/2 exp

(
− m2

2
〈
m2

L

〉)

= Ld/2

(2πkBT χL)1/2
exp

(
− m2Ld

2kBT χL

)
, (57)

where relation (48) for the variance 〈mL〉2 has been used. The
width of each Gaussian decreases with larger coarse-graining
length L as more and more fluctuations are averaged out and
the distribution approaches the high-temperature fixed point.

Below the critical point, the shape of PL depends distinctly
on the size of the coarse-graining length L in comparison to
the correlation length ξ . For the case of a phase transition
at the critical density (which is exclusively considered here),
the global conservation of the order parameter requires that,
below the critical point, equal volumes of liquid and vapor are
present in the simulation box. For L � ξ , a given sub-box will
typically cover either liquid or vapor and thus PL is expected
to show two approximately Gaussian peaks centered around
the spontaneous values of the order parameter ±ML [which,
to a first approximation are given by Eq. (20)],

PL(m) = 1

2

Ld/2

(2πkBT χL)1/2

[
exp

(
− (m − ML)2Ld

2kBT χL

)

+ exp

(
− (m + ML)2Ld

2kBT χL

)]
. (58)

In general, the region between the peaks of the distribution,
−|ML| < m < |ML|, represents the probability not only for
homogeneous order-parameter fluctuations but also for the
occurrence of two-phase configurations in a subsystem. For
L � ξ , the box cannot cover complete phase-separated states,
and thus for this case the height of PL(0) is essentially a
measure for the probability of homogeneous fluctuations. In
general, however, homogeneous fluctuations are exponentially
suppressed by the volume Ld [Eq. (58)], in contrast to
heterogenous fluctuations, whose free energy cost is just
proportional to the area of the interface, Ld−1. Thus, for
subsystems with L � ξ , homogeneous fluctuations give a
completely negligible contribution to the central region of
PL, and one can estimate the probability for a heterophase
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fluctuation as

PL(0) 
 constLx exp

(
− 2Ld−1σ

kBT

)
, (59)

with an empirical exponent x that is typically found to be
close to zero [69,81]. In the ensemble average, liquid and
vapor phases will occur equally often and with any proportion
in each sub-box. Thus, one expects that for large L the central
region of PL will become flat and, in the limit L → ∞, where
interfacial contributions become negligible, eventually attain
the same level as the peaks. This is also expected based on
the notion of a coarse-grained free energy FL, as the true
free energy in the thermodynamic limit, F∞, must be convex
due to reasons of stability (as also implied by the Maxwell
construction) [82,83].

In the vicinity of the critical point, that is, in the FSS region
characterized by ξ � L, the distribution function becomes
markedly non-Gaussian and one can make a scaling ansatz,

PL(m) = Lβ/νP̃ (mLβ/ν,L1/νθ,L/S), (60)

with P̃ being a universal scaling function [1,37,64,65]. As
can be easily checked, the above relation reduces to the
corresponding FSS relations for the moments [Eq. (51)] if,
additionally, use of the hyperscaling relation dν = γ + 2β is
made. It must be emphasized that the scaling function P̃ is
universal only for sufficiently large L, where it embodies the
collective features of the critical phase transition. For small
L, in fact different shapes for PL at criticality are possible,
depending on the location on the critical line: Toward the
displacive limit, the barrier between the minima of the local
potential is low, leading to a nearly Gaussian shape of PL, in
contrast to a pronounced double-peak structure in the Ising
limit, where PL closely reflects the on-site potential f0 [84].
The large-scale properties of the order-parameter distribution
(in 2D and 3D) have been extensively studied in previous
works via field theoretic approaches [74,84–87] and Monte
Carlo simulations of Ising-like systems [65,75,76,78,79,88].

III. SIMULATION METHOD

A. Model

In the present work, the equilibrium behavior of the
Ginzburg-Landau model is simulated on a square lattice
via a fluctuating hydrodynamics approach. Specifically, the
Langevin extension of the nonideal fluid LB model of Swift
et al. [89,90], introduced in Ref. [20], is employed. The
LB equation (LBE) can be understood as a discretization
of the continuum Boltzmann equation and contains as a
subset the Navier-Stokes equations in the limit of long time
and length scales [91]. The LBE describes the evolution of
a set of distribution functions fi(r) ≡ f (r,ci) on a lattice
streaming along a finite number of possible velocity directions
ci linking the nodes. Here, simulations are performed on a
D2Q9 lattice; that is, the space dimension is d = 2 and i =
1, . . . ,9. Employing a simple Bhatnagar-Gross-Krook (BGK)
approximation to the collision operator, the present LB model

is defined by the evolution equation

fi(r + ci�t,t + �t)

= fi(r,t) − �t

τ
[fi(r,t) − f

eq
i (r,t)] + ϑi(r,t), (61)

where t is the time, �t is the time step, τ is a relaxation time,
f

eq
i is the equilibrium distribution, and ϑi is a random force

term, to be specified below. The relevant observable quantities
are given by the low-order moments of the distribution
function. In particular, we have for the density ρ and the fluid
velocity u,

ρ =
∑

i

fi =
∑

f
eq
i , ρu =

∑
i

fici =
∑

i

f
eq
i ci . (62)

In the model of Swift et al. [89,90], equilibrium thermody-
namics as embodied by the Ginzburg-Landau free energy
functional is implemented by requiring the second moment
of the equilibrium distribution to recover a thermodynamic
pressure tensor P,∑

i

ciαciβf
eq
i = Pαβ + ρuαuβ + ν(uα∂βρ

+uβ∂αρ + uγ ∂γ ρδαβ). (63)

The term proportional to the kinematic viscosity ν ≡ η/ρ =
(τ − 1/2)/3 is introduced in the above equation to improve
Galilean invariance [92]. The pressure tensor P is given by

Pαβ =
(

p0 − κρ∇2ρ − κ

2
|∇ρ|2

)
δαβ + κ(∇αρ)(∇βρ), (64)

where p0 = ρ 1
ρ0

∂φf0 − f0 is the thermodynamic pressure.
The pressure tensor satisfies the relation ∇ · P = ρ∇(δF/δφ)
and can be obtained from the free-energy functional (2), for
instance, via the Noether theorem, the principle of least action
or from the requirement of hydrostatic equilibrium [93–96].
Physically, it accounts for the energetic balance between
changes in fluid structure due to advection and surface tension
[97] and thus ensures that the equilibrium order-parameter
distribution [Eq. (4)] remains unchanged by the flow [46]. The
explicit expression for the modified-equilibrium distribution
f

eq
i on a D2Q9 lattice used in the present work is given by [98]

f
eq
i = wi

[
ρuαciα + 3

2

(
ciαciβ − 1

3δαβ

)
[ρuαuβ

+ ν(uα∂βρ + uβ∂αρuγ ∂γ ρδαβ)] + p0 − ρ∇2ρ
]

+wxx
i κ(∂xρ∂yρ)+w

yy

i κ(∂yρ)(∂yρ)+w
xy

i κ(∂xρ)(∂yρ),

(65)

with the weights taken as w1−4 = 1/3, w5−8 = 1/12,
wxx

5−8 = w
yy

5−8 = −1/24, wxx
1,2 = w

yy

3,4 = 1/3, wxx
3,4 = w

yy

1,2 =
−1/6, w

xy

1−4 = 0, w
xy

5,6 = 1/4, and w
xy

7,8 = −1/4.
To complete the description of the employed LB model, the

properties of the noise variables ϑi have to be specified. In or-
der to properly account for mass and momentum conservation,
the moment representation of the LBE is invoked [99,100].
This representation is defined by a set of basis vectors Tai

(a = 1, . . . ,9) that admit the distribution function fi to be
expanded in terms of a set of moments ma as

fi(r,t) = Tai

wi

Na

ma(r,t), (66)
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where the Na are the squared lengths of the basis vectors Ta . In
the present work, the Ta as given in Ref. [20] are used. The first
three moments ma=1,2,3 then follow as ρ, ρux , and ρuy , while
the higher moments cover the stresses (a = 4,5,6) and the so-
called ghost modes (a = 7,8,9). The moment representation
of the noise is equivalently defined as ϑ̂a ≡ Taiϑi . Only the
expression for ϑ̂a is stated below, which has a much simpler
form than ϑi .

As shown in Ref. [20], due to the use of a modified-
equilibrium distribution to incorporate the nonideal gas ther-
modynamics [see Eq. (63)], the noise obtained from the
fluctuation-dissipation theorem of the LBE is wave-number-
dependent. This is clearly undesirable, as such a form of noise
is not directly applicable to spatially inhomogeneous situations
involving phase separation. However, as the offending terms
in the noise covariance are proportional to the square-gradient

parameter κ , it is possible, by reducing κ appropriately, to
employ spatially uncorrelated noise while still maintaining
satisfactory equilibration. Additionally, spatially uncorrelated
noise has the advantage of being straightforward to implement
and computationally cheap.

The noise is thus taken to be a Gaussian random variable
without explicit correlations in space or time,

〈ϑ̂a(r,t)ϑ̂b(r′,t ′)〉 = �ab(r)δr,r′δt,t ′ . (67)

However, in order to properly account for spatially inho-
mogeneous fluid properties—occurring, for instance, in the
phase-coexistence regime—the covariance � shall be allowed
to depend locally on position [101]. The final expression for
the noise covariance, taking into account above-mentioned
modification and neglecting terms proportional to the square-
gradient parameter κ , is obtained as Ref. [20]

�(r) = 3ρ(r)kBT

�V �t

1

τ

(
2 − 1

τ

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . 4
[
2 − 3c2

s (r)
]

. . . . 12
[
c2
s (r) − 1

3

]
. . . . 4/9 . . . .

. . . . . 1/9 . . .

. . . . . . 2/3 . .

. . . . . . . 2/3 .

. . . 12
[
c2
s (r) − 1

3

]
. . . . 16

[
5
4 − 3

4c2
s (r)
]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (68)

Here, �V is the volume of a lattice cell, which, as well as the
time step �t , is equal to 1 in lattice units (l.u.). The quantity
kBT fixes the fluctuation amplitude and is essentially a free
parameter of the model, subject only to the low-Mach-number
constraint of the LB method. The above noise covariance
ensures that that fluctuations of the fluid velocity obeys locally
the equipartition theorem of statistical mechanics,

〈uα(r)uβ(r′)〉 = kBT

ρ(r)
δαβδr,r′ . (69)

In a simulation, Gaussian noise with a nondiagonal covariance
matrix can be created via a Cholesky transform (see Ref. [20]).

As a consequence of the LB dynamics of Eq. (61), at large
length and time scales the density and momentum obey a
continuity equation,

∂tρ + ∇ · (ρu) = 0, (70)

and a momentum-conservation (Navier-Stokes) equation for a
nonideal fluid,

∂t (ρu) + ∇ · (ρuu) = −∇ · P + ∇ · σ + ∇ · R, (71)

where

σαβ = η

(
∂αuβ + ∂βuα − 2

d
∂γ uγ

)
+ ζ∂γ uγ (72)

is the viscous stress tensor,

η = ρ

3

(
τ − 1

2

)
(73)

is the shear viscosity (which should not be confused with the
anomalous-dimension index), and

ζ = ρ

3

(
τ − 1

2

)(
2 − 3c2

s

)
(74)

is the bulk (or volume) viscosity. It is noteworthy that, in the
BGK approximation to the Boltzmann equation, the (bare)
viscosities depend on the local density [102]. In the critical
regime, however, it always possible to choose the parameters in
the Landau free energy such that the magnitude of the density
fluctuations is small compared to the background density,
δρ/ρ � 1 (cf. Fig. 16). If the viscosities are approximated
as constants, and furthermore the nonlinear advection term
(which is not relevant at criticality [4]) is neglected, the
Navier-Stokes equation simplifies to

∂t (ρu) = −∇ · P + η∇2u

+ (ζ + [1 − 2/d]η)∇∇ · u + ∇ · R. (75)

Note that expression (74) for the bulk viscosity differs from
the standard LB expression by a factor of (2 − 3c2

s ), which
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is an artifact of the modified equilibrium distribution of the
present LB model [20,90].5

The random stress tensor R imparts thermal noise on
the fluid momentum, which is then transferred to the
order-parameter sector, leading—in equilibrium—to thermal
fluctuations of φ according to the distribution (4). The random
stress tensor, which is directly related to the LB noise variables
ϑi , is a Gaussian white noise source with correlations given by

〈Rαβ(r,t)Rγδ(r′,t ′)〉

= 2kBT

[
η(r)

(
δαγ δβδ + δαδδβγ − 2

d
δαβδγ δ

)

+ ζ (r) δαβδγ δ

]
δ(r − r′)δ(t − t ′). (76)

The above expression is identical to the standard Landau-
Lifshitz result for ideal fluids [103], except for the locally
varying viscosities that are needed to properly take into
account possible spatial inhomogeneities of the fluid. Note that
additional error terms in the Navier-Stokes Eq. (71) originating
from the LB model have been neglected. These terms generally
depend by a positive power on the density gradient or flow
velocity [92] and are expected to be negligible in the present
case.

B. Setup

Simulations in the critical regime require fine tuning of
parameters as implied by the phase diagram (Fig. 1) as well as
by LB-specific constraints. First of all, since the flow velocity
must not exceed the lattice sound speed σs (where σ 2

s = 1/3
for D2Q9 models), expression (69) for the fluctuation variance,
kBT /ρ0 = 〈u2

α〉, directly implies

kBT � σ 2
s ρ0. (77)

Second, the density must remain strictly positive. Due to the
Gaussian character of the density fluctuations this implies
that the average density fluctuation should remain much
smaller than the mean density. Neglecting, for simplicity,
spatial correlations, density fluctuations have a variance of
〈�ρ2〉 = ρ0kBT /c2

s , hence requiring that 〈�ρ2〉1/2 � ρ0 leads
to

kBT � c2
s ρ0, (78)

which is a more stringent constraint than Eq. (77), since c2
s ∼

χ−1 � σ 2
s for a nonideal fluid in the critical regime. Thus, the

fluctuation temperature T must be chosen sufficiently small
for the velocity fluctuations not to violate the approximate
incompressibility of the LB method. Typically, values of
kBT = 10−7 l.u. or less are sufficient.

In the critical regime, it is particularly important to ensure
accurate equilibration of the fluid at all scales, since here
mode-coupling effects are dominant and thus errors induced at
the smallest scales can propagate to larger ones and possibly
infect the whole simulation. Since the noise covariance (68)
was derived in the limit of κ → 0, it is expected that using a
sufficiently small value for κ ensures equilibration to high

5Terms proportional to κ have been neglected in Eq. (74).
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FIG. 4. (Color online) Equilibration of momentum for a critical
fluid. jx denotes the x component of the momentum, while j|| and j⊥
denote the projections of j longitudinal and transversal to the wave
vector k. Simulation parameters (in l.u.): κ = 10−4, r = 4.96 × 10−5,
u = 5.16 × 10−2, kBT = 10−7. All LB relaxation times are set to
τ = 0.8.

accuracy. In fact, it is found that values of κ � 10−3 are
already sufficient in the present case. This is demonstrated
in Fig. 4, where—for a set of parameters in the critical region
(see below)—the Fourier-transform of the spatial correlation
function of the fluid momentum j = ρu is compared to the
theoretically expected result [Eq. (69)], 〈|jα(k)|2〉 = ρ0kBT .
To achieve a reasonable statistical accuracy, correlations have
been computed by averaging over 5000 snapshots over a total
simulation time of 107 time steps. As the figure shows, perfect
equilibration at all scales with an error below a few percent is
obtained.

The chosen value of κ leads to restrictions on the possible
values of the free energy parameters r and u in the critical
region, as these quantities enter the reduced r̃ and ũ [Eq. (12)],
which span the phase diagram (Fig. 1) of the Ginzburg-Landau
model. In order to observe Ising-type critical behavior, one
would want to avoid too close proximity to the displacive
limit and hence choose a large value for r̃ [1,30]. As outlined
in Eq. [104], for the deterministic LB method there exists,
as a consequence of the finite-difference approximations to
the spatial derivatives, a lower limit for the interface width of
around 1 l.u., below which LB simulations produce potentially
wrong dynamics even for small density differences. Since
the large-scale fluctuations at the critical point essentially
consist of phase-separated regions (“critical droplets”) that
continuously break apart and reconnect [105], it is plausible
that the restriction on the interface width derived for the
nonfluctuating case continues to hold in some form also
for fluctuating critical domains. Since the interface width
of the critical domains is roughly given by the mean-field
result,

w 

√

−2κ/r =
√

2/r̃, (79)

one obtains an upper bound on r̃ of around 2 l.u. Crucially, this
argument implies that one cannot get arbitrarily close to the
Ising limit without sacrificing correct dynamics. Simulation
results obtained in this work, however, indicate that this
appears to be not too severe of a restriction for the application
of the LB method to critical phenomena. Taking, for instance,
kBT = 10−7, w ∼ O(1), and κ ∼ O(10−4), a simulation in the
critical regime then requires that r̃c ∼ O(1) and ũc ∼ O(1),

056707-11



M. GROSS AND F. VARNIK PHYSICAL REVIEW E 85, 056707 (2012)

(a)

0.02 0.05 0.10 0.20 0.50 1.00 2.00

0.50

0.20

0.30

0.70

k

C
k

(b)

0.01 0.02 0.05 0.10 0.20 0.50 1.00 2.00

10 5

10 4

0.001

0.01

k

C
k

962

5122

k 7 4

10−31.00

FIG. 5. (Color online) Correlation function C(k) vs wave number k obtained from a simulation (a) far above and (b) close to the critical
point. The insets show the representative order-parameter field. In (a), the dashed curve represents a fit to an Ornstein-Zernike form [Eq. (25)],
while in (b), it represents the critical power law k−2+η. In (b), the structure factor and order-parameter field for two different system sizes,
S = 256 (•) and S = 96 (◦). Note the finite-size effects at low k. Simulation parameters: (a) r = 10−4, u = 4 × 10−3, κ = 10−4, kBT = 10−7;
(b) r = −10−4, u = 4, κ = 2.0 × 10−5, kBT = 5.31 × 10−10 (all in l.u.).

implying rc ∼ O(10−4) and uc ∼ O(10−1). To obtain a more
precise location of the critical point, one can gradually change
one of the parameters r , u, or T and visually inspect the
density field, compute the structure factor or apply a FSS
analysis, as shown below. Note that, in principle, one can
traverse the critical regime by either changing T , u, or r ,
keeping in each case the other parameters fixed. To stay in
line with the usual field-theoretical notion of the tempera-
turelike variable, usually only r will be varied in the present
work.

In the critical region, relaxation processes become ex-
tremely slow (critical slowing down), requiring, especially
at long wavelengths, a large simulation time in order to
collect a sufficiently large number of statistically independent
samples (cf. [66]). Specifically, in an isothermal critical fluid,
density fluctuations relax via overdamped sound waves (to
be discussed in more detail in a forthcoming publication
[22]), which decay with a rate of �(k) = c2

s (k)/νl , where the
generalized speed of sound is given by (see, e.g., Ref. [20])
c2
s (k) = c2

s + ρκk2 and νl = (η + ζ )/ρ is the longitudinal
viscosity for a 2D fluid. Consequently, the largest possible
relaxation time of the order parameter can be estimated
as tρ ∼ νl/c

2
s (kmin) ∼ S2νl/(c2

s,0 + 4π2ρκ), with S being the
system size, kmin = 2π/S the minimum wave number, and
c2
s,0 the value of c2

s for a correlation length of ξ = 1.
Here, the critical (mean-field) FSS of the thermodynamic
speed of sound, c2

s ∝ 1/χ = c2
s,0ξ

−2 ∝ S−2, has been used.
Thus, the performance of a simulation can be optimized
by choosing a small value of νl . (Note, however, that the
momentum relaxation time scales as ∝S2/η.) For instance,
S = 256, κ = 10−3, and νl = 10−2 gives an order-parameter
relaxation time of tρ ∼ 106 l.u. Hence, a simulation must
run roughly 108 time steps until accurate statistical infor-
mation (errors less than 1% ) for order-parameter related
quantities is obtained when averaging over a few hundred
realizations. This requirement of simulation time might seem
excessive, but one should keep in mind that, due to the
global conservation of the order parameter, large-wavelength
fluctuations require the rearrangement of mass over large
distances.

IV. RESULTS

A. Correlation function

In the simulations, the structure factor is computed from
the order-parameter field φ on the discrete lattice by

C(k) = 1

N

〈∣∣∣∣∣
∑

r

φ(r)e−ik·r
∣∣∣∣∣
2〉

, (80)

where the brackets indicate time average over many statis-
tically independent samples and N is the total number of
lattice points. Due to periodic boundary conditions and the
real-valuedness of φ, it suffices to consider the structure factor
in the first half of the first Brillouin zone, that is, in the wave
number range 0 < k < π . Global mass conservation enforces
C(0) = 0 (this point is excluded from the plots). Figure 5
shows the structure factor together with sample snapshots of
the order-parameter field above and at the critical point. Error
bars are of the order of the symbol size and not shown.

Above the critical point [Fig. 5(a)], the correlation func-
tion assumes a simple Ornstein-Zernike form [Eq. (25)]. In
Eq. (25), k2 should be understood as the Fourier-transformed
discrete Laplacian, which reveals itself in a deviation of the
high-k part of C(k) from a simple k−2 power law expected in
the continuum case (see, e.g., Ref. [20]). The discrete lattice
effect becomes noticeable for wave numbers k � 1. Note that
around r = 0, self-energy corrections suppress the correlation
length and compressibility below their mean-field values given
by Eqs. (26) and (21).

At the critical point, the correlation function is expected to
assume a power law, C(k) ∼ k−2+η [Eq. (17)], for k � 1/ξ . In
the above equation, η is the anomalous-dimension exponent,
which takes a value of η = 1/4 for the 2D-Ising universality
class. In Fig. 5(b), the structure factor close to criticality is
shown for two different system sizes of 962 and 5122 lattice
sites and the same set of simulation parameters. It is seen that,
while the critical power-law behavior is well obtained in both
cases in the intermediate wave-number range, the structure
factor shows quite pronounced finite-size effects at small k.
Specifically, for the larger system, the Ornstein-Zernike type
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FIG. 6. Critical growth of (a) the correlation length ξ and (b) the susceptibility in dependence of the reduced temperature θ (for θ > 0). ξ

and χ are extracted from fitting Ornstein-Zernike forms [Eq. (25)] to the correlation function C(k) [Eq. (80)] obtained from simulations. Solid
lines represent power laws with 2D Ising exponents, while dashed lines are power laws with mean-field exponents.

“shoulder” at low k indicates that the system is still slightly
above its critical point, whereas the low-k excess seen for
the smaller system apparently suggests that the system is
already subcritical. However, according to the results of a FSS
analysis performed on the order parameter and susceptibility
(see below), not only the lager, but also the smaller system is
still above its critical point. Although finite-size effects appear
to be more pronounced in the present case as compared to,
for instance, molecular dynamics simulations [14], it is well
known that different quantities (e.g., the structure factor and
the order-parameter distribution), in general, show a different
FSS behavior and are governed by their own apparent critical
points [1,31]. Here, for all studied parameter combinations
and system sizes it is found that thermodynamic quantities are
critical when the structure factor already displays slight effects
of phase separation (i.e., has an excess at low k). It is clear
from Fig. 5(b) that these discrepancies can, in principle, be
reduced by using larger systems. However, the convergence
appears to be quite slow in the present case. Simulations
performed deeper in the Ising regime furthermore suggest that
this behavior is not directly associated with the proximity to
the displacive limit.

The fact that sufficiently far above the critical point the
structure factor assumes an Ornstein-Zernike form allows one
to extract the critical growth of the correlation length ξ and
compressibility χ by fitting expression (25) to the simulation
data for C(k). As Fig. 6 shows, the correlation length and the
compressibility approach the critical point by power laws, ξ ∝
θ−ν and χ ∝ θ−γ , with exponents that asymptotically agree
with 2D-Ising values ν = 1 and γ = 7/4. Further away from
the critical point (θ � 0.2), we observe crossover to mean-field
behavior. It should be remarked that, especially in the case of
the correlation length, the data admits, in fact, a certain range
of fit values for the exponent ν and critical temperature rc.
For instance, in the present case it is found that the correlation
length can be equally well described by an exponent of ν ≈
0.8 and a slightly different rc. Similar “effective exponents”
have also been reported in previous Monte Carlo simulations
of the φ4 model [30] and reflect the fact that the width of
the asymptotic region, where Ising-type behavior is observed,
depends on the proximity to the displacive limit [1]. Indeed,
approaching a critical point that is located closer to the “Ising
limit” on the critical line is found to already restrict the possible
fit values for ν to a narrower margin around 1. Due to the

finite size of the simulation box, however, it is not possible to
follow the correlation length up to arbitrarily small reduced
temperatures θ .

In the crossover regime from mean-field to critical behavior,
it is interesting to compare the simulation results with the
predictions of perturbation theory (Sec. II A5). Figure 7 shows
the correlation length as extracted from Ornstein-Zernike fits
to the structure factor versus the inverse of the dimensionless
coupling constant λ−1 = rκ/ukBT , varying here only r . We
see that, for |λ−1| � 1, nonlinear effects are negligible and the
correlation length closely follows the mean-field prediction
ξ = (κ/r)1/2 (dashed line). Once λ becomes of the order of
unity, fluctuation corrections to mean-field behavior grow,
leading to a suppression of the correlation length from its
mean-field value (which diverges at λ−1 = 0). The solid
curve in Fig. 7 represents the prediction for the renormalized
correlation length (κ/r ′)1/2 obtained from the numerical
solution of the self-consistency equation (36) for the parameter
r ′. We see that the simulation results for ξ agree well with
the theoretical predictions until λ−1 ≈ −0.6. The eventual
breakdown of perturbation theory close to the critical point
[i.e., for ξ � O(1)] is, of course, expected, since self-energy
contributions from all orders of the expansion diverge. Also,
all wave-number-dependent contributions to the renormalized
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FIG. 7. Dependence of the correlation length on the dimen-
sionless coupling constant λ−1 = rκ/ukBT in the crossover regime
from mean-field (|λ| � 1) to critical behavior (λ ≈ −1). The dashed
curve represents the mean-field correlation length, while the solid
curve shows the prediction of perturbation theory, obtained from the
numerical solution of Eq. (36). The symbols represent the correlation
length extracted from Ornstein-Zernike fits to the structure factor
obtained from simulations.
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FIG. 8. (Color online) Temperature dependence of (a) the coarse-grained order parameter ML [Eq. (47)], (b) the susceptibility χL [Eq. (48)],
and (c) the specific heat cH,L [Eq. (50)] in the critical region. The inset in (a) shows the position of the peak of the order-parameter distribution
PL (for visibility, only three curves are shown). The temperature is represented by the inverse dimensionless coupling λ−1 ∝ r . The curves in
each plot correspond to different subsystem dimensions L: •, 1; �, 2; �, 4; �, 8; �, 16; ◦, 32. Data for L > S/8 have been excluded. In all
cases, u = 2.8 × 10−2, κ = 9.6 × 10−5, kBT = 10−7.

parameters (which are strong in 2D) have been neglected here.
To increase the accuracy of the theoretical predictions in the
2D case, more sophisticated renormalization group methods
would have to be employed [106].

B. Finite-size behavior

Figure 8 shows the evolution of the block order parameter
ML, susceptibility χL, and specific heat cH,L for different
coarse-graining lengths L in dependence of the temperature,
which is represented here by the inverse dimensionless
coupling λ−1 = rκ/ukBT (κ , u, and T are fixed). The curves
are drawn as a guide to the eye [they represent the FSS
functions defined by Eq. (51)]. Passing from the high- to
the low-temperature phase (i.e., decreasing |λ−1|), the order
parameter [Fig. 8(a)] displays a sudden increase at around
λ−1 ≈ −1.65, which can be identified with the critical point.
Due to the definition of ML as the average of the absolute
value of the coarse-grained order parameter in each sub-box
[Eq. (47)], ML is nonzero even in the disordered regime,
but approaches zero with increasing sub-box dimension L.
Alternatively to Eq. (47), the order parameter can be defined by
the position of the maximum of the underlying distribution PL

[inset to Fig. 8(a)], in which case the order parameter is exactly
zero in the disordered phase (except in the immediate neigh-
borhood of the critical point, where, in 2D, the order-parameter
distribution develops a bimodal structure, cf. Sec. IV C). In the
low-temperature phase, fluctuations decrease the average value
of the order parameter with increasing coarse-graining length.
Due to inevitable interfacial contributions in the coexistence
regime, this effect is more pronounced for ML defined through
Eq. (47). For intermediate coarse-graining lengths L, the
susceptibility—which for simplicity is computed in Fig. 8(b)
via the same Eq. (49) in both the high- and low-temperature
phases—shows a peak at the apparent critical point, consistent
with the behavior of ML. For very small L, the peak is
“smeared out” to a shoulder, while for the largest L (not shown
in the plot), the low-temperature data are strongly affected
by interfacial contributions. Note that the peak positions are
practically independent of L. The specific heat [Fig. 8(c)]
shows a rapid increase around the critical point λ ≈ −1.65,
but no peak, in contrast to Monte Carlo simulations [31,32].

The behavior of the specific heat seems to be similar to the
order parameter ML and the absence of a peak might thus
be related to the presence of interfacial contributions in the
subcritical regime. It should be finally remarked here that the
order parameter, susceptibility, and specific heat obviously
depend systematically on the coarse-graining length L. In
order to obtain their true values, they have to be extrapolated
to L → ∞. This does not affect the critical FSS behavior and
is discussed further in Sec. IV C.

In the immediate vicinity of the critical point, the theoretical
correlation length exceeds the system size and one has to
perform a FSS analysis to extract critical properties. First, the
scaling of the block order parameter ML, susceptibility χL,
and specific heat cH,L with sub-box-size L at the critical point
is investigated, keeping the lateral size S of the simulation
box (here, S = 256) and all other simulation parameters
fixed. In this case, the FSS ansatz (51) predicts the scaling
behavior

ML ∼ L−β/νgM (L/S),

χL ∼ Lγ/νgχ (L/S), (81)

cH,L ∼ ln(L)gc(L/S),

where gM , gχ , and gc are scaling functions with limits
gO(L/S) → 0 for L ≈ S due to the global order-parameter
conservation and gO(L/S) → const. for L sufficiently smaller
than S. Note that the temperature dependence has dropped out
of the above scaling forms, as the temperature is kept fixed
at its presumed critical value. As Fig. 9 shows, for L � S/8
the simulation results for ML and χL agree well with the FSS
predictions of Eq. (81) for the 2D-Ising case (solid lines in
the plot). In case of the specific heat, the expected logarithmic
scaling is obtained for L � 4 and extends to block sizes up
to L ≈ S/4. It is remarked that this close agreement can be
obtained only in a rather narrow range around the critical
point. Scaling plots like Fig. 9 make it possible, in principle,
to estimate the true value of various intensive quantities by
simple extrapolation of the straight line fits to the full system
size L = S.

Figure 10 shows the FSS behavior of the coarse-grained
order parameter and susceptibility for varying sub-box sizes
L and temperatures θ in a combined plot. Data for L = 1 as
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FIG. 9. Finite-size scaling of (a) the block order parameter ML, (b) the susceptibility χL, and (c) specific heat cH,L with the block size L

(at fixed S) at the critical point. The solid lines represent the FSS predictions [Eq. (81)] for the 2D-Ising case. For comparison, scaling laws
according to mean-field theory are given by the dashed lines in (a) and (b). Simulation parameters are r = −4.8 × 10−5, u = 2.8 × 10−2,
κ = 9.6 × 10−5, kBT = 10−7.

well as L > S/8 have been excluded, as they are expected
to lie outside of the regime of validity of the FSS ansatz
Eq. (51). In the plots, 2D-Ising exponents are used for the
scaling transformation, together with a value for the critical
temperature rc that is identical to the one obtained from
the previous analysis. The uncertainty in the value of rc

represents a systematic error that affects the overall quality
of the scaling behavior. The trends seen in Fig. 10 are found,
however, to be quite insensitive to the specific value chosen
for rc. The supercritical (θ > 0, solid symbols) branches
of both the order parameter and the susceptibility show an
acceptable scaling collapse. For the subcritical branches (open
symbols), however, neither the data for the order parameter
nor for the susceptibility collapse onto a master curve. The
main reason for the apparent scaling violation might be the
global conservation of the order parameter, which leads to
the coexistence of equal amounts of liquid and vapor below
the critical point (for a quench at the critical density, which we
consider here exclusively). The ensuing pronounced interfacial
contributions to the order-parameter distribution (cf. Fig. 14)
might deteriorate scaling in the ordered phase. Similar effects
have been pointed out in the context of lattice gas simulations
in the canonical ensemble [37].6 Additional influences on the

6In standard grand-canonical Monte Carlo simulations, interfacial
effects are much reduced as one stays in a pure phase most of the
time [66].

scaling behavior can also arise from the fact that the φ4 model
is equivalent to the Ising model only asymptotically close
to the critical point and the width of the asymptotic region
gets smaller with decreasing distance to the displacive limit
(r → 0, u → 0) [1,30]. In fact, it is well known that the FSS
form (51) represents only the leading order term of the full
FSS expression [1,67], with the leading correction-to-scaling
term being given by L−ωgO(L1/νθ ) (ω = 4/3 in 2D). Thus,
corrections to scaling are necessarily always present in a
simulation. If a higher level of accuracy is desired, one
might seek for an optimized set of coupling constants in the
free energy functional, for which the leading-order scaling
correction due to the dominant irrelevant operator is absent
[1,107,108]. However, the gain in using an improved set of
parameters might be spoiled by the presence of the additional
scaling variable L/S, which in turn requires a rather large size
S of the total simulation box.

Finally, the usefulness of the FSS ansatz written in the form
(52) to locate the critical point is demonstrated. In Fig. 11,
the appropriately rescaled order parameter and susceptibility
versus the nonlinear coupling u is plotted, keeping all other
simulation parameters fixed. By Eq. (52), the intersection point
of all curves can be identified with the critical point θ = 0,
which, for the present choice of simulation parameters, occurs
for a value of u ≈ 2.7–2.8 × 10−2. As expected, this value
slightly depends on the quantity under consideration, but is
otherwise consistent with the estimates of the critical point
location from the FSS analysis of Fig. 9.
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FIG. 10. (Color online) Finite-size scaling plots of (a) the sub-box order parameter ML and (b) susceptibility χL. The exponents β, γ , and
ν are fixed to 2D-Ising values. The critical temperature rc defining θ is set to rc = −4.82 × 10−5. Error bars represent an assumed uncertainity
of �r − c/rc 
 3% in the critical temperature. Legend: �, θ = 0.042; �, θ = 0.0028; �, θ = 0.013; �, θ = 0.006; •, θ = −0.001; ♦,
θ = −0.016; 	, θ = −0.044. Data for L = 1 and L > S/8 has been excluded.
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FIG. 11. (Color online) Determination of the critical coupling by FSS analysis according to Eq. (52). (a) Plot of the subsystem order
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C. Order-parameter distribution

In the previous section, the FSS behavior of averaged
thermodynamic quantities at the critical point was investigated
primarily. We shall now turn to a more detailed study of
the behavior of the underlying order-parameter probability
distribution.

Far above the critical point [Fig. 12(a)], the order-parameter
distribution has a perfectly Gaussian shape centered around the
mean order-parameter value m = 0. The variance decreases
from the smallest block size (L = 1) toward the largest
(L = S/2), which is understandable from the fact that coarse
graining the system over a scale L averages out fluctuations
on smaller scales, which then do not contribute anymore to the
variance. As discussed in Sec. II B, the coarse-grained suscep-
tibility χL, as determined by the width of PL, in general differs
from the true susceptibility obtained in the thermodynamic
limit due to the neglect of correlations at the boundary of the
subsystem. In particular, in the off-critical regime (ξ < L), χL

is expected to differ from the true susceptibility by a correction
factor ∼1/L. This is demonstrated in Fig. 12(b), where χL is
computed from PL by three different methods. As expected,
the relation χL ∼ 1/L holds in the range ξ � L � S, while
for L ∼ S, χL bends down toward zero due to the global
order-parameter conservation. By extrapolating the linear

part in 1/L toward L → ∞, the true susceptibility can be
estimated. Good agreement between the extrapolated value
and the theoretical susceptibility is found.

In the critical regime (ξ > L), the corrections due to miss-
ing boundary correlations will clearly not be given anymore
by a simple surface-to-volume ratio as above. Instead, the
susceptibility will gradually approach its FSS form χL ∼ Lγ/ν ,
as can be seen in Fig. 13, where χL obtained from the variance
of PL slightly above the critical point is plotted against L

(cf. Fig. 9). In the figure, the susceptibility data for L > S/8
is neglected due to a possibly spurious influence caused by
the large value of L/S, for which the curves start to bend
toward zero. Plotted in this way, one finds that extrapolating
χL to L → S agrees well with the susceptibility obtained from
Ornstein-Zernike fits to the structure factor of the entire system
(Fig. 6).

Distinctly below the critical point, the order-parameter
distribution is characterized by two displaced Gaussians cen-
tered around the spontaneous order-parameter values ±〈|mL|〉
[Fig. 14(a)]. Note that the probability distribution covers
more than three orders of magnitude between its center and
its peak. The width of each Gaussian peak decreases with
larger coarse-graining length L as more and more fluctuations
are averaged out. The region between the peaks arises from
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FIG. 12. (Color online) Order-parameter distribution PL (a) and corresponding reduced susceptibility χL/χ (b) for different L far above the
critical point (the correlation length is ξ 
 1). The individual curves in (a) correspond to different coarse-graining lengths L, where L = 1 for
the outer curve and L = S/2 for the innermost curve. For better visibility, individual data points are not shown. The sub-box susceptibility χL

in (b) is extracted from PL via Gaussian fits (•), from the variance of PL (	), and from the central height PL(0) (�). The expected susceptibility
χ is computed from perturbation theory. The dashed line in (b) has a slope of −1.
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FIG. 13. (Color online) System size dependence of the coarse-
grained susceptibility χL obtained from the variance of the order-
parameter distribution PL slightly above the critical point (where L �
ξ < S). The dashed lines are extrapolations to the total system size
L = S and thus to the true susceptibility. The crosses represent the
susceptibility obtained from the Ornstein-Zernike fits to the structure
factor (cf. Fig. 6). At the critical point, the susceptibility is expected
to scale with the sub-box size as Lγ/ν (dotted line) [cf. Fig. 9(b)]. The
different symbols correspond to reduced temperatures of θ = 0.854
(•), 0.270 (	), 0.124 (�), 0.0219 (◦). Data points for L > S/8 are
excluded from the plot. The lines are drawn as a guide for the eye.

interfacial configurations and is significantly in excess of a
pure Gaussian contribution. In agreement with the heuristic
arguments outlined in Sec. IV C, the central region does
systematically increase with larger subsystem size L and
becomes approximately flat, as is expected by the presence
of two-phase configurations with arbitrary proportions of
liquid and vapor in each sub-box. However, even for the
largest sub-box sizes, the peaks are still far more dominant
than the central region. This can be explained by two facts:
First, interfacial free energies are still not negligible compared
to bulk contributions, which would only be the case in the
thermodynamic limit. Second, and more importantly, for deep
quenches, the liquid domain (which in the present case is
a single extended stripe) is not moving appreciably during
the simulation time and thus each sub-box will be mostly
covered by the same, virtually static, phase configuration. This
is also indicated by the strong irregularities found in the central
region of the distributions for large L. To obtain the correct

coarse-grained distribution, one would additionally have to
perform an average over different simulation runs. This is,
however, not attempted here.

In principle, the thermodynamic order parameter ML can
be defined either by the average over half of the distribution,
ML = 〈|mL|〉 [Eq. (47)], or by the position mmax of the
maximum of PL(m). In the coexistence regime, one finds
that the latter definition is, in general, in closer agreement
to the theoretical prediction [Eq. (40)] for all values of L

[Fig. 14(b)]. In principle, a slight system-size dependence is
always expected as fluctuations, in general, tend to reduce
the average order-parameter value, which is clearly seen
closer to criticality [inset to Fig. 8(a) and Fig. 16(a)]. The
order parameter defined by Eq. (47) strongly decreases with
larger L due to contributions from phase-separated states to
the average of |mL|. Thus, far above or below the critical
point, defining the order parameter ML as the location of
the maximum of PL seems, in general, preferable over the
definition of Eq. (47), since the former ensures that ML is
exactly zero in the high-temperature phase and has a negligible
dependence on the system size or on interfacial contributions
in the low-temperature phase. In contrast, the definition of
Eq. (47) behaves smoother in the critical region and is therefore
better suited for FSS analyses.

Analogously to the high-temperature case, the coarse-
grained susceptibility can be obtained either from the peak
height [χL 
 Ld/8πkBT P 2

L(mmax); see Eq. (58)] or the peak
variance. As all these methods implicitly assume the presence
of two displaced Gaussians [Eq. (58)], the central region of
the distribution should be excluded beforehand.7 Due to the
significant asymmetry of the wings and the pronounced inter-
facial contributions, the variance is thus most reliably obtained
by fitting Gaussians to the peaks. It is seen from Fig. 14(c) that
all the three different estimates of the susceptibility roughly
agree, except for values of L close to the total system size.
Extrapolating the linear part in 1/L of the coarse-grained

7In particular, the normalization should be computed with the
central region set to zero.
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FIG. 14. (Color online) Order-parameter distribution PL (a), order parameter ML (b), and susceptibility χL (c) for different coarse-graining
lengths L far below the critical point. The individual curves in (a) correspond to different L, where L = 1 for the outer curve and L = S/2
for the innermost curve. In (b), the order parameter as defined by Eq. (47) (•) and by the peak position of PL (�) is shown. The dashed line
represents the value of ML expected from perturbation theory, Eq. (40). In (c), the susceptibility χL is extracted from PL via Gaussian fits (•),
from the variance of PL (	), and from the height of the peaks PL(mmax) (�). The true susceptibility χ is computed from perturbation theory
[Eq. (43)]. The dashed line in (c) has a slope of −1.
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FIG. 15. Temperature dependence of (a) the thermodynamic order parameter M and (b) the susceptibility χ in the phase-coexistence
regime. The temperature is given here in terms of the inverse dimensionless coupling λ−1 ∝ r . The symbols (•) represent simulation results, the
solid curve represents the predictions of perturbation theory [Eqs. (40) and (43)] and the dashed curve represents the prediction of mean-field
theory. The critical point is located here at λ−1 ≈ −1.5.

susceptibilities χL to the limit L → ∞ makes it possible to
obtain the true susceptibility.

In Fig. 15, the order parameter and susceptibility in depen-
dence of the temperature (represented by the inverse dimen-
sionless coupling λ−1 ∝ r) are compared to the predictions
of perturbation theory (see Sec. II A5). The order-parameter
data shown in Fig. 15(a) are obtained from the location of
the peak of the distribution, which is roughly independent of
L and has negligible statistical scatter [see Fig. 14(b)]. One
sees that the simulation results for the order parameter agree
well with the prediction of Eq. (40) for 〈φ〉 including the
leading-order fluctuation corrections. As expected, deviations
become noticeably closer to the critical point (here, λ−1 ≈
−1.5), where a perturbative treatment is not applicable. One
further notes that fluctuations generally tend to reduce the
order parameter below its mean-field value, even relatively far
away from the critical point. The data for the susceptibility
shown in Fig. 15(b) is obtained by extrapolating the block
susceptibility χL found from the peak height of the distribution
to L → ∞ [cf. Fig. 14(c)]. In contrast to the order parameter,
the susceptibility data exhibits significantly stronger statistical
scatter, in particular, closer to criticality. Nevertheless, for the
temperature range investigated, acceptable agreement between
simulation results and the predictions of perturbation theory
for χ in the symmetry-broken phase [Eq. (43)] is found.

In Fig. 16, the coarse-grained order-parameter distribution
at the critical point is shown. Interestingly, for sufficiently large
coarse-graining lengths, the distribution shows a pronounced
double-peak structure, which is found to persist even slightly
above the critical point. This is in agreement with Monte Carlo
results for the 2D-Ising model [65] and renormalization group
calculations [84]. For small coarse-graining lengths, where
the distribution essentially probes nonuniversal properties,
PL depends significantly on the location on the critical line:
Close to the displacive limit, P1 appears concave, whereas
toward the Ising limit, it develops a double-peak structure.
This is understandable since the gradient term in the free
energy functional dominates over the bare Landau potential
for high degrees of displaciveness. The scaling ansatz (60)
for the critical order-parameter distribution predicts that when
expressing the data in terms of the scaled variables mLβν

and PLL−β/ν , all points should collapse on a single curve. In
order to compare our results with the Ising model calculations

of Ref. [65], the rescaling procedure is implemented here by
appropriately multiplying the data by the standard deviation
〈m2〉1/2, which is expected to be equivalent concerning the
overall scaling behavior since 〈m2〉 ∼ L−2β/ν . As Fig. 16(b)
shows, the scaling of the distribution function predicted by
Eq. (60) holds in a range 1 � L � S. This might seem
surprising insofar as the FSS of the low-order moments of
PL (the coarse-grained order parameter and susceptibility)
works well already for the smallest box sizes (see Fig. 9).
However, the full probability distribution obviously contains
more information than just its low-order moments, and thus
a scaling of PL is only a sufficient, but not necessary,
condition for the scaling of ML and χL. In fact, in the present
case, the fourth-order cumulant already fails to show the
well-known scaling behavior observed in standard (grand-
canonical) Monte Carlo simulations of the Ising model [65].
A similar behavior has also been observed in lattice gas
simulations with a conserved order parameter [37]. The
scaling behavior of the distribution for smaller coarse-graining
lengths is found to improve with increasing distance from the
displacive limit. A direct comparison of PL in the scaling
regime to the corresponding order-parameter distribution of
the 2D-Ising model at criticality [65], represented by the solid
points in Fig. 16(b),8 shows close agreement, except for a
slight underestimation of the peak heights.

V. SUMMARY

In this work, static critical phenomena of a one-component
fluid have been studied using a fluctuating nonideal gas LB
model. In this model, the fluctuating Navier-Stokes equations
for the density and momentum of a compressible, isothermal
fluid based on a Ginzburg-Landau φ4 free energy functional are
solved. It is found that the model is able to capture the essential
features of the static critical behavior associated with the
2D Ising universality class. A characteristic property of
the present simulation method is the global conservation of
the order parameter, which demands a careful interpretation

8To match the width of the distributions used here, the Ising model
data is rescaled as (m,PL) → (m/c,cPL) with a factor c as allowed
by the scaling ansatz.
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FIG. 16. (Color online) Order-parameter distribution PL(m) for different L at the critical point. In (a) the raw data is shown, while in (b) the
distributions are rescaled by their standard deviation to compare with the predictions of Eq. (60). For better visibility, curves in (b) that deviate
from the scaling prediction are plotted with dashed lines. The solid circles in (b) represent the scaled distribution function from simulations of
the 2D Ising model at the critical point by Ref. [65]. The curves in each figure correspond to different coarse-graining lengths L, where in (a),
L = 1 for the outer curve and L = S/2 for the innermost curve; vice versa in (b). In all cases S = 256. Note also the linear scale of the axes,
in contrast to Figs. 12 and 14.

of FSS results. The conserved nature of the order parameter
leads to the presence of coexisting two-phase states below the
critical point and is expected to be the main source of scaling
corrections in the present case. Despite these complications,
the expected critical behavior of the structure factor, order
parameter, susceptibility, and specific heat is found to be
overall well reproduced. However, it was noted that finite-size
effects appear to have a quite strong effect on the structure
factor, which assumes its expected critical scaling law at a
slightly higher temperature than the other thermodynamic
observables. For future work, it would be interesting to
compare these results to other LB models of nonideal fluids.
The order-parameter distribution function, which contains
useful information on two-phase states below the critical point,
compares well with theoretical predictions and Ising model
calculations. Also, issues relevant to coarse-graining and
generic fluctuation induced effects on observable quantities
near and far from the critical point have been discussed.

The present work has only dealt with static critical phenom-
ena. While it is clear that Monte Carlo methods are usually
better suited for this task, an assessment of the LB method

in this regard is nevertheless important since the successful
reproduction of equilibrium aspects is a necessary prerequisite
for a faithful application of the method to, for instance,
dynamical problems. Also, understanding the equilibrium
behavior of the model and its coarse-graining properties is
important for many practical problems employing an effective
free energy description, such as nucleation and spinodal
decomposition. The present work is thus hoped to provide a
useful starting point for further applications of the LB method
to problems of current interest involving phase transitions and
critical phenomena in fluids.
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