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Modularity optimization by conformational space annealing
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We propose a modularity optimization method, Mod-CSA, based on stochastic global optimization algorithm,
conformational space annealing (CSA). Our method outperforms simulated annealing in terms of both efficiency
and accuracy, finding higher modularity partitions with less computational resources required. The high
modularity values found by our method are higher than, or equal to, the largest values previously reported.
In addition, the method can be combined with other heuristic methods, and implemented in parallel fashion,
allowing it to be applicable to large graphs with more than 10 000 nodes.
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I. INTRODUCTION

Network science has emerged as an important framework
in which to study complex systems [1,2]. One of the most
important properties of networks is the existence of modules
or communities; communities are subgraphs of densely inter-
connected nodes, and nodes in a community are considered to
share characteristics [3,4]. Proper community detection allows
one to determine potentially hidden relationships between
nodes and also allows one to reduce a large complex network
into smaller and comprehensible ones. For this reason, good
community detection within networks has been a subject of
great interest. There exist various definitions of community
[4–7]. The most widely used approach to detect such sub-
groups of nodes with nonrandom connections involves the use
of modularity to quantify the quality of a given partition of a
network [4,8,9]. Using modularity, the community detection
problem is thus recast as a global optimization problem.
However, finding the maximum modularity solution is an NP-
hard problem [10], and enumeration of all possible partitions
is intractable in general. Therefore, an efficient optimization
algorithm is required to obtain high modularity solutions.

Most of the modularity optimization studies have focused
on developing fast heuristic methods generating reasonable
quality community structures. Currently, simulated annealing
(SA) is considered to be the best algorithm [4,11] and has
been adopted in many theoretical and practical studies where
communities with high modularity is required [12–14].

In this paper we propose a new modularity maximization
method based on a conformational space annealing (CSA)
algorithm [15–19]. We show that CSA outperforms SA both
in generating better community structures and in computa-
tional efficiency. CSA consistently finds community structures
with higher modularity using fewer computational resources.
Moreover, for networks containing approximately up to 1000
nodes, CSA repeatedly finds converged solutions. Considering
the stochastic nature of the algorithm, this suggests that the
converged solution is likely to be the optimal solution of the
network.
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II. METHODS

Let us consider a network with N nodes and M edges.
Modularity measures the fraction of intracommunity edges
minus its expected value from the null model, a randomly
rewired network with the same degree assignments. Modular-
ity is defined as

Q =
Nc∑
i=1

[
li

M
−

(
Di

2M

)2
]

, (1)

where Nc is the number of assigned communities, li is the
number of edges within the community i, and Di is the sum
of degrees of nodes in the community i.

To benchmark the performance of CSA against that of
SA, we implemented SA following existing studies [12,20].
Initially, using E = −Q, a simulation starts at a high tem-
perature T , to sample broad range of the solution space as
well as to avoid trapping in local minima. As the simulation
proceeds, T is slowly decreased to more completely explore
basins of high modularity. At a given T , a set of stochastic
movements, including N2 single-node moves and N collective
moves consisting of random merges and splits of communities,
are carried out. To split a community, a “nested” SA method is
used [12,20], which isolates a target community from the entire
network and splits it into two communities. Each “nested” SA
starts with two randomly separated groups for short annealing,
and the annealed solution serves as a collective move. For each
trial movement, if Q increases, the movement is accepted,
otherwise it is accepted with probability P = exp(Qf −Qi

T
).

After a set of movements are tried, T is decreased to αT ,
where α = 0.995.

Our method, CSA, is a global optimization method which
combines essential ingredients of three methods: Monte Carlo
with minimization (MCM) [21], genetic algorithm (GA) [22],
and SA [23]. As in MCM, we consider only the phase or
conformational space of local minima; i.e., all solutions are
minimized by a local minimizer. As in GA, we consider many
solutions (called bank in CSA) collectively, and we perturb a
subset of bank solutions by crossover between solutions and
mutation. Finally, as in SA, we introduce a parameter Dcut,
which plays the role of the temperature in SA. In CSA each
solution is assumed to represent a hypersphere of radius D in
the solution space. Diversity of sampling is directly controlled
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by introducing a distance measure between two solutions and
comparing it with Dcut, to deter two solutions from coming
too close to each other. Similar to the reduction of T in SA,
the value of Dcut is slowly reduced in CSA; hence the name
conformational space annealing.

To apply CSA to optimize modularity, three ingredients are
required: (a) we need a local modularity maximizer for a given
network partition, (b) we need a distance measure between two
Q-maximized network partitions, and (c) we need ways to
combine two parent partitions to generate a daughter partition
which will be Q-maximized subsequently.

Here the community structure is represented by assigning
an index to each node, where nodes with an identical index
belong to the same community. For local maximization of Q,
we use a quench procedure which accepts a move if and only
if it improves Q, equivalent to SA at T = 0.

The distance between two community structures is mea-
sured by the variation of information V [24]. For two given
partitions of X and Y , V is defined as

V (X,Y ) = H (X,Y ) − I (X; Y ),

where H is the entropy function and I is the mutual infor-
mation function of the probability p(x,y) = nx,y/n, where n

is the number of total nodes, x/y refers to a community from
X/Y , and nx,y is the number of nodes shared by x and y. With
H and I defined by

H (X,Y ) = −
∑
x,y

p(x,y) log p(x,y)

= −
∑
x,y

nx,y

n
log

(nx,y

n

)
,

I (X; Y ) =
∑
x,y

p(x,y) log

[
p(x,y)

p(x)p(y)

]

=
∑
x,y

nx,y

n
log

(
nx,yn

nxny

)
,

V can be reduced to

V (X,Y ) = −1

n

∑
x,y

nx,y log

(
n2

x,y

nxny

)
, (2)

where p(x) = nx/n and nx is the number of nodes in
community x. If X is identical to Y , it is easy to show
that V (X,Y ) = 0. We have also tried other measures such
as the Rand index [25] and normalized mutual information
(NMI) [26], and they gave no significant difference in results.

In CSA we first generate 50 random partitions, which
are subsequently maximized by quench procedures. We call
these solutions the first bank, which is kept unchanged during
the optimization. We make a copy of the first bank and call
it the bank. The partitions in the bank are updated by better
solutions found during the course of optimization. The initial
value of Dcut is set as Davg/2, where Davg is the average
distance between partitions in the first bank. A number of
partitions (30 in this study) in the bank are selected as seed
partitions. With each seed, 20 trial partitions are generated by
crossover between the seed and a randomly chosen partition
from either the bank or the first bank. An additional five are
generated by random mutation of the seed.
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FIG. 1. (Color online) Two crossover operators, (A) convergent
copy and (B) divisive copy, are shown. (A) The community indexed
by 1 from the source is copied into the target, and the new indices are
set to 1 or 3 with the probability of 2/3 and 1/3. (B) The community
indexed by 3 from the source is copied into the target, and the new
index 2 is assigned.

For a crossover, we use two operations, a convergent copy
and a divisive copy, shown in Fig. 1. In both cases one
community represented by an index is randomly selected
from a source solution, and it is copied into a target solution
after assigning a new index. For the convergent copy, the
new index is chosen from one of the neighboring indices
of the copied nodes from the target in a random fashion.
For the divisive copy, a new index not present in the target
is chosen. The rationale of using these operators is that the
community index itself has no particular meaning, while a
well-defined community structure from one solution can serve
as an advantageous feature that should be preserved to generate
a better solution. For each operation, the minimum number of
nodes that should be copied are randomly determined between
1% to 40% of total nodes, and the above operation is repeated
until the total number of copied nodes exceeds the number.

For mutation, random merge and split operators were
introduced. The random merge was carried out by combining
two adjacent communities. The random split operator divides
a community into two randomly assigned groups. All trial
conformations generated by crossover and mutation operations
are optimized by quench procedures. It should be noted that
only local moves are used in the quench procedures since the
divergent and divisive copy operators can act as the merge and
split moves used in SA.

After local maximization of trial partitions, these partitions
are used to update the bank. The modularity of a trial partition
α is compared with the modularities of partitions in the bank. If
α is worse than the worst partition of the bank, it is discarded.
Otherwise, we find the partition A in the bank which is closest
to α, as determined by distance D(α,A). If D(α,A) < Dcut, α

is considered as similar to A, and it replaces A if α > A. If
α < A it is discarded. If D(α,A) > Dcut, α is regarded as a new
partition similar to none in the bank, and it replaces the worst
existing partition, that is, it replaces the lowest modularity
partition in the bank. We carry out this operation for all trial
partitions. With updated bank, new seed partitions are selected
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TABLE I. Number of nodes and edges of benchmark networks
used in this study.

Network Nodes Edges

Dolphins 62 159
Les Misérables 77 254
Political books 105 441
College football 115 613
Jazz 198 2742
USAir97 332 2126
Netscience_main 379 914
C. elegans 453 2025
Electronic circuit (s838) 512 819
E-mail 1133 5451
Erdos02 6927 11 850
PGP 10 680 24 316
condmat2003 27 519 116 181

again from the bank which have not yet been used as seeds.
This entire process of generating partitions by perturbation
and subsequent local maximization and updating the bank is
repeated until all partitions in the bank are used as seeds. At
each iteration step, Dcut is reduced with a predetermined ratio.
After Dcut reaches its final value, Davg/5, it is kept constant.

Once all partitions in the bank are used as seeds without
generating better partitions, implying that the procedure might
have reached a deadlock, we reset all bank partitions to be
eligible for seeds and repeat another round of search procedure.
After this additional search also reaches a deadlock, we
expand our search space by adding an additional 50 randomly
generated and optimized partitions to the bank, and repeat the
whole procedure. In this study we terminated our calculation
after 100 partitions were used as seeds. Additional adding

cycles should be considered for more rigorous optimization,
especially for problems with high complexity.

III. RESULTS

To compare performance of CSA and SA, we applied CSA
and SA to a number of real-world networks commonly used
in existing modularity optimization studies, shown in Table I.
All networks considered are undirected and unweighted. Due
to the stochastic nature of both methods, we performed 50
independent simulations for each method. The results are
summarized in Table II. The maximum, average, and standard
deviation of modularity values obtained by both methods are
displayed. As a measure of required computational resources,
we counted the number of function evaluations performed
until the maximum modularity solution is found, Nmax. We
observe that CSA consistently finds equal or higher modularity
solutions than does SA for all networks tested, with a smaller
number of function evaluations. To demonstrate the search
efficiency of CSA more clearly, we also measured the number
of function evaluations required by CSA to generate a solution
equivalent to the best modularity obtained by SA, which is
denoted as N

equal
CSA in Table II. CSA clearly requires many fewer

function evaluations to generate solutions better than the best
ones obtained by SA. For small networks (e.g., up to the Jazz
musician network), CSA finds the best solution with less than
10% of the function evaluations required by SA, and for the
worst case, the C. elegans network, CSA requires only 25% of
the function evaluations of SA.

It should be noted that CSA can be applied to networks con-
taining more than 103 nodes where for SA this is impractical.
For the three largest networks in Table II, CSA found good
solutions within a reasonable computational time, whereas
SA runs did not yield reasonable value of modularity within

TABLE II. Modularity optimization results obtained by 50 separate runs of Mod-CSA and SA are displayed. Qmax denotes the maximum
modularity value, Qavg the average of maximum modularity value of each run, σ the standard deviation of the modularity value, Nmax the
number of function evaluations until the calculation reached the maximum modularity, N

equal
CSA the number of function evaluations required for

CSA runs to sample equal or higher modularity solutions than the maximum modularity of SA runs, t the average execution time to find the
best solution in seconds. All simulations were performed on an Intel Nehalem core at 2.93 GHz. CSA and SA runs were performed with
64 cpus and single cpu, respectively. For the three largest networks, SA results are not available because calculations were not finished within
2 days.

CSA SA

Network Qmax Qavg σ Qmax Qavg σ Nmax
CSA/Nmax

SA N
equal
CSA /Nmax

SA tCSA tSA

Dolphins 0.52852 0.52852 0 0.52852 0.52507 0.0036 0.077 0.077 0.09 0.74
Les Misérables 0.56001 0.56001 0 0.56001 0.55194 0.0071 0.362 0.362 0.01 0.18
Political books 0.52724 0.52724 0 0.52724 0.52723 0 0.055 0.019 0.07 2.52
College football 0.60457 0.60457 0 0.60457 0.60457 0 0.093 0.093 0.05 0.26
Jazz 0.44514 0.44514 0 0.44487 0.44477 1.6e-4 0.073 0.052 0.17 679.4
USAir97 0.36824 0.36824 0 0.35376 0.34787 0.0044 0.271 0.010 0.13 429.2
Netscience_main 0.84859 0.84859 0 0.84383 0.83544 0.0044 0.345 0.019 1.3 263.3
C. elegans 0.45325 0.45325 0 0.45212 0.44927 0.0026 0.960 0.246 16.8 2512.3
Electronic circuit (s838) 0.81936 0.81936 0 0.81871 0.80812 0.0048 0.639 0.424 2.6 1129.4
E-mail 0.58283 0.58282 2.2e-5 0.58198 0.58015 0.0015 0.510 0.119 73.6 42 296
Erdos02 0.71843 0.71782 3.2e-4 – – – – – 3356 –
PGP 0.88675 0.88648 1.1e-4 – – – – – 10 757 –
condmat2003 0.76745 0.76484 0.0010 – – – – – 57 609 –
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FIG. 2. (Color online) Comparison of time complexities of CSA
(red, circle) and SA (blue, cross) is shown. Network size n represents
the number of nodes, and CPU time corresponds to the average time
to find final solutions in seconds.

2 days of wall clock time. This difference in computational
time reflects a number of factors. It is partly due to the high
parallel efficiency of the CSA algorithm [35]. In SA generation
of a trial solution is dependent on its previous state, which
makes it impractical to implement the algorithm in a parallel
fashion. However, the majority of computation in CSA consists
of independent local maximization procedures on hundreds
of trial solutions generated by crossover and mutation, and
each maximization can be separately carried out. The quench
procedure in CSA consists of local moves only, which is
rather fast with large networks. On the other hand, the most
time-consuming operation in SA is the splitting move by the
nested SA procedure, which we find is indeed essential to
obtain good SA solutions. In CSA the operation of the divisive
copy when generating trial solutions plays the equivalent role
of the split move in SA. To compare the computing efficiency

of CSA with existing methods, the time complexities of CSA
and SA are estimated based on the simulation results with the
benchmark networks. As shown in Fig. 2, the time complexity
of CSA is estimated to be O(n2.6), which is comparable to
other heuristic methods [36,37] and better than that of SA,
O(n4.3), where n is the number of nodes.

In terms of convergence, CSA yields more robust solutions
than SA. Except for the political books and college football
networks, the maximum modularity solution found by SA
varied from simulation to simulation. For networks containing
over 300 nodes, SA failed to sample the optimal solution,
which raises serious concerns when applying SA to modularity
optimization for practical use [11]. However, for all test
networks up to about 103 nodes, all CSA runs converged to
the same solution, except the e-mail network, where 41 out
of 50 converged. Considering the small size of networks and
the stochastic nature of the algorithm, we believe that the
converged solution of each network is likely to be the true
maximum modularity of the network.

We also compared maximum modularities obtained by CSA
with the maximum values from previous publications; see
Table III. CSA finds equivalent or higher Q values compared
to existing studies in all networks tested.

Recently the exact maximum modularity values of several
small benchmark networks up to 512 nodes were reported;
they are displayed in Table III as Qopt [29]. We performed 50
independent runs for these networks, and all runs converged to
the optimal solutions without exception. This result supports
the hypothesis that CSA is efficient enough to find the putative
maximum modularity solution for a network containing up to
103 nodes.

CSA algorithm presented in this work aims to obtain opti-
mal modularity solutions, and the method is not free from the
problem of the resolution limit arising from using modularity
[38]. However, the CSA procedure and operators proposed in
this work are general and can be used to optimize other fitness
functions. To overcome the resolution limit issue, more robust
fitness functions should be considered to be combined with

TABLE III. Comparison between the maximum modularity values obtained by CSA, Qmax, with previously published ones, Qpub, and the
maximum values obtained by the exact method [29], Qopt, is displayed. Nc denotes the number of communities found by CSA. Source indicates
the reference that the modularity value is collected. %SA

opt denotes the percentage of SA runs that reached the optimal modularity community
structure.

CSA

Network Nc Qmax Qpub Qopt %SA
opt Source

Dolphins 5 0.52852 0.5285 0.5285 16.0 [27–29]
Les Misérables 6 0.56001 0.5600 0.5600 20.0 [29]
Political books 5 0.52724 0.5272 0.5272 100.0 [28–30]
College football 10 0.60457 0.6046 0.6046 100.0 [28,29,31]
Jazz 4 0.44514 0.4451 – – [28,30,32,33]
USAir97 6 0.36824 0.3682 0.3682 0.0 [29]
Netscience_main 19 0.84859 0.8486 0.8486 0.0 [29]
C. elegans 9 0.45325 0.452 – – [34]
Electronic circuit (s838) 16 0.81936 0.8194 0.8194 0.0 [29]
E-mail 10 0.58283 0.582 – – [34]
Erdos02 40 0.71843 0.7162 – – [30]
PGP 100 0.88674 0.8841 – – [30,34]
condmat2003 80 0.76745 0.761 – – [31]
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CSA, such as the map equation [39] or the partition density [7].
It should be noted that the current work can be extended to
deal with directed or weighted networks in conjunction with
modified modularity functions [40,41]. In order to handle large
networks, CSA can be combined with other efficient heuristics,
such as the fast unfolding method [42], instead of the stochastic
quench procedure used in this study.

IV. CONCLUSION

In this paper, we propose a new modularity optimization
method based on conformational space annealing algorithm,
Mod-CSA. Compared to SA, our method is faster. Further,
while it finds equivalent modularity partitions for relatively
small networks, for the larger more challenging ones, it typi-
cally finds higher modularity partitions. For small networks

consisting up to 103 nodes, despite its stochastic nature,
Mod-CSA solutions converge to an identical solution, which
appears to be the best solution possible; this is not possible
in other stochastic algorithms. Mod-CSA can be implemented
in a highly parallel fashion and is thus applicable to large
networks where SA is not. In addition, Mod-CSA can be
extended to deal with large networks by using fast heuristic
methods such as a local optimizer.
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