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Transitions between imperfectly ordered crystalline structures: A phase switch Monte Carlo study
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A model for two-dimensional colloids confined laterally by “structured boundaries” (i.e., ones that impose a
periodicity along the slit) is studied by Monte Carlo simulations. When the distance D between the confining walls
is reduced at constant particle number from an initial value D0, for which a crystalline structure commensurate
with the imposed periodicity fits, to smaller values, a succession of phase transitions to imperfectly ordered
structures occur. These structures have a reduced number of rows parallel to the boundaries (from n to n − 1
to n − 2, etc.) and are accompanied by an almost periodic strain pattern, due to “soliton staircases” along the
boundaries. Since standard simulation studies of such transitions are hampered by huge hysteresis effects, we
apply the phase switch Monte Carlo method to estimate the free energy difference between the structures as
a function of the misfit between D and D0, thereby locating where the transitions occur in equilibrium. For
comparison, we also obtain this free energy difference from a thermodynamic integration method: The results
agree, but the effort required to obtain the same accuracy as provided by phase switch Monte Carlo would be at
least three orders of magnitude larger. We also show for a situation where several “candidate structures” exist
for a phase, that phase switch Monte Carlo can clearly distinguish the metastable structures from the stable
one. Finally, applying the method in the conjugate statistical ensemble (where the normal pressure conjugate to
D is taken as an independent control variable), we show that the standard equivalence between the conjugate
ensembles of statistical mechanics is violated.
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I. INTRODUCTION

Periodically ordered arrays of nanoparticles, colloidal crys-
tals, crystalline mesophases formed from surfactant molecules
or block copolymers, etc., are all examples of complex
periodic structures that can occur in soft matter systems.
Since often the interactions between the constituent particles
of these structures are to a large degree tunable, one has the
possibility of producing materials with “tailored” properties
which have potential applications in nanotechnological de-
vices [1–5]. When seeking to provide theoretical guidance for
understanding structure-property relations in such complex
soft matter systems, a basic issue is how to judge the
relative stability of competing candidate structures, that is, to
distinguish the stable structure (having the lowest free energy)
from the metastable ones. For standard crystals formed from
atoms or small molecules, this question can be answered by
comparing ground state energies of the competing structures
(and, if necessary, also taking entropic contributions from
lattice vibrations into account, within the framework of the
harmonic approximation). In soft matter systems, disorder in
the structure and thermally driven entropic effects rule out
such an approach, and hence there is a need for computer
simulation methods that compute the free energy of the various
complex structures. However, as is well known, the free energy
of a model system is not a direct output of either molecular
dynamics or Monte Carlo simulations, and special techniques
have to be used [6–11].

In principle, one can obtain the absolute free energy of
a structure by linking it to some reference state of known
free energy by means of thermodynamic integration (TI)
[6–16]. The strengths of TI are that it is both conceptually
simple and often straightforward to implement. Its principal
drawback is that the quantity of interest, namely the free

energy difference between candidate structures, is typically
orders of magnitude smaller than the absolute free energies
of the individual structures which TI measures. Essentially,
therefore, TI estimates a small number by taking the difference
of two large ones; as a consequence, the precision of the
method is limited and an enormous (even sometimes wasteful)
investment of computer resources may be needed to resolve
the free energy difference accurately [9].

A much more elegant approach, albeit one which is not quite
so easy to implement as TI, is the “phase switch Monte Carlo”
[17–23] technique. This method is potentially more powerful
than TI because it focuses directly on the small free energy
difference between the structures to be compared, rather than
their absolute free energies. In previous work, the precision of
the method was demonstrated in the context of measurements
of the free energy difference between fcc and hcp structures of
hard spheres [17,19] and the phase behavior of Lennard-Jones
crystals [20] and as a means of studying liquid-solid phase
transitions [18]. In the latter case, simple model systems
containing only a few hundred particles could be studied, while
for the study of the fcc-hcp free energy difference [17,21]
larger systems of up to 1728 particles could be studied by
virtue of the fact that these crystals differ only in their
packing sequence of close-packed triangular defect-free lattice
planes. However, it is an open question what system sizes one
can attain with the phase switch method for more general
crystalline systems, including—as in the present work—
ones which exhibit considerable structural disorder (“soliton
staircases,” see below). Furthermore, there have hitherto been
no like-for-like comparisons of the TI method and the phase
switch method on the same system, so while there are good
reasons for presuming the superiority of phase switch (in terms
of precision delivered for a given computational investment),
this has never actually been quantified.
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In the present paper, we address these matters, considering
as a generic example a two-dimensional colloidal crystal in
varying geometrical confinement [24–28]. As is well known,
two-dimensional colloidal crystals are experimentally much
studied model systems [29–40] comprising, for example,
polystyrene spheres containing a superparamagnetic core
adsorbed at the air-water interface. Applying a magnetic field
oriented perpendicular to this interface creates a repulsive
interaction that scales like r−3 (r being the particle separation),
whose magnitude is controlled by the magnetic field strength
[29]. Lateral confinement of such two-dimensional crystals
can be effected mechanically or by laser fields (if the latter
are also applied in the bulk of such a crystal, one can
study laser-induced melting and/or freezing [41–44]). Of
course, there exist many related problems in rather different
physical contexts (“dusty plasmas” [45,46], i.e., negatively
charged SiO2 fine particles with 10 μm diameter in weakly
ionized rf discharges; lattices of confined spherical block
copolymer micelles [47]; vortex matter in slit channels [48],
etc.). However, our study does not address a specific system;
rather we focus on the methodological aspects of how one can
study such problems by computer simulation.

The outline of the present paper is a follows. In
Sec. II, we summarize the key facts about our model, namely
strips of two-dimensional crystals confined between two
walls where structural phase transitions may occur when
the distance between the (corrugated) rigid boundaries is
varied [25–28,49–51] (i.e., a succession of transitions in the
number of crystal rows n parallel to the walls occur, n →
n − 1 → n − 2, with increasing compression, accompanied
by the formation of a “soliton staircase” at the walls [25–28]).
In Sec. III, the methods that are used are briefly described:
The TI method of Schmid and Schilling [15,16] is used as a
baseline, while the main emphasis is on the phase switch Monte
Carlo method (implementation details of which are deferred
to the Appendix). In Sec. IV we describe the results of the
application of these techniques to the model of Sec. II. We show
that phase switch Monte Carlo [18–20] can accurately locate
the phase transitions, despite the need to deal with thousands
of particles, and is orders of magnitude more efficient than TI.
Section V summarizes some conclusions.

II. STRUCTURAL TRANSITIONS IN CRYSTALLINE
STRIPS CONFINED BY CORRUGATED BOUNDARIES:

PHENOMENOLOGY

Here we introduce the model for which our methodology
is exemplified and recall briefly the main findings concerning
the rather unconventional transitions that have been detected
[25–28], as far as they are relevant for the present study.

We consider monodisperse colloidal particles in a strictly
two-dimensional geometry, which then are treated like point
particles in a plane interacting with a suitable effective
potential V (r) that depends only on the interparticle distance r .
In the real systems [29,31–35] this potential is purely repulsive,
but due to the magnetostatic dipole-dipole interaction (whose
strength is controlled by the external magnetic field) it is very
slowly decaying, V (r) ∝ r−3. Since we here are not concerned
with quantitative comparisons with real experimental data
on such systems, we simplify the problem by adopting a

computationally more efficient r−12 potential, in accord with
previous work [25–28]. Moreover, to render it strictly short-
ranged, we introduce a cutoff rc, such that V (r � rc) ≡ 0, and
employ a smoothing function to make V (r) differentiable at
r = rc. Thus, the model potential used is

V (r) = ε[(σ/r)12 − (σ/rc)12]

[
(r − rc)4

h4 + (r − rc)4

]
, (1)

with parameters rc = 2.5σ and h = 0.01σ . Henceforth, the
particle diameter σ = 1 defines the length units in our model,
and for the energy scale, ε = 1 is taken, while Boltzmann’s
constant kB = 1. It is known that at T = 0 the ground state of
this model is a perfect triangular lattice, with a lattice spacing
a related to the choice of the number density ρ = N/V [with
N the particle number and V the (two-dimensional) “volume”
of the system] via

a2 = 2/(
√

3ρ). (2)

Assuming the physical effect of truncating the potential
can be neglected, only the choice of the combination X =
ρ(ε/kBT )1/6 controls the phase behavior [52]. Thus, following
previous work in the NVT ensemble it suffices to choose a
single density when the temperature variation is considered
[25,53]. For the particular choice ρ = 1.05, the melting
transition of this model is known to occur at about T = Tm ≈
1.35 [53]. Note that here we are not at all concerned with
the peculiarities of melting in two dimensions [54], and hence
we focus on a temperature deep within the crystalline phase,
T = 1. Although it is known that the density of vacancies
and interstitials in d = 2 for any nonzero temperature is also
nonzero in thermal equilibrium [54,55], for the chosen particle
number N = 3240 the system is essentially defect free, since
the densities of these point defects at T = 1 are extremely
small [25,53].

The geometry of the present system is a D × Lx slit,
confined in the y direction and periodic in the x direction.
In the y direction there are ny = 30 rows of the triangular
lattice, each containing nx = 108 particles, stacked upon each
other. The x direction coincides with a lattice direction so that
Lx = nxa. The confining boundaries (one at the top and one
at the bottom of the system) each take the form of a double
row of particles in which the particles are rigidly fixed at the
sites of a perfect triangular lattice (Fig. 1). These rows of fixed
particles represent rigid corrugated walls, essentially acting as
a periodic wall potential on the mobile particles. The mobile
particles cannot slip between the wall particles. The second
row of wall particles is necessary, though, as the range of the
potential is large enough for the particles in the first row of
mobile particles to feel the potential exerted by the particles
in both rows of the wall. A single row of wall particles would
therefore not create the correct potential for this crystalline
structure.

While the distance of the first row at the upper wall from
the first row of mobile particles in the ideal stress-free crystal
is simply D = nya

√
3/2, in the following we are interested in

the response of the system when the walls occur at a smaller
distance, caused by a misfit �, defined via [56]

D = (ny − �)a
√

3/2. (3)
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FIG. 1. Sketch of the system geometry, showing the fixed wall
particles (black circles) and the mobile particles (gray circles). The
orientation of the coordinate axes is indicated, as well as the lattice
spacing of the triangular lattice (a) and the linear dimensions Lx,D

of the system.

As described in the previous work [25–28], standard Monte
Carlo simulation [6,7] allows one to study this model at
various values of �, and also sample the stress σ = σyy − σxx

(σαβ are the Cartesian components of the pressure tensor)
applying the virial formula [6,7]. Figure 2 shows that when
one starts out with the perfect crystal (ny = 30) with no
misfit, the crystal already shows a small finite stress, because
the rigid wall particles somewhat hinder the vibrations of
the mobile particles in their potential wells, but this effect
is of no importance here. Rather we focus on the (slightly
nonlinear) increase of the stress up to about � = �c ≈ 2,
followed by the (almost) discontinuous decrease, and the
subsequent increases again with further enhancement of the
misfit. A previous structural analysis has revealed [25–28]
that the sudden decrease of stress is due to a transition in the
number of rows in the crystal, ny → ny − 1 = 29. However,
since in the NVT ensemble the particle number is conserved,
the nx = 108 particles of the row that disappears must be
redistributed among the remaining rows. A closer examination
of the structure revealed that none of these particles enter
the two rows adjacent to the rigid walls; instead they all
go into the ny − 3 = 27 rows of the system that are further

0 1 2 3 4 5
Δ

-2

0

2

4

6

8

σ

30 rows at start
29 rows at start
28 rows at start, conf. nr. 1
28 rows at start, conf. nr. 2
28 rows at start, conf. nr. 3

FIG. 2. (Color online) Stress σ plotted vs misfit � for a system of
N = 3240 particles and using different starting configurations having
ny = 30, ny = 29, and ny = 28, as indicated in the figure. Note the
huge hysteresis of the ny = 30 → ny = 29 and ny = 29 → ny = 28
transitions. For further explanations, see main text.

FIG. 3. (Color online) (a) Putting n + 1 particles in a periodic
potential with n minima creates a soliton configuration, that is, over
a range of several lattice spacings particles are displaced from the
potential minima (schematic). (b) Superimposed snapshot pictures
of 750 configurations of the particle positions, where for a system of
ny = 30 rows and a large misfit (� = 2.6) a transition to ny − 1 = 29
rows has occurred (nx = 108 and T = 1.0 were chosen). The four
solitons at each wall are visible due to the larger lateral displacements
of the particles, leading to a darker region in the snapshot. Panel (c)
shows a close-up of the structure near the upper wall. Numbers shown
along the axes indicate the Cartesian coordinates of the particles.
Panels (b) and (c) have been adapted from Chui et al. [25].

away from the walls. Thus, in the present case, the particle
number per row becomes n′

x + nx/(ny − 3) = nx + 4, and
this leads to a new lattice spacing in the x direction of
a′ = a/(1 + 4/nx), which is no longer commensurate with the
spacing between the particles forming the rigid walls (or the
two immediately adjacent layers which remain commensurate
with them). While for the rows in the center of the system (near
ny/2) this compression of the lattice spacing occurs uniformly
along the x direction, this is not the case close to the walls,
which provide a periodic potential (with periodicity a) that acts
on the row of mobile particles a little further inside the slit. The
fact that on the scale Lx the effective wall potential exhibits nx

minima but n′
x = nx + 4 particles need to be accommodated

leads to the formation of a lattice of solitons close to both walls
(“soliton staircase”) [57,58], as depicted for an idealized case
in Fig. 3.

In practice, the actual structure having ny − 1 = 29 rows
that is formed in the simulations on increasing the misfit �

beyond the critical value �c, is generally less regular than
the “idealized” one shown in Fig. 3: Specifically, the relative
distance between neighboring solitons showed a considerable
variation. This comes about because (i) the solitons are formed
from the stressed crystal with ny = 30 rows via random defect
nucleation events [26] and (ii) the mutual interaction between
neighboring solitons, which is the thermodynamic driving
force toward a regular soliton arrangement, is very small [27].
Despite this, it is nevertheless reasonable to construct “by
hand” the expected regular structure of nx/(ny − 3) (= 4)
solitons near each wall as a starting configuration for a system
with 29 rows, which can subsequently be equilibrated [25].
Of course, there is no guarantee that this guessed structure
actually is the one lowest in free energy; but it does exhibit
slightly less stress than all other structures that had been tested,
for misfits in the range 1.5 � � � 3, and hence has been used
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FIG. 4. (Color online) Configurations with N = 3240 particles
and ny − 2 = 28 rows, but different configurations of the solitons. In
the text, they are referenced as “configuration numbers 1, 2, 3, and
4” from top to bottom. For a clear identification of the positions of
the solitons, the method described in [27] was used.

as a starting point for studies in which � was varied in this
range.

Starting from this idealized 29 row structure and decreasing
the misfit one finds that the 29 row structure is stable down to
about �′

c ≈ 1.3, at which point the soliton lattice disappears
and the system spontaneously transforms into a defect-free
structure with ny = 30 rows again (Fig. 2). This value of
� is to be compared with that for the reverse transition
from 30 to 29 rows, which we recall occurs at �c ≈ 2.0.
Thus, with the standard Monte Carlo approach there is
considerable hysteresis which precludes the accurate location
of the transition point. Clearly, therefore a method is needed
from which one can locate where the transition occurs in
equilibrium.

Similar hysteresis is observed if one starts out from the 29
row structure but increases the misfit beyond � = 3 (a case that
has not been studied previously). As Fig. 2 shows, a transition
occurs to structures with ny − 2 = 28 rows (at about � ≈ 4.1).
Unfortunately, there seem to be no unique candidates for
stable structures having ny − 2 = 28. Figure 4 displays four
candidate structures that we have identified, each of which is
at least metastable on simulation time scales. Depending on
which of these 28 row candidates one takes, the transition from
28 to 29 rows on reducing the misfit occurs at anything between
� = 3.2 and � = 3.75. As regards the nature of the candidate
structures, in each case 2nx = 216 extra particles have to
be distributed across the system. If we again keep the rows
adjacent to the walls free of extra particles, the particle number
per inner row becomes n′

x = nx + 2nx/(ny − 4) ≈ nx + 8.3,
that is, is noninteger. If we kept two rows adjacent to the
wall rows free of extra particles, we would have nine extra
particles per row, and thus this structure has been tried (this
is configuration number 1 in Fig. 4). Another structure was
obtained if we place four extra particles in the rows directly
adjacent to the walls and eight extra particles in each of the 26

inner rows (configuration number 2). By energy minimization
of a somewhat disordered structure resulting from a transition
from 29 to 28 rows a structure was obtained which had
nine solitons on one wall but only eight on the other wall
(configuration number 3). Finally, another configuration with
eight solitons on each wall (configuration number 4) was
found. Note that the configurations shown in Fig. 4 are
not the actual structures at T = 1.0 but the corresponding
“inherent structures” found from the actual structures by
cooling to T = 0, to clearly display where the solitons occur.
Clearly, it again is a problem to (i) identify which of these 4
configurations with 28 rows is the stable one (at T = 1.0), and
(ii) determine at which misfit the transition to the structure with
29 rows occurs. As we demonstrate below, both problems can
be elegantly dealt with by employing the phase switch Monte
Carlo method.

III. FREE ENERGY BASED SIMULATION
METHODOLOGIES TO LOCATE TRANSITIONS

BETWEEN IMPERFECTLY ORDERED
CRYSTAL STRUCTURES

A. Thermodynamic integration

The general strategy of TI is to consider a Hamiltonian
H(λ) that depends on a parameter λ that can be varied from
a reference state (characterized by λ0) whose free energy
is known, to the state of interest (λ1), without encountering
phase transitions. The free energy difference �F can then be
written as

�F = F (λ1) − F (λ0) =
∫ λ1

λ0

dλ′〈∂H(λ′)/∂λ′〉λ′ . (4)

For a dense disordered system (fluid or a solid containing
defects), Schilling and Schmid [15,16] proposed to take as a
reference state a configuration chosen at random from a well
equilibrated simulation of the structure of interest, at values
of the external control parameters for which one wishes to
determine the free energy. Particles can be held rigidly in the
reference configuration {
ri

ref} by means of a suitable external
potential. (We recall that a somewhat related TI scheme for
disordered systems known as the “tethered spheres method”
has already been proposed by Speedy [59].) When these
external potentials act, the internal interactions can be switched
off. In practice, one can use the following pinning potential
Uref(λ) to create the reference state, where rcut is a parameter
discussed below:

Uref(λ) = λ
∑

i

φ
(∣∣
ri − 
r ref

i

∣∣/rcut
)

with φ (x) = x − 1.

(5)

Here it is to be understood that particle i is only pinned by well
i at 
r ref

i , and not by other wells. However, identity swaps need
to be carried out to ensure the indistinguishability of particles.
The free energy of this noninteracting reference system
then is

Fref(λ) = ln(N/V ) − ln[1 + (V0/V )gφ(βλ)], (6)
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where β = (kBT )−1, V0 (in d = 2 dimensions) is V0 = πr2
cut

and

gφ(a) = 2

λ2

[
exp(a) −

2∑
k=0

ek/k!

]
, (7)

for the choice of φ(x) written in Eq. (5).
Then intermediate models H(λ) to be used in Eq. (4) are

chosen as

H′(λ) = Hint + Uref(λ), (8)

where Hint describes interactions in the system, which then are
switched on (if necessary, in several steps). The free energy
contribution of switching on these interactions can easily be
determined by a Monte Carlo simulation which includes a
move that switches the interactions on and off. The logarithm
of the ratio of how many times the states with and without
interactions were visited gives the free energy contribution.
The free energy difference between the intermediate model
where particle interactions are turned on and potential wells are
also turned on and the target system with particle interactions
but without potential wells then is computed by TI, for which

〈∂Href(λ)/∂λ〉 =
〈∑

i

φ
(∣∣
ri − 
ri

ref
∣∣/rcut

)〉
(9)

needs to be sampled [15,16]. This method has been tested for
hard spheres [15,16], including also systems confined by walls
from which wall excess free energies could be sampled [60].

B. Phase switch Monte Carlo

The phase switch method [18–23] computes directly the
relative probabilities of two phases, by switching between
them and recording the ratio of the simulation time spent in
each. This ratio directly yields their free energy difference �F

via �F = ln(A(1)/A(2)). Here A(1) and A(2) are the times spent
in the respective phases which are proportional to the statistical
weight of each phase [9].

The power of the phase switch method derives from
its ability to leap directly from configurations of one pure
phase to those of another pure phase (Fig. 5), avoiding the
mixed phase states which—when one or both phases are
crystalline—can be computationally problematic (see Sec. A 1
of the Appendix). The leap is implemented as a suitable global
Monte Carlo move. One starts out by specifying for each
of the two phases of interest (labeled by index α = 1,2) a
reference configuration. This can be expressed as a set of
i = 1, . . . ,N particle positions { 
R (α)

i }. Note that the specific
choice of a reference configuration for phase α does not
matter (at least in principle; see Appendix), it need only
be a member of the set of pure phase configurations that
“belong” to phase α. Thus, for example in the present case, a
suitable reference configuration for the n = 30 row defect-free
structure could simply be a typical configuration chosen from a
simulation run on this structure. However, it could equally be a
configuration in which all particles are at the lattice sites of this
structure.

FIG. 5. Schematic comparison of (a) the standard method for
linking phases via a sampling path and (b) the phase switch method.
The blobs represent the set of values of some macroscopic property
(e.g., order parameter or energy) associated with configurations
belonging to two distinct phases (α = 1,2). These pure phase states
(having high probability) are separated by a “deep valley” in the free
energy landscape corresponding to interfacial states having a very low
probability. (a) In the standard strategy one uses extended sampling
to negotiate the valley, by climbing down into it from one side and
climbing up out of it on the other. (b) The idea of phase switch Monte
Carlo is to “jump over the valley.”

Given the two reference configurations, one can express the
position vectors 
r (α)

i of each particle i in phase α as


r (α)
i = 
R(α)

i + 
ui, (10)

where {
ui} is a set of displacement vectors which measure
the deviation of each particle from the reference site to
which it is nominally associated. Note that while there is a
separate reference configuration for each phase, the single set
of displacements is common to both phases.

Let us suppose the simulation is currently in phase α = 1.
Now the phase switch idea is to map the current configuration
{
r (1)

i } of this phase onto a configuration of phase α = 2 by
switching the sets of reference sites from { 
R (1)

i } to { 
R (2)
i } but

keeping the set of displacements {
ui} fixed. This switch can
be incorporated in a global Monte Carlo move. Of course, in
general the set of displacements that are typical for phase
α = 1 will not be typical displacements for phase α = 2.
As a consequence, in a naive implementation such a global
move will almost always be rejected by the Monte Carlo
lottery. This problem is circumvented by employing extended
sampling methods [9,10,61] that create a bias which enhances
the occurrence of displacements {
ui} for which the switch
operation does have a sufficiently high Monte Carlo acceptance
probability. Such states are called “gateway states” [18–22]:
Crucially, they do not need to be specified beforehand; the
system autonomously guides itself to them in the course of the
biased sampling.

In practice, the bias is administered with respect to an “order
parameter” M whose instantaneous value is closely related
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to the energy cost of implementing the phase switch. One
then introduces a weight function η(M) into the sampling
of the effective Hamiltonian which enhances the probability
of the system sampling configurations for which the energy
cost of the phase switch is low, thereby increasing the switch
acceptance rate. Of course, the weight function η(M) to be
used is not known beforehand, and thus needs to be iteratively
constructed in the course of the Monte Carlo sampling. One
has a choice of ways of doing so: We have used the transition
matrix Monte Carlo method [61–63] (see also the Appendix for
implementation details). Alternative methods such as Wang-
Landau sampling [64] or successive umbrella sampling [65]
could also be applied.

Once a suitable form for the weight function η(M) has been
found, a long Monte Carlo run is performed, in the course of
which both phases are visited many times. The statistics of the
switching between phases is monitored by accumulating the
histogram of M , which (as in all extended sampling methods)
is corrected for the imposed bias at the end of the simulation.
Doing so yields an estimate of the true equilibrium distribution
P (M), which in general exhibits a double peaked form (one
peak for each phase). The free energy difference between the
two phases is simply the logarithm of the ratio of the peak
weights as described at the start of this section.

Of course, the above description was only intended to out-
line the phase switch strategy; more extensive implementation
details are given in the Appendix. Additionally, the Appendix
discusses how specific phenomena occurring in our model
system have been handled.

IV. RESULTS

A. Free energy differences and computational efficiency

Figure 6 shows the absolute free energies in the NVT
ensemble for the phase with 30 rows (and no defects) and
the phase with 29 rows and the “soliton staircase” [Fig. 3(b)]
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29 rows
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FIG. 6. (Color online) Absolute free energy F of systems of N =
3240 particles interacting with the potential given in Eq. (1) in an
L × D geometry with L = 108a, a being the lattice spacing, and
periodic boundaries in the x direction, confined by two rows of fixed
particles on either side in the y direction (Fig. 1), as a function of the
misfit � [see Eq. (3)]. Two structures are compared: (i) a (compressed)
triangular lattice with ny = 30 rows containing nx = 108 particles
per row; (ii) a lattice with ny = 29 rows and corresponding soliton
staircase [Fig. 3(b)].
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FIG. 7. (Color online) Free energy differences between structures
with 29 and 30 rows plotted versus the misfit �. Both results obtained
from TI and from the phase switch method are shown, as indicated.

as a function of the misfit �, as obtained from the TI method
(Sec. III A). One sees that these free energies are very large
(note the ordinate scale) and vary rather strongly with �.
However, the free energy curves with these two structures are
barely distinct from each other, and hence a very substantial
computational effort is needed to locate, with meaningful
accuracy, the intersection point marking the equilibrium
transition between n = 30 and n = 29 rows.

Figure 7 plots the free energy difference �F versus the
misfit, comparing the results from the TI method (points with
error bars) with the results from the phase switch method, and
focusing on the region near the transition. One can see that
within the errors the results of both methods agree very well
with each other, although for the TI method the error is at least
an order of magnitude larger than that of the phase switch
simulations. We note that the predicted equilibrium value of
the misfit at the transition point (�t ≈ 1.7) falls well within
the hysteresis loop of Fig. 2.

Since the absolute free energies are of the order of 20 000
(for our system with N = 3240 particles) but in the region of
interest free energy differences are of order ±60 only, we have
that the relative error δF/F is of order 1/500. Thus, for TI, it
would be difficult to bring the error bars down further in Fig. 7.
The error bars for the phase switch simulation were computed
from the results of four independent runs for each value of the
misfit and are hardly visible on the scale of Fig. 7.

In addition to this significant difference with respect to the
size of the statistical errors, phase switch Monte Carlo also
outperformed the TI method with respect to the necessary
investment of computer resources. In order to obtain a suitable
weight function for our system, at a certain value of the misfit,
we let the simulation run for about 15 million steps (each step
consisting of one sweep of local moves and one attempt to
switch the phases). On the ZDV cluster of the University of
Mainz, this takes about 4.5 days on a single core (though
in hindsight we could have got away with a less smooth
weight function, further reducing the computing time of this
step). Having determined the weight function, we initiated
four production runs for every value of the misfit. These runs
needed again 10 million steps each (i.e., about 3 days each) in
order to perform a sufficient number of phase switches to yield
results of the desired precision. Overall, then, computing each
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point of the free energy difference curve of Fig. 7 by phase
switch took about 16.5 days of CPU time.

In contrast to this, the TI method required a calculation not
only of the free energy difference in which we are interested,
but of the free energy difference along the path of the TI,
gradually switching off the wells of attraction used there,
and of the free energy difference between the state where
the particle interactions were turned on and the state where
they were turned off. This needs to be done for both phases
separately. It is therefore not surprising that considerably more
CPU time was needed: Roughly 250 days of CPU time was
invested for each phase and for each value of the misfit to obtain
the absolute free energy (again converting units to a single
core). Thus, each of the 12 values of free energy differences
needed for Fig. 7 required 500 days (rather than 16.5 days),
that is, a factor of 30 more computational effort. However,
if we were to bring the statistical errors of the TI method a
factor of 10 down (to make it comparable to the phase switch
method), we would need another factor of 100 in computer
time; the benefit of using the (clearly much more powerful)
phase switch approach hence amounts to a gain of the order of
103 in computational resources. Of course, this is no surprise
when we remember that the free energy differences of interest
are only of the order of (1/500) of the total free energies for
the present model system.

B. Ensemble inequivalence

We turn now to a discussion of a puzzling aspect of
the physics, namely the fact that we treat here a first-order
structural phase transition obtained by variation of the distance
D between the walls formed by the rigidly fixed particles,
that is, an extensive rather than an intensive thermodynamic
variable. If we were concerned with the study of a vapor to
liquid transition of a fluid in such a geometry, the proper
way to locate a discontinuous transition is the variation of the
intensive variable thermodynamically conjugate to D, which
is the normal pressure pN (force per area acting on the walls).
(In the following the index N will be omitted. Of course, at
fixed lateral dimensions L a variation of D is equivalent to a
variation of the volume V .)

To fix ideas, we remind the reader about this classical
vapor-liquid problem in Fig. 8(a): In the NpT ensemble, we
would have a jump in volume V = LD from Vv = LDv

(density of the vapor ρv = N/Vv) to V� = LD� (density of the
liquid ρ� = N/V�) at the transition pressure pt . If we work in
the conjugate NVT ensemble, of course, the behavior simply
follows from a Legendre transform, the volume jump from Vv

to V� translates into a horizontal plateau at p = pt , and any
state of this plateau is a situation of two-phase coexistence, as
schematically indicated in Fig. 8(a).

Of course, it is also possible to consider the present
transition between a state of n rows to n − 1 rows in the
NpT ensemble [Figs. 8(b) and 9(c)]. Then it is clear that the
transition will show up as a jump in the thickness D from
Dn(= nan) to Dn−1 (= (n − 1)an−1), where an, an−1 are the
(average) distances between the lattice rows (or lattice planes,
in three-dimensional films, respectively). The corresponding
phases of the n-layer state and (n − 1) layer state are indicated
below the isotherm in the (p − D) plane schematically.

FIG. 8. Schematic description of phase transitions in thin films of
thickness D in the conjugate NpT (left) and NVT (right) ensembles,
for the case of a vapor-liquid transition (a) and the present transition
where the number of rows is reduced (n → n − 1) when either the
(normal) pressure p increases (left) or the thickness decreases (right).
Note that in the latter case two-phase coexistence is possible for the
vapor-liquid transition, but not for the transition where the number of
rows parallel to the boundaries change. For further explanations, see
text.

However, one simply cannot construct a state of two-phase
coexistence out of these two “pure phases” at a value of D

intermediate between Dn−1 and Dn: Locally the n-layer state
requires a thickness Dn, the (n − 1) layer state a thickness
Dn−1, so one would have to “break” the walls. Of course, it
is not just sufficient to have a state with n layers separated by
a grain boundary from a state with (n − 1) layers at the same
value of D: These domains are not the coexisting pure phases
in the NpT ensemble.

So the phase coexistence drawn (horizontal broken curve)
in Fig. 8(b) is unphysical, it requires a state where the
constraining walls were broken. Requesting the integrity of
the walls is a global constraint which makes phase coexistence
in the standard sense impossible for the present transitions.
Thus, the rule that the different ensembles of statistical
mechanics yield equivalent results in the thermodynamic limit
is not true for the present system; in the transition region
Dn−1 < D < Dn the NVT ensemble and the NpT ensemble
are not equivalent.
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FIG. 9. (Color online) (a) Free energy difference �F for the
transition from n = 30 to n = 29 rows as a function of pressure.
(b) The distribution of the internal energy difference between the two
phases p(E30 rows − E29 rows) at fixed {
u}. Curves for four pressures
near and at the transition pressure pt = 22.146 ± 0.015 are shown,
as generated via histogram reweighting. The simulation was run
at a pressure of p = 22.13. (c) System length D as a function of
pressure. Clearly, the curve for the stable phase exhibits a jump at
the transition pressure. Statistical errors are smaller than the symbol
sizes.

Actually, this is not the first time that such an ensemble in-
equivalence has been pointed out. A case much discussed in the
literature is the “escape transition” of a single polymer chain of
N beads grafted at a planar surface underneath a piston held at a
distance D above the surface to compress the polymer [66–72].
For pressures p < pt (where the piston is at distance Dt,1) the
chain is completely confined underneath the piston (which has
the cross section of a circle in the directions parallel to the
surface), while for p > pt the chain is (partially) escaped into
the region outside of where the piston acts (the piston distance
at pT jumps to a smaller value Dt,2). When we use instead
D as the control variable, again a sharp transition occurs (for

N → ∞) at some intermediate value Dt (Dt,2 < Dt < Dt,1),
since obviously it is simply inconceivable to have within
a single chain phase coexistence between states “partially
escaped” and “fully confined,” since these states are defined
only via a global description of the whole polymer chain.

Another case where transitions of the number n of layers
in layered structures in thin films occur is the confinement of
symmetric block copolymer melts (which may form a lamellar
mesophase of period λ0 in the bulk) in thin films between
identical walls [73–76]. When then the thickness D of such
films is varied, one observes experimentally discontinuous
transitions in the number n of lamellae parallel to the film
[74,75]. However, when one considers block copolymer films
on a substrate and does not impose the constraint of a uniform
thickness but rather allows the upper surface to be free, then
indeed mixed phase configurations of a region where n − 1
layers occur (and take a thickness Dn−1) and of a region where
n layers occur (and take a thickness Dn) are conceivable [76]
and have been observed (see, e.g., [77]). In summary of these
remarks, we note that it is not uncommon that global geometric
constraints may destroy the possibility of phase coexistence.

In view of the above discussion, it is of interest also
in the present case to investigate the use of the (normal)
pressure p (instead of the strip width D) as the control
variable. Taking, in the spirit of the general remarks on the
phase switch method, the appropriate phase switch energy
cost as an order parameter M , we can sample the probability
distribution function p(M) which exhibits two well-separated
peaks of generally different weights. These peaks are even
more clearly visible in the distribution of the energy difference
p(E30 rows − E29 rows) at fixed {
u} as the order parameter M

is related to this energy difference via a logarithmic function
[cf. Eq. (A2)]. The transition pressure pt is that for which
the peaks have equal weight (Fig. 9) and can be determined
accurately via histogram reweighting. From this we estimate
that pt = 22.146 ± 0.015. At the transition, the measured
misfit � jumps from �1 = 1.913 ± 0.043 (for n = 30) to
�2 = 1.503 ± 0.046 (for n = 29). Interestingly, the misfit
where the transition in the NVT ensemble occurs (�t ≈ 1.71)
is just the average of these two values.

C. Comparison of competing candidate structures

Returning again to the NVT ensemble, we now consider the
transition from states with 29 layers to states with 28 layers.
We recall (Fig. 4) that several different candidate structures
do exist, and it is not at all clear a priori, which of them
should be favored. Again, the phase switch Monte Carlo is a
convenient tool to solve such a problem: We utilize reference
states from all four of the candidate structures having n = 28
(as shown in Fig. 4) and calculate the free energy difference
�F between the (unique) structure with n = 29 and these four
candidates.

The results (Fig. 10) clearly show that configuration
numbers 1 and 3 are metastable, because they have distinctly
higher free energy differences throughout the range of �

than configuration numbers 2 and 4, which practically co-
incide. In fact, this coincidence between the free energies of
configuration numbers 2 and 4 is not accidental: A closer
evaluation of their time evolution shows that they transform
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FIG. 10. (Color online) Free energy differences between various
structures with n = 28 rows and the structure with n = 29 plotted vs
the misfit �. As configuration numbers 2 and 4 turned out to be the
same, their free energy curves fall on top of each other.

into each other via sequences of “easy” local moves, and
although the instantaneous snapshot pictures reproduced in
Fig. 4 were different, they do not belong to different phases in
a thermodynamic sense.

It is also interesting to note that the conclusion that structure
number 2 is the stable one would not have been obtained
by a simple comparison of the internal energies of the four
structures: Indeed, configuration number 2 has the highest
energy of all four structures.

Thus, entropy matters in soft crystals, such as those studied
here.

V. CONCLUDING REMARKS

The principal findings of our study are twofold. (i) We
have performed a thorough test of the suitability of the phase
switch Monte Carlo method for the task of determining the
relative stability of imperfectly ordered structures of typical
soft-matter systems, where one must deal with systems which
have at least one very large linear dimension. For such a test,
it is crucial to provide full information on the model that is
studied and to give a careful description of the method and
its implementation. Moreover, we have studied precisely the
same model system by a TI method, thereby allowing the first
like-for-like comparison between the two approaches. We find
that the results from both methods are compatible, but the
accuracy that can be achieved using phase switch MC is at
least an order of magnitude better (Fig. 7), despite requiring a
factor of 30 less computational time.

The reasons for this efficiency gain can be appreciated from
a glance at Fig. 6: The absolute free energies of our system of
3240 particles vary from about 22 000 to 24 000 (in suitably
scaled units), for a misfit parameter � varying from 1 to 2,
while the free energy difference between the two states that
we wish to compare vary only from −60 to +60 in the same
range. These numbers illustrate vividly the basic concept of
phase switch Monte Carlo: One does better in focusing directly
on the small free energy difference between the states that one
wishes to compare, rather than extracting them indirectly by
subtracting two measurements of large absolute free energies.
Thus (in the present context at least), phase switch Monte
Carlo seems a much more powerful approach than TI. In

fact, if one were to try to bring the errors of the TI method
down by an order of magnitude—to make the error bars
of both methods in Fig. 7 comparable—one would have to
invest a factor of 3000 more computational time. We feel that
the case of relatively small free energy differences between
competing phases and/or structures is rather typical for soft
matter systems. Indeed, for many soft matter systems, such as
block copolymer mesophases, the relative magnitude of free
energy differences is much less than the factor of about 1/500
encountered here, and hence such problems could never be
tackled successfully with TI methods since the computational
effort to reach the requisite accuracy would be prohibitive.

The first problem to which phase switch Monte Carlo
was applied (in the form of the “Lattice-switch” method)
evaluated the free energy difference of perfectly ordered
face-centered cubic and hexagonal close-packed crystals. Such
an application might be regarded as a somewhat special
case due to the perfect long-range order in these defect-free
crystals. However, the present work shows that the method
can equally be applied to imperfectly ordered crystals. Here,
due to the confinement by structured walls together with
a misfit between the distance between the walls and the
appropriate multiple of the distance between the lattice rows,
somewhat irregular long-range defect structures form along
the walls (“soliton staircase”). Additionally, several similarly
ill-crystallized structures can present themselves as candidates
for the optimal structure (Fig. 4). It would be absolutely
impossible to identify which is the equilibrium structure and
which structures are only metastable without the phase switch
Monte Carlo method (Fig. 10).

We note that the model system that we have chosen to study
(Fig. 1) could also be experimentally realized in colloidal
dispersions, though with some effort: Colloids coated with
polymer brushes experience a short-ranged, almost hard-
sphere-like, repulsive effective potential, and bringing them
to an interface where water is on top and air is below,
rather perfect two-dimensional crystals with triangular lattice
structure form. Interference of strong laser fields can be used to
create a periodic confining potential, through which the misfit
and thus the crystal structure can be manipulated. We hope
that our study will solicit some corresponding experimental
studies to show that the proposed transitions in the number of
rows in these crystalline strips actually occur.

(ii) Our second main finding is that this type of system
has an interesting physical property, namely the inequivalence
between conjugate ensembles of statistical mechanics. When
we fix the distance D between the confining “walls,” the total
particle number N and the total (two-dimensional) “volume”
V of the system, we realize the NVT ensemble. When one
studies first order transitions in the bulk using such an
ensemble containing two extensive variables (N , V ), a first
order transition normally shows up as a two-phase coexistence
region (e.g., at fixed N the two-phase coexistence extends
from VI to VII ). However, here such a two-phase coexistence
is not possible (Fig. 8), and thus one has the unusual behavior
that at the equilibrium in the “constant D” ensemble the
conjugate intensive variable (the normal pressure pN , as well
as the stress σ ; cf. Fig. 2) exhibit jumps (in Fig. 2, we
display the hysteresis loops, but the positions of the jumps
in equilibrium can be inferred from �F = 0 in Figs. 7 and 10,
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respectively). When we use a “constant p” ensemble (which
is physically reasonable if the confinement of the crystal is
effected mechanically in a surface force apparatus), it is the
“volume” (i.e., the distance between the walls D) which jumps
from DI to DII at a well-defined transition pressure (cf.
Figs. 8 and 9).

One should not confuse this ensemble inequivalence with
the well-known ensemble inequivalence between NVT and
NpT ensembles in systems where N is finite: In the latter
case, the ensemble inequivalence is dominated by interfacial
contributions (in the NVT ensemble, when VI < V < VII , the
system is in a two-phase configuration, as suggested for V →
∞ by the “lever rule,” but for finite V the relative contribution
due to the interface between the coexisting phases dominate
the finite size effects). However, for V → ∞ these interfacial
effects become negligible; the properties in the two conjugate
ensembles are just related by the appropriate Legendre trans-
formation. This equivalence between the ensembles holds also
for liquid-vapor or liquid-liquid unmixing under confinement
in a thin film geometry: When D is finite and the particle
number N → ∞, that is, the lateral linear dimensions become
macroscopic, we still have ordinary two-phase coexistence
in the thin films (cf. Fig. 8). The ensemble inequivalence in
the present system arises from the lack of commensurability
between the thickness D of the slit and the appropriate multiple
of the lattice distance. At a transition pressure pt in the
3 ensemble we inevitably have different distances DI , DII

between the walls for the two phases I , II . Thus, they cannot
coexist for any uniform value of D. Similar phenomena (where
the number of layers of a layered lamellar structure confined
between walls exhibits jump discontinuities when D is varied)
are already known, both experimentally and theoretically, for
block copolymer mesophases, but the aspect of ensemble
inequivalence has not been addressed, to our knowledge, in
these systems studied here.
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APPENDIX

Here we provide an extended description of the imple-
mentation of phase switch Monte Carlo, concentrating on
implementation details at a level suitable for a new practitioner.

1. Implementation details for the phase switch method

In order to calculate the free energy difference between
two phases in a single simulation run, the two phases have to
be linked by a sampling path. In many popular approaches,
a direct path between the two phases is constructed in the
form of a continuous set of macrostates associated with the

values of some order parameter which distinguishes one phase
from the other (common examples are the total energy or
density of a fluid). This path traverses mixed phase (interfacial)
states [78] and is negotiated using some form of extended
sampling to overcome the free energy (surface tension) barrier
associated with the interfacial states. One way to do this is the
multicanonical method [79]. Alternatively, one can directly
measure free energy differences between successive points
along the path as is the case in the successive umbrella
sampling technique [65].

In many cases utilizing an interphase path that encompasses
interfacial states works well, particularly for fluid-fluid tran-
sitions or lattice models of magnets. However, in other cases
such a path can be problematic [9]. For example in the case of
solid-liquid coexistence, a connecting path will typically run
from a crystalline phase through several different distinct states
including droplets of liquid in a crystal, a slab configuration
and crystalline droplets in a liquid before finally reaching the
pure liquid phase [80]. In such cases the identification of a
suitable order parameter to guide the system smoothly from
one pure phase to the other can be difficult, and as a result
the system may experience kinetic trapping (e.g., in defective
crystalline states).

Thus, it is highly desirable to have a method which can
directly “leap” between the two pure phases (which we label
α, with α = 1,2), avoiding the problematic mixed phase
states. If the system jumps back and forth between these
phases a sufficient number of times within one simulation
run, the relative probability with which the system is found
in each of them directly yields the free energy difference
between these phases via �F = − ln(P (α=1)

P (α=2) ). The phase switch
method achieves this by supplementing standard local particle
displacement moves (and in the case of a simulation in the NpT
ensemble, moves which scale the volume of the simulation
box) with moves that switch the system from one phase
directly into the other phase. This switch is facilitated by the
representation of particle configurations in the two phases.
Specifically, we associate a fixed reference configuration
{ 
R(α)} with each phase. The reference configuration is an
arbitary configuration drawn from the set of configurations
that are identifiable as “belonging” to phase α. We then
associate each particle with a unique site of the reference
configuration, allowing us to write its position 
r (α)

i in terms
of the displacement 
ui from its reference site:


r (α)
i = 
R (α)

i + 
ui. (A1)

Note that while there are two reference configurations (one
for each phase), the phase switch method only considers one
set of displacement vectors which are regarded as common to
both phases.

Suppose we are currently in phase α = 1, so that the particle
coordinates are 
r (1)

i = 
R (1)
i + 
ui . For local moves in this phase

we update particle coordinates (in the manner to be described)
which, owing to reference sites being fixed, is equivalent to
updating the displacement vectors. For a phase switch to phase
α = 2, we propose a new configuration which is simply formed
by substituting the reference sites of phase α = 1 with those
of phase α = 2. Thus, the proposed configuration is {
r (2)

i } =
{ 
R (2)

i } + {
ui}. If this switch is accepted, that is, if the resulting
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configuration of phase α = 2 is energetically acceptable, the
simulation will continue to run in phase α = 2, again recording
the displacements of all of the particles from the reference
sites of phase α = 2, and proposing switches back to phase
α = 1. In this way the system switches repeatedly back and
forth between the phases, allowing one to record the relative
probability of finding the system in each phase.

The switch operation leaves open how one chooses the
lattice-to-lattice mapping between reference sites in the two
phases, that is, the relationship between the pairs of sites 
R(1)

i

and 
R(2)
i . In fact, it turns out to be beneficial in terms of the

efficiency of the method to choose this mapping such as to
maintain any local structural similarities that may exist in
the two phases. Thus, having specified the reference sites for
one phase by labeling all the lattice sites with the index i,
one should consider how each lattice site transforms under
the structural phase transition, and assign the same index to
the corresponding lattice site in the other phase. In the present
model some particles (those not near the wall or the solitons) do
not see a significant change to their local environment under
the phase transition and so the mapping is straightforward.
Only the particles redistributed from near the walls to the
solitons see a significantly new environment and for pairs
of these particles it is essentially arbitrary which index they
receive.

Now generally speaking the displacement vectors that
characterize phase α = 1 are not typical of phase α = 2 and
thus it will not be energetically acceptable to perform the
switch from typical configurations of phase α = 1. To deal
with this, one introduces a bias in the accept/reject probabilities
for local moves that enhances the probability of displacements
being generated in phase α = 1 for which the phase switch to
α = 2 is energetically acceptable. The obvious observable to
which the bias should be administered is a quantity related
to the instantaneous energy cost of the switch, since this
measures how likely it is to be accepted. We have employed
the switch energy order parameter M described in Ref. [22],
which for switches from phase α = 1 to α = 2 is defined as
follows:

M (1)→(2)({
u}) = sgn(�E(1)→(2)) · ln(1 + |�E(1)→(2)|), (A2)

where

�E(1)→(2) = (
E(2)({
u}) − E

(2)
ref

) − (
E(1)({
u}) − E

(1)
ref

)
, (A3)

where E
(α)
ref is the energy of the reference configuration in phase

α, and E(α)({
u}) is the energy in phase α, found by applying
the displacement vectors {
u} to the reference configuration
{ 
R(α)}. An obvious substitution gives the order parameter for
the switch from α = 2 to α = 1. Note that an important feature
of this definition of this order parameter is the logarithm which
ensures that the binning of the weight function is finer for small
values of the energy difference and thus serves to ensure that
the simulation can cover the entire range of M smoothly.

Now, when implementing local moves for particles, we
consider not just the energy cost of the move within the current
phase, but also the change in M associated with the local move
via a weight function η(M). The acceptance criterion for the

local move is therefore given by

p(α)({
u} → { 
u′}) = min(1,e−β(E(α)({ 
u′})−E(α)({
u}))+η(M′)−η(M)).

(A4)

Note that E(α)({ 
u′})) − E(α({
u}) is the energy difference due
to the move in the phase α that is currently being simulated.
The energy difference in the other phase is only needed for the
computation of the new order parameter M ′ and therefore for
the weights η(M ′) associated with the move.

Phase switches are generally only accepted from states in
which M is small, the so-called gateway states. One instance
in which M becomes small is if the displacement vectors are
themselves small, that is, if all particles are sitting close to their
reference positions in both phases. Another instance is if there
is a high degree of structural similarity among the phases, so
that the displacements of many of the particles in one phase
are typical of the displacements in the other phase. Note that
one does not need to know or specify the gateway states to
use the method. They are sought out automatically when one
biases to small values of M .

The acceptance criterion for a phase switch from α = 1 to
α = 2 itself reads

p(1)→(2)({
u}) = min(1,e−β(E(2)({
u})−E(1)({
u})+ω(2)−ω(1)
), (A5)

and similarly for the reverse switch. This phase switch
also includes a weight ω to ensure that it occurs with a
sufficiently high probability in both directions. Note that
since the phase switch move alters the absolute particle
coordinates, the associated energy change enters the switch
acceptance criterion. We therefore chose the weights ω in such
a way that ω(2) − ω(1) = E

(1)
ref − E

(2)
ref , ensuring that a phase

switch is always accepted if all particles are sitting on their
reference positions despite the fact that the energies of the two
phases might differ significantly. In the case of phase switch
simulations in the NpT ensemble, an additional volume scaling
must also be taken into account (see below).

Once suitable weights have been determined (see
Sec. A 2 of the Appendix), one samples the statistics of the
two phases by accumulating a histogram of the biased order
parameter distribution P̃ (M). At the end of the simulation,
the effects of the weights are unfolded from this distribution
in the standard manner for extended sampling [9] to find the
equilibrium distribution P (M). Close to a phase transition,
this distribution will exhibit two well-separated peaks, whose
areas yield the free energy difference as described above. An
example is shown in Fig. 11(a). Also shown in Fig. 11(b)
is the distribution of the instantaneous energy change under
the switch E(α′)({
u}) − E(α)({
u}), which similarly shows two
peaks, one for each phase.

With regard to the choice of reference configuration in
each phase, in principle, this can be an arbitrary configuration
belonging to that phase. In practice, however, for crystalline
systems one finds that the degree of weighting required to
access the gateway states can be reduced by choosing a
reference configuration which is a perfect lattice. For more
general system, for example, those with crystalline disorder,
or for fluids it may be advantageous to try to ensure that the
particles are not sitting too close to each other (e.g., by energy
minimization of the configuration [21]), since particles which
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FIG. 11. (Color online) (a) The order parameter distribution
p(M) for simulations at � = 1.70 and � = 1.71 carried out in the
NVT ensemble. (b) For comparison the same distribution is plotted
against the internal energy difference between the two phases for fixed
{
u}. The order parameter M is deduced from this energy difference
E29 rows − E30 rows via the definition given in Eq. (A2).

are in close proximity reduce the number of gateway states
significantly. (We note in passing that for fluid systems [22] one
requires special approaches to guide particles to the gateway
states that we do not discuss here as they were not necessary
for our system.)

With regard to the phase switch simulations of the present
model of two-dimensional colloids in confinement, we men-
tion a rare problem that appeared in our simulations of the
29 row system. This involved sets of particles on neighboring
lattice sites in adjacent rows jumping between rows during
the simulation, creating in the process a ring of particles
which occupy each others’ positions [cf. Fig. 12(a)] and
remain there. This occurrence is primarily a feature of the
two-dimensional nature of our system, and the well-known
“softness” of two-dimensional crystals. When it occurs it
interferes with the operation of the phase switch method
because the weight function is not designed to deal with it, so
one is prevented from reaching the gateway states. Although
one can envisage methods for solving this problem along
the lines of those used in fluids [22], our solution to the
problem was to simply suppress it. A measurement of the
distribution of displacements in the y direction is shown in
Fig. 12(b) and shows that preventing particles from fluctuating
any further in the y direction than �y = 0.5 introduces a
negligible constraint with regard to their natural fluctuations
(and hence on free energy measurements). Doing so cured the
problem of rare lattice site swaps.
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FIG. 12. (Color online) (a) A section of a configuration that
includes particles which have swapped positions in the phase with
29 rows. Black squares denote the reference configuration, red (gray)
lines are the displacement vectors associated with the reference
positions, and red (gray) dots are the new positions. This simulation
was carried out with 3240 particles at a misfit of � = 1.70 in an
NVT simulation with 1280 bins for the weight function. (b) Typical
histograms of the particle displacements in the y direction. The
(almost completely invisible) very small peaks at about +1 and −1
correspond to particles which have swapped their positions.

Finally, we outline briefly how to apply the phase switch
method in the NpT ensemble. The advantage of the NpT
ensemble is that the results obtained at one pressure can easily
be extrapolated to other values of the pressure by standard
histogram reweighting methods. The difference between the
NVT and the NpT ensemble in this case is that additional
volume moves have to be carried out in the NpT ensemble.
In such moves, all particle coordinates are scaled (along
with the box) in both phases in the standard way [6,22].
Additionally, it can prove useful to combine the phase switch
move itself with a volume scaling move if the equilibrium
densities of the two phases differ from each other as it was the
case for our system. For details on the underlying statistical
dynamics and acceptance probabilities, see Ref. [22]. The
problem of particles switching their positions and thus creating
configurations which prevented any further phase switches
from being accepted did not occur in the case of simulations
in the NpT ensemble for our system. We obtained (within the
error bars) the same free energies whether or not we restricted
the movement of the particles in the y direction in the way we
had to restrict them in the NVT ensemble.

056703-12



TRANSITIONS BETWEEN IMPERFECTLY ORDERED . . . PHYSICAL REVIEW E 85, 056703 (2012)

2. Implementation details for the transfer matrix method

The choice of method for determining the weight function
η(M) that connects the configurations of high statistical weight
to the gateway states is to some extent a matter of personal
taste. A number of approaches exist such as the Wang-Landau
method [64] or successive umbrella sampling [65]. In this
work, we have found the transition matrix method to be a
particularly efficient means of determining a suitable weight
function. The transition matrix method has the advantage
that—similar to the Wang-Landau sampling—the weights can
be updated “on the fly” throughout the simulation, allowing
the simulation to explore an ever wider range of values of
the order parameter M as the weight function evolves, until it
eventually encompasses the gateway states of low M . Once this
has been achieved, one can cease updating the weight function
and perform a simulation run with a constant weight function.
An advantage of the transition matrix method over Wang-
Landau sampling is that it collects equilibrium data from the
outset of the simulation, whereas Wang-Landau only provides
equilibrium estimates after a number of preliminary iterations.

The general idea of the transition matrix method for
determining weight functions is to record the acceptance
probabilities of all attempted transitions and extract the
ratio of the states’ probabilities from it. As all attempted
transitions contribute to the weight function, including those
that were rejected, the weight function can be built up rather
quickly. The details of the implementation are as follows
and can also be found in [21,22,61] and the references given
therein.

To implement the transition matrix method, the range of
the order parameter M , for which a weight function is desired,
is divided into a number of bins. In our case this range
corresponds to the values of M that lie between the peaks in
P (M) which correspond to the two phases [cf. Fig. 11(a)]. A
good choice for the binning of the order parameter is to choose
the bins in such a way, that the weight difference between
adjacent bins satisfies [22] |η(Mi+1) − η(Mi)| < 2. Then, for
every attempted move the acceptance probability p (which is
calculated anyway for use in the Metropolis criterion) is stored
in a collection matrix C:

C(M → M ′) ⇒ C(M → M ′) + p. (A6)

At the same time, the probability for rejecting the move and
thereby keeping the current value of the order parameter is
also stored:

C(M → M) ⇒ C(M → M) + (1 − p). (A7)

It is important to note that these probabilities p are the “bare”
acceptance probabilities and do not include any weights.

The transition probabilities are then simply calculated by
a normalization of the values in the collection matrix, with
the sum on the right hand side including all possible states to
which the system can jump from a given state:

T (M → M ′) = C(M → M ′)∑
k C(M → Mk)

. (A8)

In the most general case, this method would create an
N × N matrix, N being the number of bins or values of the
order parameter M . In order to derive the correct probability

distribution from such an N × N transition matrix, it is nec-
essary to compute the eigenvector to the largest eigenvalue of
this matrix. However, it is not necessarily required to know the
exact probability distribution in order to create a weight func-
tion that will work sufficiently well. Therefore, it is possible
to take only those transitions occurring between neighboring
bins of the order parameter into account when computing
the weight function. In terms of the transition matrix, this
means that only the diagonal elements—corresponding to
transitions from a state to itself—and the first off-diagonal
elements—corresponding to transitions from one state to the
adjacent ones—are taken into account. Using this approach
the weight function can be calculated quite easily without the
need to compute eigenvalues or eigenvectors of the transition
matrix. In this case, the ratio of the probabilities of two
adjacent states can be read off directly from the transition
matrix via

P (Mi+1)

P (Mi)
= T (Mi → Mi+1)

T (Mi+1 → Mi)
, (A9)

yielding the weight difference

η(Mi+1) − η(Mi) = − ln

(
P (Mi+1)

P (Mi)

)

= − ln

(
T (Mi → Mi+1)

T (Mi+1 → Mi)

)
. (A10)

Of course, when running the simulation, the system is still
free to perform transitions between any values of M . However,
these transitions are not registered in the transition matrix
and thus are also not taken into account when calculating
the weights. In the present study this was found to produce
accurate and useful weight functions as transitions between
distant values of M were rare and the entries in the second
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FIG. 13. Weight functions for the two-dimensional colloidal
crystal with N = 3240 particles and structured walls at a misfit
of � = 1.7. The left minimum corresponds to states where the
system was simulating the phase with 29 rows, the right minimum
corresponds to 30 rows. Note that the weights have an exponential
influence on the acceptance criterion. The large figure shows
the weights plotted against the order parameter M as defined in
Eq. (A2), the inset shows the same weight function plotted against the
energy difference between the two phases in order to illustrate how
the definition of the order parameter in the logarithm of the energy
difference stretches the part around M = 0, where phase switches are
most likely to happen.
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off-diagonal elements of the transition matrix were already
considerably smaller than the ones we used for the calculation
of the weights.

By accumulating the transition matrix in the course of
a simulation, one obtains an estimate for P (M) which can
be used to update η(M), thereby allowing the simulation
to explore a wide range of M . Repeated updates of η(M)
thus extend systematically the range of M over which one
accumulates statistics for the weight function, until ultimately
one reaches the gateway states. However, since updating the
weight function during a simulation violates detailed balance,
we chose to do this at rather infrequent intervals of 20 000
sweeps. Once the weight function extends to the gateway

states, we stop updating the transition matrix and perform
a long phase switch simulation with a fixed weight function in
order to accumulate equilibrium free energy data.

An example of a weight function created for the system with
N = 3240 particles (plus 432 fixed wall particles) at a misfit of
� = 1.7 is given in Fig. 13, also illustrating how the definition
of the energy order parameter M given in Eq. (A2), which
includes a logarithm of the energy difference, leads to a finer
binning in the part closer to M = 0, where the phase switches
are most likely to happen. In fact, to ensure that the transition
matrix estimate of the weight function was sufficiently smooth
and reliable in this region we reduced the number of bins in
this region somewhat.
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