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The effectiveness of the actual annealing strategy in finite-time optimization by simulated annealing (SA) is
analyzed by focusing on the search function of the relaxation dynamics observed in the multimodal landscape of
the cost function. The rate-cycling experiment, which was introduced in the previous study [M. Hasegawa, Phys.
Rev. E 83, 036708 (2011)] to examine the role of the relaxation dynamics in optimization, and the temperature-
cycling experiment, which was developed for a laboratory experiment on relaxation-related phenomena, are
conducted on two types of random traveling salesman problems (TSPs). In each experiment, the SA search
starting from a quenched solution is performed systematically under a nonmonotonic temperature control used in
the actual heat treatment of metals and glasses. The results show that, as in the previous monotonic cooling from
a random solution, the optimizing ability is enhanced by allocating a lot of time to the search performed near an
effective intermediate temperature irrespective of the annealing technique. In this productive phase, the relaxation
dynamics successfully function as an optimizer and the relevant characteristics analogous to the stabilization
phenomenon and the acceleration of relaxation, which are observed in glass-forming materials, play favorable
roles in the present optimization. This nonmonotonic approach also has the advantage of a wider operation
range of the effective relaxation dynamics, and in conclusion, the actual annealing strategy is useful and more
workable than the conventional slow-cooling strategy, at least for the present TSPs. Further discussion is given
of an illuminating aspect of computational physics analysis in the optimization algorithm research.
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I. INTRODUCTION

Various research topics related to both physics and com-
puter science have attracted many researchers during the last
few decades. Optimization is one of these interdisciplinary
topics, and several subjects have been presented and studied
according to their individual interests. As examples, we can
cite the analysis of the physically relevant properties of
combinatorial optimization problems [1–3], the development
of heuristic optimization algorithms inspired by physical
concepts and methods [4–10], and the application of general-
purpose optimization methods to the solution of problems
of physical interest [11,12]. These kinds of studies have
evolved into an attempt to create a mutually beneficial
relationship between the two communities [11] or to unify
the understanding of the related complex systems on an equal
footing [13–15]. Whereas these challenges have stimulated
interdisciplinary interest, their progress is gradual; therefore,
we still need further efforts to acquire precise knowledge of
the relationship between complex physical systems and hard
optimization problems.

In a recent study [16], we reconsidered the physical
analogy of simulated annealing (SA) [17,18], which is one
of the heuristic optimization algorithms and was proposed
in the early days of this growing interdisciplinary field. An
optimization problem is usually formulated as a task of
finding a solution minimizing a given cost function, and in
the application of SA, the Metropolis algorithm (MA) [19]
for equilibrium sampling used in the Monte Carlo method is
employed with a slow decrease in temperature by replacing
the feasible solution and its cost with the microscopic state
and its energy, respectively. The previous study was motivated
by the fact that a correct understanding of the function
of SA appeared to be hampered by a misguided physical

analogy. (For a summary of the relevant background, see the
introduction in Ref. [16].) To find a precise connection between
optimization dynamics and physical phenomena, the search
trajectory was analyzed in a multimodal landscape of the
cost function and its behavior was compared to the dynamics
of glass-forming molecular systems in a rugged landscape
of the energy surface. The analysis was performed for the
solution of the traveling salesman problem (TSP) [20,21],
which is one of the hard optimization problems and has been
well studied in both communities. The results showed that,
contrary to the conventional scenario, the effectiveness of SA
comes not from equilibrium sampling at low temperatures
but from the search function of the relaxation dynamics
occurring before equilibrium. These dynamics effectively
work as an optimizer by slow cooling crossing an intermediate
temperature analogous to the glass transition temperature, and
therefore the promising design of the temperature schedule
can be learned from analogy to vitrification phenomena, at
least for the random TSPs considered there. These findings
imply that the physical analogy still serves the purpose of
optimization and that the actual annealing strategy used in the
heat treatment of metals [22,23] and glasses [24] is expected to
be useful also in the finite-time implementation of SA. From
the present interdisciplinary interest, it should be necessary
to verify this unnoticed consistency between simulated and
actual annealing.

We attempt here to do just that: The effectiveness of
nonmonotonic temperature schedules taking advantage of an
effective temperature is examined for the solution of the
same optimization problems. Although similar approaches
to optimization have been discussed in some earlier papers
[25,26], we seek to obtain well-founded knowledge of the
optimization mechanism from analogy to the behavior of
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glass-forming systems. For this purpose, the rate-cycling
experiment, which was introduced in the previous study [16],
and the temperature-cycling experiment, which has been
utilized in glass research [27], are conducted numerically in a
coordinated manner. The reason we adopt these experiments,
the details of which are described in the next section, is that
each framework of the temperature schedule is adjustable
to fit an actual annealing scheme and is convenient for
systematic investigation. Another reason for the application
of the temperature-cycling experiment is that since it has
been widely used in studies on liquid and glass [27–30],
complementary studies on hard optimization problems will
also be helpful in fertilizing the integrated research field [31].

As in the previous study, we examine the hidden search
dynamics (the transition process among the basins of attraction
in the solution space) as well as the optimization performance
because the former reflects the relaxation dynamics and
directly affects the latter. From the results of both experiments,
we evaluate the effectiveness of the actual annealing strategy
and elucidate how each annealing technique works in the
implementation of the algorithm. As shown in Sec. III,
the performance depends primarily on the search performed
near an effective intermediate temperature irrespective of the
annealing technique. In addition, various behaviors analogous
to relaxation-related phenomena are clearly observed in the
hidden search dynamics and some of them appear to work
profitably in finite-time optimization by SA. A discussion
of these and other findings gives us a fresh insight into the
optimization algorithm research in the landscape paradigm.

For the purpose here, both experiments were designed
for a better understanding of the optimization characteristics
without a direct attempt to propose new improvements of
the algorithm. For this reason, the algorithm was sometimes
employed under conditions unsuited for practical use. The
remainder of this paper is organized as follows: In Sec. II,
we give the definition of the TSPs used in the present study
and explain the methods of the two experiments in detail. In
Sec. III, the results of these experiments are presented in an
organized way. In Sec. IV, we discuss the effectiveness of the
actual annealing strategy in finite-time optimization by SA
and further the potential of the function-based analysis of the
search algorithm. In Sec. V, we conclude our study with a brief
remark on the practical implementation.

II. EXPERIMENTAL METHODS

The TSP [20,21] is a combinatorial optimization problem
to find the shortest tour that passes through each of the given
cities once and returns to the starting city. We consider the two
types of random problems used as test beds in the previous
study [16]: (i) the random Euclidean TSP (RE-TSP), where
the locations of N cities are sampled uniformly in the unit
square region and the intercity distance is computed under the
Euclidean metric; and (ii) the random distance matrix TSP
(RD-TSP), where the intercity distances between N cities are
sampled uniformly in the unit interval. Even in the latter type,
we consider only the symmetric case, namely, that the intercity
distance does not depend on the order of two cities.

We introduce here some notation and terminology, which
are the same as used in Ref. [16]. Let x be a tour (a feasible

solution), f (x) be the cost function defined by the tour length,
andN (x) be the neighborhood function. Throughout the study,
we use a 2-opt neighborhood [21], which is defined as a set of
tours constructed by any change of two intercity paths from the
tour x. We write xn (n = 0,1,2, . . .) to represent the (actual)
search history and x∗ to represent the incumbent solution (the
best-so-far solution). A locally optimal solution is a solution
that does not have any improved solution in its neighborhood.
A basin is defined as a set of solutions attracted to the same
locally optimal solution by a simple local search, that is, a
repetition of the move to the best solution in the neighborhood.
Let y(x) be the locally optimal solution inside the basin
including the solution x and we refer to its cost f (y(x)) as the
cost of the basin. [Obviously, y(x) can be found by a simple
local search starting from the solution x; this identification
method is analogous to the mapping-onto-minima approach
used in studies on liquid and glass [32–34]. The temperature
is denoted by T ; however, we often use the logarithmic
temperature � (=log10 T ).

Next, the methods of the two experiments are described in
detail. In each experiment, the SA algorithm is implemented
with a nonmonotonic temperature schedule.

A. Rate-cycling experiment

In the rate-cycling experiment, the effect of the search
performed near a specified temperature is examined by chang-
ing the rate of temperature variation cyclically. To emulate
the strategy used in the actual heat treatment, the previous
framework of a monotonic temperature schedule is extended
so that we can replicate the annealing process beginning with
a heating stage starting from a quenched solution. In what
follows, the rate-cycling process beginning with a heating
stage is referred to simply as h-annealing and that beginning
with a cooling stage (starting from a random solution) as
c-annealing, and both annealing procedures are considered
here. The initial quenched solution for h-annealing is taken to
be a locally optimal solution generated by a simple local search
from a random solution. Although h-annealing starting from a
quenched solution is more analogous to another heat treatment
known as tempering, we use the former name throughout the
paper to avoid excessive terminology.

The framework of the temperature schedule is constructed
in the following manner. First, an initial logarithmic tem-
perature �s, a final logarithmic temperature �e, and a total
search time te (or a total number of search steps, ne) are
selected. Then the whole process is divided into three stages
so that the cooling in the intended logarithmic temperature
range, �c + 1

2�� > � > �c − 1
2��, is performed as its

second stage. We refer to the middle temperature �c as the
target (logarithmic) temperature and the above logarithmic
temperature range simply as the target range. In c-annealing,
as in the previous study, the cooling rate on the logarithmic
temperature scale is selected and fixed at each stage so that
the rates in the first and third stages are equal and are λ times
the rate in the second stage. In h-annealing, the construction
is the same as in the above c-annealing except that the heating
rate is selected and fixed in the first stage and is set equal
to the cooling rate in the third stage. In this framework, the
six parameters, �s, �e, �c, �� (the logarithmic temperature
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FIG. 1. (Color online) An example of the temperature schedule
�(t) used in the rate-cycling experiment; depicted is the case for
h-annealing (�s = �e = −4, �c = −2.0, �� = 1.0, λ = 10, and
te = 106). See text for symbols.

width of the target range), λ (the rate ratio), and te (=ne),
uniquely determine the temperature schedule irrespective of
the annealing procedure.

For experimental convenience, we use the following ex-
pression of the logarithmic temperature schedule in the kth
stage:

�(t) = �(tk−1) + t − tk−1

τk

θk (tk−1 � t � tk), (1)

where tk−1 and tk are the beginning and the ending time
of this stage, respectively, and θk and τk are the variation
in logarithmic temperature (θk > 0 at the heating stage and
θk < 0 at the cooling stage) and the time allocated in this stage,
respectively; hence tk equals the accumulated time of τj ’s up
to j = k (t0 = 0). An example of the temperature schedule
is depicted in Fig. 1 for h-annealing. The values of θk’s are
determined by �s, �e, �c, and ��, and those of τk’s are
determined by θk’s, λ, and te by the following equations:
τ1 = (sθ1/θ̄ )te, τ2 = (−λθ2/θ̄ )te, and τ3 = (−θ3/θ̄ )te, where
s = sgn(θ1) and θ̄ = sθ1 − λθ2 − θ3. [Note that in c-annealing
(s = −1), the present θk and θ̄ are identical to the previous −hk

and H [16], respectively.]
In both annealing procedures, the time allocated in the

second stage increases with the value of λ. Note that the
temperature schedule of c-annealing with λ = 1 is equivalent
to the geometric cooling schedule, which has generally been
adopted in the baseline implementation of SA. In the present
study, we use this unbiased c-annealing as a reference and the
optimization characteristics of each annealing procedure are
evaluated in comparison with those of this reference case.

The algorithm of this experiment is summarized as follows.
[RC1] Determine the logarithmic temperature schedule

�(t); that is, select the values of the six parameters, �s, �e,
�c, ��, λ, and te (=ne).

[RC2] Set n := 0 and generate an initial solution x0 (a
quenched solution for h-annealing and a random solution for
c-annealing). Set � := �(0) and x∗ := x0.

[RC3] Implement a single step of the MA and increment n

by 1. (At this point, the current solution is xn and the current
incumbent solution is x∗.)

[RC4] If the termination condition, n = ne, is satisfied,
output x∗ and stop. Otherwise, set � := �(n) and return to
[RC3].

In a single step of the MA in [RC3], the following [MA1]
is implemented (the logarithmic temperature � has to be
converted to the temperature T in advance).

[MA1] Choose a trial solution x ′
n ∈ N (xn) randomly and

set � := f (x ′
n) − f (xn). If � < 0, accept the trial solution

and set xn+1 := x ′
n; furthermore, if f (xn+1) < f (x∗), renew

the incumbent solution, x∗ := xn+1. If � � 0, accept the trial
solution with the probability exp(−�/T ) and set xn+1 := x ′

n;
with the complementary probability, reject the trial solution
and set xn+1 := xn.

The experimental conditions were determined by taking
into account the characteristic temperatures found in the
previous study [16]. The parameter values were selected in the
following way: In h-annealing, the values of �s and �e were
equally fixed at −4 and the values of �c were selected to cover
the whole interesting temperature range found previously. The
value of �� was selected from the range from 0.2 to 1.8
and the value of λ was selected from {1, 10, 100}. Several
values of te (or ne) were chosen from a wide range to evaluate
the scalability of the algorithm. In c-annealing, the conditions
were the same as those for the above h-annealing except that
the value of �s was fixed at 1 instead of −4.

B. Temperature-cycling experiment

The same effect as that considered in the rate-cycling
experiment is also examined in the temperature-cycling exper-
iment, which is performed by changing the temperature itself
cyclically. As in the h-annealing in the former experiment, a
quenched solution is used for the initial solution.

The framework of the temperature schedule is constructed
in the following manner. First, the target logarithmic tempera-
ture �c, the logarithmic temperature width of the target range
��, and the total number of search steps, ne, are selected.
Then the length of one cycle, 2L, and the number of cycles,
M , are selected so as to satisfy the inequality 2ML < ne. The
logarithmic temperature is fixed at �c − 1

2�� during the first
half of the cycle and at �c + 1

2�� during the last half, and the
cycle starts at the beginning of the search process and repeats
M times. After the final cycle, the logarithmic temperature is
returned to and kept fixed at �c − 1

2�� during the rest of the
process. The temperature schedule in this experiment is thus
determined by the five parameters, �c, ��, L, M , and ne. An
example of the schedule is depicted in Fig. 2. To determine
the influence of the presence or absence of the cycling, we
also consider the process without cycling (M = 0), which
is nothing other than the MA search performed at a lower
temperature (�c − 1

2��) starting from a quenched solution.
The algorithm of this experiment is summarized as follows.
[TC1] Select the values of the five parameters, �c, ��, L,

M , and ne.
[TC2] Set n := 0 and generate an initial solution x0 (a

quenched solution). Set x∗ := x0. If M = 0, go to [TC4].
Otherwise, set m := 0.

[TC3] Repeat the following lines until the condition m = M

is satisfied: Set � := �c − 1
2�� and repeat [TC5] until the

condition n = (2m + 1)L is satisfied; set � := �c + 1
2��
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FIG. 2. (Color online) An example of the temperature schedule
used in the temperature-cycling experiment (�c = −2.0, �� = 1.0,
M = 2, and ne = 10L = 106). See text for symbols.

and repeat [TC5] until the condition n = (2m + 2)L is
satisfied; increment m by 1.

[TC4] Set � := �c − 1
2�� and repeat [TC5] until the

termination condition, n = ne, is satisfied. Output x∗ and stop.
[TC5] (Before repeating this line, the logarithmic temper-

ature � has to be converted to the temperature T .) Implement
a single step of the MA, namely, [MA1] and increment n by
1. (At this point, the current solution is xn and the current
incumbent solution is x∗.)

The experimental conditions were chosen according to
those adopted in the above rate-cycling experiment: The values
of �c, ��, and ne were the same as in the rate-cycling
experiment. The value of L was taken to be ne/10, which
was always an integer number in the present experiment, and
hence the value of M was selected from non-negative integers
not exceeding 4.

C. Additional remarks

In both experiments, the optimization performance evalu-
ated by f (y(x∗)) and the hidden search dynamics described
by f (y(xn)) were investigated for various combinations of
the parameter values. The cost variation along the actual
search history, f (xn), which here is called the actual search
dynamics, is sometimes referenced in the next section. The
experiments were conducted in the following manner. First,
each experiment was performed for a single instance for each
type of problem, namely, RE-TSP and RD-TSP; three system
sizes, N = 100 (=102), N = 316 (≈102.5), and N = 1000
(=103), were considered here. The average behavior was
observed over I independent runs, where the value of I was
taken to be 24 for N = 100, 23 for N = 316, and 22 for
N = 1000. After surveying all the results and characterizing
them, each experiment was repeated only for N = 316 to
confirm the first findings. This confirmation experiment was
done for two different instances for each type of problem with
a larger I (=25).

III. RESULTS

In this section, the results of the two experiments are
presented in an organized way. Although the results are shown

only for the first instance of the RE-TSP in the confirmation
experiment (N = 316), the characteristic features described
below were similarly observed in the other cases (which
include the cases of RD-TSP). Throughout this confirmation
experiment, the values of �c were taken from −2.8 to −1.2 in
increments of 0.1, and the values of �� and ne were selected
from {0.2, 0.6, 1.0, 1.4, 1.8} and {105, 106, 107}, respectively.
All results are averages over I (=25) independent runs, which
are not described each time in the text below; it was confirmed
that all I initial solutions differ from one another even if they
are prepared by quenching.

A. Rate-cycling experiment

We begin with the results of the rate-cycling experiment.
In the previous study [16], we found that the standardized
SA with the geometric cooling schedule can be improved
within the framework of monotonic cooling by taking the
search function of the relaxation dynamics appropriately into
account. As shown just below, h-annealing in the present
experiment can also enhance the optimizing ability of SA
through the same mechanism. Figure 3 shows the optimization
performance of h-annealing on a long time scale (ne = 107) for
the case �� = 1.0. We find that the performance is improved
by slow cooling crossing an intermediate temperature. The
most effective temperature is close to that found in c-annealing
and the resulting performance is comparable to that of the latter
cooling-only process. (These are reported in Table I.) In Fig. 4,
the hidden search dynamics for various �c’s are plotted for the
case λ = 100 in Fig. 3. The performance is maximized when
the relaxation dynamics observed as downward interbasin
transitions work most successfully on the experimental time
scale.

In this relaxation process, as predicted previously [16], a
behavior analogous to the stabilization phenomenon observed
in glass-forming materials [24] occurs over a wide range of
parameter settings. Figure 5 shows the actual and hidden search
dynamics for the best parameter setting for h-annealing. In this
figure, the result for c-annealing with the same values of �c,
��, and λ and that for the reference SA are also depicted for

FIG. 3. (Color online) Optimization performance f (y(x∗)) (RE-
TSP with N = 316; �s = �e = −4, �� = 1.0, ne = 107, and I =
25). Results are averaged over I search processes and plotted against
the target logarithmic temperature �c.
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TABLE I. Optimization performance f (y(x∗)) (RE-TSP with
N = 316; I = 25). The best average result among the 15 cases (see
text for details) is listed for each target logarithmic temperature �c

on each experimental time scale ne. The corresponding values of
�� and λ are also listed in parentheses in this order. The very best
result among all �c’s (ranging from −2.8 to −1.2 in increments of
0.1) on each ne is listed in boldface. For comparative purposes, the
average result for the reference SA (c-annealing with λ = 1; �s = 1
and �e = −4) is listed in the bottom row. All results are averages
over I search processes.

ne

�c 105 106 107

h-annealing (�s = �e = −4)
−1.4 14.519 14.154 13.629

(0.2,1) (1.8,100) (1.8,100)
−1.7 14.507 13.978 13.536

(0.2,1) (0.6,100) (1.4,100)
−1.9 14.484 13.872 13.521

(0.2,10) (0.6,100) (0.6,100)
−2.0 14.471 13.866 13.513

(0.6,1) (0.6,100) (0.6,100)
−2.1 14.443 13.908 13.502

(1.0,100) (1.0,10) (1.0,100)
−2.2 14.407 13.952 13.554

(0.6,100) (1.4,100) (1.4,10)
−2.4 14.408 14.009 13.564

(1.0,100) (1.4,100) (1.8,100)
−2.7 14.440 14.097 13.663

(1.8,100) (1.8,10) (1.8,100)

c-annealing (�s = 1 and �e = −4)
−1.4 14.492 14.144 13.593

(1.0,100) (1.4,100) (1.8,100)
−1.7 14.586 13.954 13.554

(0.2,100) (0.6,100) (1.4,100)
−1.9 14.620 13.902 13.509

(1.0,100) (0.6,100) (0.6,100)
−2.0 14.641 13.907 13.501

(1.0,100) (0.6,100) (0.6,100)
−2.1 14.658 14.013 13.531

(0.6,10) (1.4,100) (1.0,100)
−2.2 14.678 14.038 13.542

(1.8,100) (1.4,100) (1.4,100)
−2.4 14.668 14.118 13.582

(0.2,10) (1.8,100) (1.8,100)
−2.7 14.707 14.305 13.684

(0.2,10) (1.8,100) (1.8,100)
Reference SA 14.749 14.481 13.726

comparative purposes, and all the results are plotted against the
logarithmic temperature � instead of the time step n. As clearly
shown in Fig. 5(b), the search trajectory starting from the initial
quenched solution does not return in the heating stage to the
original random solution, which should be found in the same
basin, but the trajectory progresses into low-lying basins in
the final phase of the heating stage and the subsequent slow-
cooling stage. It should be noted that for this parameter setting,
the progress of the stabilization-like behavior, which seems to
be beneficial to the present optimization, is first recognized
in detail in the hidden search dynamics [cf. the actual search

FIG. 4. (Color online) Hidden search dynamics f (y(xn)) (RE-
TSP with N = 316; �s = �e = −4, �� = 1.0, λ = 100, ne = 107,
and I = 25). Points are the results at some representative time steps.
All results are averages over I search processes.

dynamics depicted in Fig. 5(a)]. On this time scale, overall, the
search dynamics of h-annealing and that of the corresponding
c-annealing were close in the cooling process; therefore, there
appeared to be no significant difference in the optimization
performance of these two annealing procedures regardless of
the value of �c.

These features were commonly observed if the experi-
mental time was long enough. Looking over the results for
various time scales, however, we see that the situation varies
with the total search time. The results of the performance on
different time scales are listed in Table I for both annealing
procedures. This table was constructed in the following
manner. First, for each annealing procedure, the best average
result among all possible combinations of five values of ��

and three values of λ was chosen for each �c on each ne. Then
the chosen result was listed with the corresponding values of
�� and λ. For comparative purposes, the average result of the
reference SA is listed in the bottom row. We see from this table
that, as mentioned above, the performance is almost the same in
the two procedures on a long time scale (ne = 107). On shorter
time scales, however, a relative superiority of h-annealing is
found at low target temperatures. The search dynamics of
such a case are shown in Fig. 6 for ne = 106. We find a
separation between the trajectories of the two procedures not
only in the actual search dynamics [Fig. 6(a)] but also in the
hidden search dynamics [Fig. 6(b)], which is probably due to
an incomplete system response to the temperature variation.
Similar behaviors are observed over a wider range of parameter
settings on a much shorter time scale. As an example, the result
for the best parameter setting for h-annealing for ne = 105

is shown in Fig. 7. The two trajectories deviate significantly
from each other in the actual search dynamics [Fig. 7(a)], and
curiously, roughly upward transitions appear in the hidden
search dynamics for both c-annealing and the reference SA
[Fig. 7(b)]. In these c-annealings, the incumbent solution
x∗ is still renewed in the final phase of the search process;
therefore, the optimization performance evaluated by f (y(x∗))
deteriorates beyond that of the simple local search. [Note that
the average performance of the simple local search is shown
in Figs. 5–7 as the value of f (y(x0))’s, which is also equal to
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FIG. 5. (Color online) Actual [(a) f (xn)] and hidden [(b)
f (y(xn))] search dynamics (RE-TSP with N = 316; �c = −2.1,
�� = 1.0, λ = 100, ne = 107, and I = 25). Depicted are the results
for h-annealing (�s = �e = −4), c-annealing (�s = 1 and �e =
−4), and the reference SA (c-annealing with λ = 1; �s = 1 and �e =
−4). Note that the abscissa represents the logarithmic temperature �

instead of the time step n. Points are the results at some representative
time steps and are connected by line segments along the search
trajectory. Arrows indicate the direction of the time evolution for
h-annealing. All results are averages over I search processes.

that of f (x0) in h-annealing.] In contrast, we can still receive
benefit from downward interbasin dynamics in h-annealing,
and consequently, h-annealing outperforms c-annealing. From
the optimization point of view, this superiority of h-annealing
is not striking: The improvement in the basin’s cost during the
whole process is far less than that achieved in the extension
of the search time. This advantage of h-annealing, however,
can have practical importance in the application to large-size
instances in a given search time. The reason is that in
c-annealing, the critical time scale for the onset of the above
malfunction of SA became longer with increasing system size.
This functional limitation of c-annealing is mentioned again
in Sec. IV from the scalability point of view.

B. Temperature-cycling experiment

Next we turn to the results of the temperature-cycling
experiment. The optimizing ability can also be enhanced
by this nonmonotonic technique. Figure 8 shows the

FIG. 6. (Color online) Actual [(a) f (xn)] and hidden [(b)
f (y(xn))] search dynamics (RE-TSP with N = 316; �c = −2.4,
�� = 1.4, λ = 100, ne = 106, and I = 25). Other details are the
same as in Fig. 5.

optimization performance for the case M = 2 for ne = 107.
The performance is successfully improved in cases where
the whole search process is performed near the effective
intermediate temperature found in the above rate-cycling
experiment. However, even if the target temperature deviates
from this effective point, a larger �� can compensate for the
deterioration to a certain extent. To overview the results for
various parameter settings, the results of the performance are
listed in Table II in a manner similar to that used in Table I.
Here, the best average result among all possible combinations
of five values of �� and four positive values of M is chosen
and listed with the corresponding values of �� and M(’s).
From the table we find that the average result plotted in
Fig. 8 for ne = 107 (and M = 2) can be improved further
for a high or low value of �c. In general, as in this case, a
smaller number of cycles was better for high �c’s, whereas
a larger number was better for low �c’s. In every situation,
however, the optimization performance was improved to, at
most, a level comparable to that of the narrow cycling near the
effective temperature within the present study. Table II also
shows that the very best performance among all �c’s on this
time scale is at the same level as that of the two annealings in
the rate-cycling experiment.

Intriguingly, as shown just below, a variety of behaviors
analogous to relaxation-related phenomena is observed in the
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FIG. 7. (Color online) Actual [(a) f (xn)] and hidden [(b)
f (y(xn))] search dynamics (RE-TSP with N = 316; �c = −2.2,
�� = 0.6, λ = 100, ne = 105, and I = 25). Other details are the
same as in Fig. 5.

search dynamics and can be related to the above optimization
characteristics. Typical results of the hidden search dynamics
on a long time scale (ne = 107) are shown in Figs. 9(a)–9(d).
Except for the third one [Fig. 9(c)], the results are for the
best parameter setting for the selected target logarithmic
temperature, and in all panels, the result for the no-cycling
case is superimposed to illustrate the effect of the cycling. In
the best case for �c = −1.4 [Fig. 9(a)], relaxation occurs and
proceeds at the lower temperature (� = −1.9); however, the
temperature cycling appears to ruin this productive process.
This is because the solution is sufficiently randomized during
the search at the upper temperature (� = −0.9), and these
observations remind us of the rejuvenation phenomenon
found in spin glasses [27]. In such a situation, the effective
relaxation dynamics contribute only after the end of the cycling
process; in short, the temperature cycling plays no role in this
optimization, and hence a smaller M is better. In the best case
for �c = −1.9, [the most successful case in this experiment;
Fig. 9(b)], the enhancement of the optimizing ability derives
from the relaxation occurring near the effective temperature
and from a slight acceleration of relaxation, caused in this
case mainly by the second cycle; a similar acceleration
phenomenon is known to be observed in a polymer glass [28].
At this target temperature, the optimization performance is
maximized for the smallest ��(= 0.2); however, even at the

FIG. 8. (Color online) Optimization performance f (y(x∗)) (RE-
TSP with N = 316; M = 2, ne = 10L = 107, and I = 25). Results
are averaged over I search processes and plotted against the target
logarithmic temperature �c.

same temperature, unfavorable upward interbasin dynamics
similar to those found in the rate-cycling experiment are
observed for a larger ��. To illustrate the latter situation, the
result for the largest ��(= 1.8) for the same �c is shown
in Fig. 9(c). We find that the search trajectory goes into
high-lying basins after sudden cooling and that, in this case,
the average cost of the final basin is still higher than that of the
initial quenched solution. Such upward transitions occurred
when cooling was performed rapidly over the effective target
range, in which the relaxation dynamics successfully function
as an optimizer if the system is cooled down slowly on a

TABLE II. Optimization performance f (y(x∗)) (RE-TSP with
N = 316; I = 25). The best average result among the 20 cases (see
text for details) is listed for each target logarithmic temperature �c

on each experimental time scale ne. The corresponding values of ��

and M(’s) are also listed in parentheses in this order. The very best
result among all �c’s (ranging from −2.8 to −1.2 in increments of
0.1) on each ne is listed in boldface. All results are averages over I

search processes.

�c Temperature cycling: ne (=10L)

105 106 107

−1.4 14.533 14.182 13.640
(1.0,1–4) (1.4,2) (1.0,1)

−1.7 14.533 14.098 13.613
(1.4,1–4) (0.6,1) (0.6,1)

−1.9 14.460 13.920 13.527
(0.6,1) (0.2,1) (0.2,2)

−2.0 14.466 13.897 13.573
(0.6,1) (0.2,4) (0.2,4)

−2.1 14.405 13.989 13.597
(0.2,1) (0.2,4) (0.2,3)

−2.2 14.416 13.997 13.661
(0.6,2) (0.6,4) (0.6,4)

−2.4 14.449 14.032 13.701
(0.6,3) (1.0,4) (1.0,4)

−2.7 14.456 14.104 13.727
(1.8,2) (1.4,4) (1.4,4)
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FIG. 9. (Color online) Hidden search dynamics f (y(xn)) (RE-
TSP with N = 316; ne = 10L = 107 and I = 25). The result for the
no-cycling case at the lower temperature (�c − 1

2 ��) is superim-
posed; the two behaviors are the same in the first L(=106) steps.
(a) �c = −1.4, �� = 1.0, and M = 1; (b) �c = −1.9, �� = 0.2,
and M = 2; (c) �c = −1.9, �� = 1.8, and M = 2; (d) �c = −2.7,
�� = 1.4, and M = 4. All results are averages over I search
processes.

long time scale. In the best case for �c = −2.7 [Fig. 9(d)],
acceleration of relaxation occurs every cycle, and in this case
it always starts immediately after sudden heating. The system
is almost frozen at the lower temperature (� = −3.4) and
therefore the relaxation proceeds intermittently only at the

upper temperature (� = −2.0), which recalls the memory
effect observed in different glass-forming materials [27–29].
In such a situation, the incumbent solution was improved cycle
by cycle, and hence a larger M is better.

As the time scale becomes shorter, the system response
to the temperature change becomes insufficient, and as a
result, the effect of the temperature cycling is suppressed.
Nevertheless, we still receive the benefit of the relaxation
dynamics: Even on the shortest time scale (ne = 105), as
reported in Table II, the highest performance is at the same
level as that of h-annealing in the rate-cycling experiment.

IV. DISCUSSION

In both experiments under nonmonotonic temperature
control, we found that there exists an effective intermediate
temperature as in the previous case of monotonic cooling. If
the experimental time is sufficiently long, the optimization
performance is sensitive to cooling near this temperature. It
is, however, relatively insensitive to preprocessing (heating
from a quenched solution or cooling from a random solution)
and to the schedule in the target range (monotonic cooling or
cyclic temperature change). These characteristics result in no
substantial difference in optimizing ability between the two
nonmonotonic techniques and these techniques achieve the
same degree of improvement as in the slow-cooling process.
In addition, on a short time scale, whereas the effective
relaxation dynamics disappear in c-annealing, the advantage
of the effective temperature still remains in h-annealing
and temperature cycling. Thus the present nonmonotonic
approach has a wider operation range than the cooling-only
process. From these observations, we conclude that the actual
annealing strategy is effective also in finite-time optimization
by SA and more workable than the conventional slow-cooling
strategy.

What should be emphasized here is that the optimization
mechanism under nonmonotonic temperature control can still
be explained by analogy to physical relaxation-related phe-
nomena. We found that the characteristic behaviors analogous
to the stabilization phenomenon and the acceleration of relax-
ation can be observed in detail in the hidden search dynamics
and these behaviors play favorable roles in optimization. In
addition to the other relaxation-related behaviors known in
laboratory experiments on liquid and glass, unfavorable search
dynamics observed as upward interbasin transitions occur
when the temperature is rapidly decreased over the effective
intermediate range. In the optimization context, this alerts
us to the fact that reheating and subsequent cooling with a
mere hope of escape from a basin can be counterproductive.
As reported in Tables I and II, in cases where the idea
of annealing is implemented successfully, the optimum ��

is relatively small for target temperatures near the effective
intermediate temperature and larger ��’s are preferable for
high or low target temperatures. These show the critical need
for the search performed near the effective temperature. This
finding applies whether or not the temperature schedule is
monotonic; therefore, it is considered that, as discussed also in
the previous study [16], the utilization of relaxation dynamics
occurring near the effective temperature should be a primary
factor in the successful implementation of finite-time SA, at
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least for the present TSPs. (Note that the results depend on the
landscape structure determined by the cost and neighborhood
functions.) In this way, the similarities found between the
optimization dynamics and the relaxation process provide a
unified understanding of the optimization mechanism of SA
on the basis of the physical analogy.

A note is added on another relevant observation in the
rate-cycling experiment. In the present study, the optimization
performance was evaluated by the cost of the basin including
the incumbent solution, f (y(x∗)). Considering the primary
role of the relaxation dynamics, we can recognize that this
commonly used criterion is inappropriate in the following
situation. In h-annealing on a short time scale, it can happen
that after the system is activated in the heating stage, the
actual search dynamics do not return to the average cost
level of the initial quenched solutions in the cooling stages,
in which, however, downward transitions to low-lying basins
appear in the hidden search dynamics. In this case, the
present evaluation cannot reflect the influence of the relaxation
dynamics occurring in the late steps because the incumbent
solution found in an early step is not improved afterward. This
disadvantage of h-annealing was noticeable in the solution of
the RD-TSP; more specifically, c-annealing in the confirmation
experiment (N = 316) with a high target temperature for
ne = 106 clearly outperformed the corresponding h-annealing
in the comparison as in Table I. It was to be expected that
in this c-annealing, the effect of the relaxation dynamics was
properly assessed by f (y(x∗)) because downward interbasin
transitions still occurred on this time scale and the incumbent
solution was improved throughout the search process. When
the performance was evaluated by the final basin’s cost
f (y(xne )), which was substantially better than f (y(x∗)) in the
h-annealing discussed here, the result did not contradict the
above conclusion.

Finally, we review how computational physics analysis
worked in the previous and present optimization studies from
the interdisciplinary point of view; this gives fresh insight into
the optimization algorithm research in the landscape paradigm.
The experimental analysis in these studies, specifically that
using the mapping-onto-minima approach, enabled us to
identify the search function of the SA algorithm. In this
respect, the analysis of the hidden search dynamics does
not merely supply information unavailable in the conven-
tional procedure-based algorithm research; rather, it creates
a meaningful complementary approach, a function-based
approach, to the studies on heuristic optimization algorithms.
The significance of this approach can be highlighted by the
following fact: The present comprehensive understanding of
the optimization characteristics of various annealing schemes
can never be acquired without reunifying the algorithms by
their common search function: they have conventionally been
distinguished from one another by their procedure detail. This
understanding will probably be extensively applicable to the
other threshold algorithms [35] (for specific examples, see,
e.g., Refs. [5,6,36]), because the relaxation dynamics play a
positive role also in their optimization process [37]. Another
possible task created from the present study is a function-based
evaluation of the scalability of the algorithm. The present
rate-cycling experiment showed that in c-annealing from a
random solution for a given system size, there exists a lower

bound of the search time for downward interbasin dynamics
to occur. Because this critical time becomes longer with
increasing system size, there exists an upper bound on the
system size for the effective relaxation dynamics to work on
a given time scale. This means that if one hopes to evaluate
properly the scalability of this algorithm, it must be done with
clarification of the operation range of the intrinsic optimization
function. As shown by these illustrations, we can make more
careful and comprehensive considerations of the algorithm
by focusing on the search function analyzed in the landscape
paradigm. This should be stressed as an illuminating aspect of
computational physics analysis in the optimization algorithm
research.

V. CONCLUSIONS

The effectiveness of the actual annealing strategy in finite-
time optimization by SA was examined in the hope of drawing
well-founded knowledge of its optimization mechanism from
the physical analogy. The rate-cycling and the temperature-
cycling experiments were conducted systematically for the
solution of two types of random TSPs. From the results, we
confirmed for the present instances that the actual annealing
strategy is effective and more workable than the conventional
slow-cooling strategy. In the course of these experiments,
a variety of behaviors analogous to those characteristic of
glass-forming materials was observed in detail in the hidden
search dynamics. From these observations, it was shown that
the optimization mechanism of the present SA algorithms can
be explained in a unified manner by analogy to relaxation
and its related phenomena irrespective of the annealing tech-
nique. Furthermore, considering how computational physics
analysis contributed in the previous and present studies,
we have discussed the significance of the function-based
approach to the optimization algorithm research. Using this
approach, it is hoped that our knowledge of heuristic opti-
mization algorithms will be refined in this interdisciplinary
field.

Before closing, a brief remark is made on the practical
application of the physical annealing strategy. In the present
evaluation, the initial solution was generated by quenching
from a random solution and yet we paid no attention to the time
for this preparation of the locally optimal solution. This time is
not necessarily negligible for large-size instances and therefore
this fact undermines the merit of the present nonmonotonic
approach. However, if one only takes advantage of the effective
intermediate temperature, some easily generated short tour will
probably serve as a substitute, and in fact we can find a similar
idea in the existing method. In the approach of low-temperature
starts [21], a short initial tour is generated in some constructive
manner and the conventional SA is implemented with a low
initial temperature. From the functionality point of view, it is
considered that this approach preserves the optimizing ability
of SA by maintaining the advantage of the effective relaxation
dynamics in a limited search time.
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