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Electrical dark compacton generator: Theory and simulations

Fabien Kenmogne,1,* David Yemélé,2,† and Paul Woafo1,‡
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A modified Colpitts oscillator (MCO) associated with a nonlinear transmission line (NLTL) with intersite
nonlinearity is introduced as a self-sustained generator of a train of modulated dark signals with compact shape.
Equations of state describing the dynamics of the MCO part are derived and the stationary state is obtained.
Using the Routh-Hurwitz criterion, the result of a stability analysis indicates the existence of a limit cycle in
certain parameter regimes and there the oscillation of the circuit delivers pulselike electrical signals. The train of
generated signals is then transformed into a train of compact modulated dark voltage solitons by the NLTL. The
exactness of this analytical analysis is confirmed by numerical simulations performed on the circuit equations.
Finally, simulations show the capacity of this circuit to work as a generator of compactlike dark voltage solitons.
The performance of the generator, namely, the pulse width and the repetition rate, is controlled by the magnitude
of the characteristic parameters of the electronic components of the device.

DOI: 10.1103/PhysRevE.85.056606 PACS number(s): 05.45.Yv, 84.30.Ng, 07.50.Qx

I. INTRODUCTION

In electronics, as first demonstrated by Hirota and Suzuki
[1], a nonlinear electrical transmission line (NLTL) serves as a
nonlinear dispersive medium that propagates nonlinear local-
ized excitations or solitons. Since this pioneering work, there
has been increasing interest in the use of NLTLs for studying
nonlinear phenomena in general and bright and dark solitons in
particular [2]. Numerical simulations show that dark solitons
are more stable than bright solitons in the presence of noise and
spread more slowly in the presence of system loss. They are
also less affected by many other factors that have an impact on
the use of bright solitons. These properties point to potential
applications of dark solitons for communication systems [3,4].

In recent years the development in NLTLs has demonstrated
their capacity to work as signal processing tools. To cite only
a very few examples, it has been demonstrated that a nonlinear
uniform electrical line can be used for extremely wideband
signal shaping applications [5] and also as a waveform equal-
izer in a compensation scheme for signal distortion caused
by optical fiber polarization dispersion modes [6]. Moreover,
it is also possible to use NLTLsfor controlling the amplitude
(amplification) [7,8] and the delay of ultrashort pulses through
the coupled propagation of the solitonic and dispersive parts,
which is important in that it enables the characterization of
high-speed electronic devices such as heterojunction field ef-
fect transistors or resonant tunneling diodes, and raises the pos-
sibility of establishing future ultrahigh-speed signal processing
technologies [9]. In modern electronics such as ultrafast
time-domain metrology, short-duration electrical solitons play
an important role since they are used to sample rapidly varying
signals or as probe signals in ranging radar and time-domain
reflectometry [10,11]. Similarly, it is also possible to use these
short-duration pulses as carrier signals in communication [12].
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It is then of great interest to look for electronic devices capable
of generating these pulse solitons. In this context, NLTLs have
also been used as two-port devices to produce pulse solitons.
This two-port topology of the NLTL requires an external
high-frequency input, and the output waveform is sensitive to
the quality and shape of the input signal. An extension was the
construction of a one-port electrical circuit that self-generates
a periodic and stable train of electrical bright solitons with no
high-frequency input, through a combination of a NLTL with
a special amplifier in a circular topology [13].

In this paper, we introduce an intermediate extension
between one-port and two-port electrical circuits, consisting
of a two-port electrical circuit that includes the advantages
of a one-port circuit. This generator is a combination of a
modified Colpitts oscillator and a special NLTL [14] capable
of propagating a compact signal. It self-starts by growing from
ambient noise to produce a harmonic electrical signal, which
is transformed into a train of compact electrical pulses, going
through the NLTL, and thus making a self-sustained dark
compacton generator that does not require an external high-
frequency input. Unlike soliton signals, compacton signals
are ultralocalized and do not interact with each other. In
fact, over a decade ago, Rosenau and Hyman [15] studied
a special type of nonlinear partial differential equation, a
Korteweg–de Vries equation with nonlinear dispersion and
introduced a class of solitary waves with compact support,
outside of which they vanish identically. The solutions were
found to emerge unaltered from collisions and were thus called
compactons [15], analogous to solitons since they retain their
identity after multiple collisions. Because of their compact
structure, neither compactons nor anticompactons interact with
each other until the moment of collision. In other words, two
adjacent compactons do not interact unless they come into
contact in a way similar to the contact between hard spheres.
Because of the compacton’s finite extension, its experimental
realization is possible only with a finite background instead
of the infinite background associated with gray solitons. In
addition, numerical calculations show that gray solitons with a
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finite background pulse exhibit propagation properties nearly
identical to those of solitons with infinite background only
if the background pulse is wider by a factor of 10 or more
than the soliton [16]. Thus, the use of gray compactons
which are strictly localized (finite extension) will allow these
difficulties to be overcome and will also increase substantially
the data repetition rate when they are invoked to codify data.
Similarly, since the gray compacton width is also independent
of the amplitude, in contrast to the gray soliton width which
is amplitude dependent, gray-compacton-like signals with
arbitrary amplitude cannot disintegrate into other compactons
during propagation and consequently should be more stable in
the network compared to the classical gray solitons.

The paper is organized as follows. We first present the
topology of the dark compacton generator in Sec. II . Next, in
Sec. III, the equations governing the dynamics of the oscillator
are derived and used to study analytically the behavior of
the circuit. In Sec. IV, numerical simulations as well as
experiments by means of the PSPICE professional simulator
are performed. Finally, Sec. V is devoted to discussion and
concluding remarks.

II. NLTL DARK COMPACTON GENERATOR TOPOLOGY

In this section, we describe the physical structure of the
compact dark generator as depicted in Fig. 1. This generator

consists of a coupling between a modified Colpitts oscillator
(MCO) and a nonlinear electrical transmission line with
nonlinear dispersion.

A. Modified Colpitts oscillator

Because of the richness of its dynamical behavior and also
its ability to produce chaotic signals, the Colpitts oscillator is
used in a variety of applications including signal masking [17],
chaos modulation [18,19], and spectrum spreading [20]. In fact
the basic Colpitts oscillator is a combination of a transistor
amplifier and LC circuits used to feed back the output signal
[21,22]. It is easily realizable, easily modeled, and scalable in
frequency. Its frequency of operation can vary from a few hertz
up to gigahertz, depending on the technology, and thus it is
frequently used for practical and commercial technology [22].
In this paper, it is used as a part of a more complex oscillator,
named the MCO, which consists of four different blocks as
follows (see Fig. 1):

The first block is the basic Colpitts oscillator with the
transistor Q used in the common-base configuration and
modeled by the linear current controlled source IC = αF IE ,
where αF = βF /(1 + βF ) is the common-base forward current
gain (0 < αF < 1) and βF the common-emitter forward
current gain. IC and IE are the base-collector and base-emitter
currents, respectively. The intrinsic nonlinearity of the system

FIG. 1. Schematic diagram of a self-sustained dark compacton generator. The generator is constituted of the NLTL bloc and four other
blocks: the classical Colpitts oscillator, an adapter of compact pulse signals, an inverter and the modulation circuit. The NLTL bloc contains
the NLTL ended by the termination which prevents reflexions by absorbing signal voltage that can reflect at the end of the line.
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is described by [23]

IC = Is[exp (VBE/VT ) − 1], (1)

where Is is the saturation current of the base-emitter junction
and VT = 26 mV the thermal voltage at room temperature.

The second block is the compact pulse signal adapter
containing among many electronic components an ideal diode
d1 with the input-output voltage characteristic given by

Vout =
{

G (Vin − Vth) if Vin > Vth,

0 otherwise,
(2)

where G is the voltage gain of the diode and Vth the threshold
value of the voltage. The third block is constituted of a voltage
electronic summer ESUM(1) and a voltage four-quadrant
analog multiplier AD633 (1) with the input-output relationship
given by

W = �(X2 − X1)(Y2 − Y1), (3)

where X1, X2, Y1, and Y2 are the input voltages of the
multiplier, and � = 0.1 V−1 is the modulation coefficient. Fi-
nally, the last block is the modulation circuit. The fundamental
frequency of the MCO can be estimated as [23]

f ∗ = ωref/2π, ωref =
(

L1
C1C2

C1 + C2

)−1/2

, (4)

so that its variation can be achieved by varying the capacitance
C1 and/or C2.

As a basic Colpitts oscillator, the MCO described above
may behave as a self-sustained oscillator capable of generating
chaotic and regular signals. More interestingly, it is especially
designed to produce, under certain conditions, a well-defined
type of regular signal, namely, a pulse train of signal
voltages with high frequency. This particular signal voltage
is indispensable for the NLTL part to generate a train of
compact modulated dark solitary waves when the two parts
of the circuits are dynamically synchronized (synchronization
here and hereafter means that signals generated by the MCO
part and by the NLTL part have the same shape). Similarly,
the considered NLTL has to be built conveniently to exhibit
compact waves instead of standard solitons, as described
below.

B. NLTL description

The NLTL part is an LC ladder. The equivalent circuit is
shown in Fig. 2, in which the unit cell contains both a series
linear inductor Ls shunted by a capacitor Cs(V ) while Lp and
Cp(V ) represent the shunt inductor and capacitor, respectively.
The two capacitors are varactors (e.g., reverse-biased p-n
junction diodes or metal-oxide-semiconductor capacitors).
The nonlinearity of the NLTL results from the varactors,
whose capacitance changes with applied voltage, while its
dispersion arises from the linear inductor. The capacitance-
voltage relationship is assumed to be Taylor expanded to
second order and reads [24]

Cp(Vn + Vb) = C0p

(
1 − 2αVn + 3βV 2

n

)
(5)

for the shunt capacitor and

Cs(δV ) = C0s(1 − 2ηδV + 3λδV 2) (6)

for the series capacitors, where C0s is the capacitance at the
zero-bias voltage while C0p is the capacitance at the bias
voltage Vb of the shunt capacitor. Vn is the voltage at node
n while δVn is the voltage across the series capacitor. This
series capacitor induces nonlinear dispersion in the NLTL and
is responsible for the compactification of the envelope of dark
solitary waves [14].

III. NLTL COMPACTON GENERATOR: EQUATIONS
OF STATE AND DYNAMICS

A. Transmission equation reconsidered

By applying Kirchhoff’s laws to the nth cell of the circuit
in Fig. 2, one obtains the transmission equation of the NLTL
given by [14]

d2Vn

dt2
+ u2

0 (2Vn − Vn−1 − Vn+1) + ω2
0Vn

−α
d2V 2

n

dt2
+ β

d2V 3
n

dt2

= C0r

d2

dt2
{(Vn−1 + Vn+1 − 2Vn)

− η[(Vn−1 − Vn)2 − (Vn − Vn+1)2]

+ λ[(Vn−1 − Vn)3 − (Vn − Vn+1)3]} (7)

FIG. 2. Schematic representation of the nonlinear transmission line. Each cell contains, in the series branch, a linear inductor Ls shunted
by a nonlinear capacitor Cs(V ), and in the shunted branch, a nonlinear capacitor Cp(Vn) shunted by another linear inductor Lp .
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for n = 1,2, . . . ,N − 1, and with

C0r = C0s/C0p, ω2
0 = 1/LpC0p, u2

0 = 1/LsC0p. (8)

The constant C0r is the dimensionless capacitance while u0

and ω0 are the characteristic frequencies of the system. The
linear frequency ω and wave number k of the linear wave (a
wave with small amplitude) satisfy the linear dispersion law

ω2 = ω2
0 + 4u2

0 sin2(k/2)

1 + 4C0r sin2(k/2)
, (9)

which describes the bandpass-filter character of the network in
this regime, with the gap frequency ω0 and the cutoff frequency

ω2
c = (

ω2
0 + 4u2

0

)
/(1 + 4C0r ). (10)

As demonstrated by Yemélé and Kenmogné [14], in the
nonlinear regime and when the electrical pulse width is much
greater than the lattice spacing, the dynamics of the amplitude
A(x,t) of modulated nonlinear waves of the form

Vn(t) = A(x,t) exp [i(kn − ωt)] + c.c. (11)

satisfies the following extended nonlinear Schrödinger equa-
tion (ENLS) equation

i
∂A

∂τ
+ P

∂2A

∂X2
+ QA|A|2 = ir1

∂A

∂X
|A|2 + r23A

∗ ∂2A2

∂X2

+ r3A
∂2

(|A|2)
∂X2

, (12)

where the coefficients P , Q, r1, r23, and r3 depends both on the
characteristic parameters of the network and on the parameters
of the input carrier waves:

P = − 1

2ω

(vg/ω)
(
u2

0 + 3C0rω
2
)

sin k + (
C0rω

2 − u2
0

)
cos k

1 + 4C0r sin2(k/2)
,

Q = 3ω

2

β − 16C0rλ sin4(k/2)

1 + 4C0r sin2(k/2)
,

r1 = 24C0rλω
sin k sin2(k/2)

1 + 4C0r sin2(k/2)
,

r23 = 2C0rλω
sin(k/2) sin(3k/2)

1 + 4C0r sin2(k/2)
,

and

r3 = −6C0rλω
sin2(k/2)

1 + 4C0r sin2(k/2)
. (13)

The variables X and τ are related to the cell number n and
time t as follows:

X = n − vgt and τ = t, (14)

where

vg ≡ dω

dk
= 1

ω

(
u2

0 − C0rω
2
)

sin k

1 + 4C0r sin2(k/2)
(15)

represents the group velocity of the wave-packet. This
ENLS equation admits a compact dark solution with the
form

A(X,τ ) = A0 sin μ(X − X0 − veτ ) exp[iγ (X − vpτ )],

|(X − X0 − veτ )| � π/2μ, (16)

with

γ = −r1

8r23
, ve = 2Pγ, (17)

and

vp = γP −
(

P

2(r3 + r23)
+ A2

0

) (
r1

4
+ Q

2γ

)
. (18)

Going back to the original variables, that is the cell number n

and time t , it is then easy to show that the circuit equation (7)
has the following compact solution:

Vn(t) =

⎧⎪⎨
⎪⎩

Vm sin μc(n − n0 − vct) cos[(kn − ωt)], |(n − n0 − vct)| � π/2μc,

Vm cos[(kn − ωt)], (n − n0 − vct) > π/2μc,

−Vm cos[(kn − ωt)], (n − n0 − vct) < −π/2μc,

(19)

where μc is the width parameter and vc the velocity of the
signal in the network. Their expressions are

μc =
[

r2
1 − 16r23Q

64r23(r23 + r3)

]1/2

and vc = vg − Pr1

4r3
. (20)

Unlike standard dark solitons with infinite extension, the
solution (19) is strictly localized in the region of space
π/2μc and defines the analytical expression of the dark-
compacton-like signal voltages exhibited by the NLTL. Note
that the signal in the region |n − n0 − vct | > π/2μc defines
the background intensity and has an arbitrary extension,
leading to the possibility of obtaining a train of dark solitary

waves with arbitrary period 
 provided that 
 > π/2μc. The
envelope part of this signal is depicted in Fig. 3.

B. MCO dynamics

1. State equations: Steady state solution and stability

Denoting by Vc1 and Vc2 the voltages across the capacitors
C1 and C2 of the MCO, respectively, and applying Kirchhoff’s
laws to the circuit of Fig. 1, we obtain the following set of
ordinary differential equations governing the dynamics of the
system:⎧⎨

⎩
C1

dVc1
dt

= Vcc0
R1+αR3

− VDD

R4
− Vc1

REE
− IL − IC

βF
,

C2
dVc2
dt

= IL − IC,

L1
dIL

dt
= Vcc1 + Vc1 − Vc2 − R2IL,

(21)
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FIG. 3. Single compact dark solitary wave profile (envelope part)
located at X0 = 0 with amplitude A0 = 1 and width μ = 0.1472.

with

REE =
[

R1 + R3

(1 − χ )R3(R1 + χR3)
+ 1

R4
+ 1

R5

]−1

, (22)

where the parasitic effects in the base-emitter capacitor Cbe

and collector-emitter capacitor Cce are neglected. In these
equations, χ is the shunt coefficient of the emitter resistor R3

where Vc1, Vc2, and IL are the circuit-state variables, while IC

is defined by Eq. (1). Here, VBE = Vc1 and the output signal at
gate S1 is VS1 = Vc1 while at gates S2 and S3 the output signals
obtained according to Eqs. (2) and (3) are

VS2 = G
dVc1

dt
and VS3 = −G�E1

dVc1

dt
+ E2 (23)

for dVc1/dt > 0; VS2 = 0 and VS3 = E2, otherwise. E1 and
E2 are dc voltages, with E2 � G�E1| dVc1

dt
|. It appears from

Eqs. (21) and (23) that the dynamics of the MCO is similar to
that of a master-slave system in which the first block behaves as
the master while the second and the third blocks are the slaves.
If the current Ic is neglected in Eq. (21), the MCO admits a
single equilibrium or steady state solution (Vc1, Vc2, and IL),
obtained by setting the right-hand side of Eq. (21) to zero:

Vc1 = REEVcc0

R1 + αR3
− REEVDD

R4
,

Vc2 = Vcc1 + REEVcc0

R1 + αR3
− REEVDD

R4
, (24)

IL = 0.

where REE is the equivalent emitter resistance, VCC and VDD

are the direct current supplied voltages, and R1,R2,R4 and R5

are the resistances. By rescaling VC1, VC2, IL, and the time t ,
Eq. (21) may then be rewritten in the following dimensionless
form:

dX

dτ
= F (X), (25)

where X = (x1,x2,x3)T , with

x1 = (Vc1 − Vc1)

VT

, x2 = (Vc2 − Vc2)

VT

, x3 = R(IL − IL)

VT

,

(26)

and τ = ωref t , where ωref is the fundamental frequency
defined in Eq. (4). Similarly, the vector field F = (f1,f2,f3)T

is given by

f1 = −a1[γ1x1 + x3 + ρg(x1)/βF ],

f2 = εa1 [x3 − ρg(x1)] , (27)

f3 = a3(x1 − x2 − x3).

The dimensionless parameters ε, a1, a3, γ1, and ρ are given by

ε = C1/C2, a1 = 1

C1R2ωref
, a3 = R2

L1ωref
,

γ1 = R2/REE,

and

ρ = R2IS

VT

exp

[
REE

VT

(
Vcc0

R1 + χR3
− VDD

R4

)]
, (28)

while the nonlinear function g(x1) is defined as

g(x1) = exp(x1) − g0, g0 = R2IS

ρVT

. (29)

Accordingly, and from Eq. (23), the dimensionless output
voltages Vs1, Vs2, and Vs3 are xS1 = x1 and

xS2 = G
dx1

dτ
and xS3 = −G�E1

dx1

dτ
+ E2/VT (30)

if dx1/dτ > 0, and xS2 = 0 and xS3 = E2/VT , otherwise,
with xS2 = VS2/VT and xS3 = VS3/VT . In addition to
Eq. (30), the set of ordinary differential equations (25)
governs the dynamics of the MCO.

Physically, a steady state solution corresponds to an
equilibrium state of the system and the behavior of the system
may depend on its stability. To test this stability, let us consider
the state vector X = X0 + δX, where δX is the perturbation
of the equilibrium solution X0(x10,x20,x30) given by

x20 = (1 + γ1αF )x10, x30 = −γ1αF x10. (31)

The component x10 satisfies the following equation:

γ1x10 + ρg(x10)/αF = 0, (32)

which has the solution

x10 = ρg0

γ1αF

− W

[
ρ

γ1αF

exp

(
ρg0

γ1αF

)]
, (33)

where W is the Lambert W function [23,25].
The stability of this equilibrium state X0 against the

perturbation δX depends on the properties of the eigenvalues
of the Jacobian matrix J (X0) given by

J =

⎛
⎜⎝

−a1[γ1 + ρ exp(x10)/βF ] 0 −a1

−εa1ρ exp(x10) 0 εa1

a3 −a3 −a3

⎞
⎟⎠ , (34)

where Jij = ∂fi/∂Xj . In fact, the equilibrium solution X0 is
stable if all the eigenvalues of J have zero or negative real
parts. These eigenvalues satisfy the following characteristic
equation:

Z3 + {a3 + a1[γ1 + ρ exp(x10)/βF ]}Z2

+ a3a1[1 + ε + γ1 + ρ exp(x10)/βF ]Z

+ εa3a
2
1[γ1 + ρ exp(x10)/αF ] = 0. (35)
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According to the Routh-Hurwitz criterion, all roots of Eq. (35)
would have negative real parts if the following conditions are
satisfied:

a3 + a1[γ1 + ρ exp(x10)/βF ] > 0 (36)

and

{a3 + a1[γ1 + ρ exp(x10)/βF ]}[1 + γ1 + ρ exp(x10)/βF ]

+ ε[a3 − a1ρ exp(x10)] > 0. (37)

Since a1, a3, γ1, βF , and ρ are positive parameters, the
constraint described by Eq. (36) is always satisfied. Similarly,
Eq. (36) is equal to divF > 0, signaling the dissipative
character of the system. This means that trajectories initiated
from different conditions are attracted to a subspace of the
state space. In addition, it is easy to verify that Eq. (35) has
a pair of purely imaginary eigenvalues Z1,2 = ±i�H and the
negative real root

Z3 = −
[
a3 + a1

(
γ1 + ρ exp(x10)

βF

)]
, (38)

with

�2
H = a3a1

[
1 + ε + γ1 + ρ exp(x10)

βF

]
, (39)

provided that[
a3 + a1γ1 + a1ρ exp(x10)

βF

] [
1 + ε + γ1 + ρ exp(x10)

βF

]

− εa1

[
γ1 + ρ exp(x10)

βF

]
= 0. (40)

This constraint (40) is important while calculating the critical
values of the control parameters a1, a3, γ1, ρ, and ε, for a
Hopf bifurcation of the equilibrium state X0. The period of
this bifurcating periodic solution at X0 is 2π/�H . In general,
Eq. (35) may be solved for all values of its coefficients.
Figure 4 shows the plot of the roots in the complex plane
where the common-base current gain αF and the dimensionless
parameter ρ vary in the intervals ]0,1[ and [0.01,4 × 105],
respectively, with the parameters ε = 3.333 33, a1 = 0.0600,
a3 = 3.8431, and γ1 = 2.1522. This picture indicates that for
certain values of the system’s parameters, Hopf bifurcation
and periodic solutions of the system may exist.

2. Existence of a limit cycle

It is well known that the key character of any stable
oscillator is the existence of a limit cycle. In this section we
show that steady state oscillation of the set of differential
equation (25) maps onto an ellipselike closed trajectory space.
For this purpose, from Eq. (25) it is straightforward to show

−8 −6 −4 −2 0 2 4
−20

−15
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−5
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10

15

20

Re(Z)
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)

FIG. 4. Representation in the complex plane of the eigenvalues
of the Jacobian matrix solutions of Eq. (35). The parameters of the
system are ε = 3.333 33, a1 = 0.0600, a3 = 3.8431, γ1 = 2.1522.
The parameter β is used as a control parameter of the system and
varies between 0.01 and 800; accordingly, φ(x10) varies between 0.01
and 4 × 105.

that the temporal variation of x2 and x3 depends solely on x1.
In fact,

ẋ2 = −ε [ẋ1 + a1γ1x1 + ρa1f (x1)/αF ] (41)

and

x3 = −ẋ1/a1 − γ1x1 − ρf (x1)/βF , (42)

while the dynamics of x1 verifies the following nonlinear third-
order differential equation:

˙ẍ1 +
[
a1γ1 + a3 + a1ρ

βF

exp(x1)

]
ẍ1

+ a1a3

[
1 + ε + γ1 +

(
1 + a1

a3
ẋ1

)
ρ

βF

exp(x1)

]
ẋ1

+ εa2
1a3γ1x1 + εa2

1a3ρ

αF

[exp(x1) − g0] = 0. (43)

This equation admits a periodic solution of the form (see the
Appendix)

x1(τ ) = A0 + A1 sin(�oscτ + φ0), (44)

where the dc component A0 satisfies the following equation:

exp(3A0) + p1 exp(2A0) + (p2 + A0q2) exp(A0)

+p3 + A0q3 = 0, (45)

with

p1 = βF

4a1a3ρ(a1a3 − 1)

{
a2

1a3(1 + βF )2 − 4a2
1a

2
3 [ε(1 − βF ) + 2 + 3γ1]

+ a1
[−2ε(1 + βF ) + 4εa3(βF − 1) + 4a3

(
a2

3 − 2 − 2γ1
)]}

, (46)

p2 = βF

4a3ρ2(a1a3 − 1)

{
βF a2

1a3ε
2(1 + βF )2 + 4a1a3

(
a2

3 + ε
)

(1 + ε + γ1)

+ a1β
3
F ε2

[−1 + a1a3(1 + γ1)] + a1a3ερg0[4 − εa1a3
(
1 + β2

F

)] + εa3 − εa1β
2
F (1 + 3ε) + 2a3a

2
1ε(1 + γ1)

}
, (47)
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p3 = β2
F

4a1a3ρ2(a1a3 − 1)

(
a3β

2
F ε2

(
2 − a3ρg0a

2
1

)2 − ρa2
3g0(1 + βF )2 − 4εa1a3γ1βF (1 + γ1)

− a3ε
2
{
ρg0a1(βF + 1)(βF − 2) + ρa3a

2
1g0

[
(1 + βF )(1 + γ1) + β2

F γ1
]

+ 2βF

(−1 + 2a3 − 2a1a
2
3

)} + 8a1βF (1 + γ1)εa3
3 + 4a1βF a3

3(1 + γ1)3 + a2
3

{−4βF

+ ε[4(1 + γ1)
( − 2 + βF a2

1γ1
) + ρg0(1 + βF )] + 4γ1βF

[
a2

1 + (2 + γ1)
(−1 + a2

1γ1
)]}

+ 2εβF (1 + βF )(1 + γ1)(a3 + a1γ1) − 4a1a3βF γ1(1 + γ1)2 + 2ρg0(1βF )(a1 + 2γ1)
)
, (48)

q2 = εβ2
F γ1 [−4 + a1a3ε(1 + βF )]

4ρ2(a1a3 − 1)
, (49)

q3 = β2
F

4a1(a1a3 − 1)
{(1 + βF ) [1 + a1a3(1 + ε + γ1)] − a3 − 4a1γ1 − 3a1(1 + ε)} . (50)

Similarly, the amplitude of the signal A1 and the angular frequency �osc are given as follows:

A2
1 = 4εβF

ρ exp(A0)

{
ρ(βF + 1)[exp(A0) − g0a3] + βF a3γ1A0

2a3(1 − a1a3)[βF (1 + ε + γ1) + ρ exp(A0)] − εβF (1 + βF )

}
(51)

and

�osc = �H

[
1 + ρa1a3A

2
1

8βF �2
H

exp(A0)

]1/2

, (52)

from which it appears that for small-amplitude signals, A1 �
1, the frequency �osc reduces to the Hopf frequency �H . It is
obvious that the periodic solution (44) strongly depends on the
characteristic parameters of the MCO, namely, the common-
base current gain of the transistor αF . This behavior is sketched
in Fig. 5 for γ1 = 2.1522, g0 = 1.9294 × 10−14, and ρ =
571.7216, where it appears that the dc component A0 is almost
constant for αF < 0.6. Similarly, the amplitude of the first
harmonic linearly increases in this range of the parameter αF .
It appears also that the frequency of the signal decreases for
increasing values of αF or amplitude A1. Let us mention that
the above analytical investigation is valid only if the amplitude
A1 is small compared to 1. This condition is satisfied for small
values of the parameter αF , or more precisely, for αF < 0.4
(see Fig. 5). The numerical simulations performed on Eq. (25),
for different initial conditions close to the closed orbit of the
above solution, end up on the same trajectory, indicating that
this oscillation corresponds to a limit cycle.

C. Train of dark-compacton-like signal voltages

From the above investigations, it appears that under the
condition A1 � 1 (that is, αF < 0.4), oscillations of the MCO
produce signal voltages of different types according to the
output considered. Thus, at the gate S3,it appears that

VS3(τ ) = V03 {1 − M cos(�oscτ + φ0)�[cos(�oscτ + φ0)]} ,

(53)

since VS3 = VT xS3 and where �(U ) is the step function,

�(U ) =
{

0 if U � 0,

1 otherwise,
(54)

with V03 = E2 and M = G�VT A1�oscE1/E2. If the dc poten-
tials E1 and E2 are chosen so that M = 1, the gate S3 delivers
a signal voltage with a shape close to that of the modulated
compact dark solitary wave.

The above behavior of the MCO is a first step toward the
generation of modulated dark-compacton-like signal voltages
by the whole circuit. In fact, the dynamics of the MCO part
is coupled to the NLTL through the equation

V0(t) = �VS3VS(t) + Vb, (55)

where Vb is the bias voltage and V0 the voltage at cell n = 0.
This coupling can be interpreted as follows: The nonlinear
transmission line described in Sec. II is supplied by the signal
delivered at the output S3 of the MCO and modulated by means
of the summer as indicated in Fig. 1, so that the signal voltage at
cell number 0 is given by Eq. (55). When the MCO part exhibits
a stable limit cycle, this signal can be explicitly written as

V0(t) = Vm{1 − M cos(ωpt + φ0)

�[cos(ωpt + φ0)]} cos(ωt) + Vb, (56)

where Vm = E2, and ω is the carrier frequency, which is a
free parameter, but has to be chosen in the allowed frequency
range of the NLTL, which behaves as a bandpass filter. To
maintain the synchronization between the MCO and the
NLTL, the parameter ωp which is related to the fundamental
frequency of the MCO by ωp = �oscωref has to match the
temporal pulse width in the NLTL. In fact, in the absence of
loss (undamped NLTL), the temporal dark compacton width
τs and the compacton repetition rate f are given by

τs = π

μcvc

and f = vc/
, (57)

where μc and vc are the width parameter and the compacton
speed along the transmission line, respectively, while 


is the spacing between two adjacent compactons. Since 
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FIG. 5. Variation of the parameters of the harmonic solution (44)
of the system as functions of αF and with f0 = 1.9294 × 10−14 and
ρ = 571.7216.

corresponds to the distance traveled by the compact signal
during one period of the signal S3(t), it follows that 
 = vc/fp.
Similarly, because the temporal pulse width is half the period
of the compact signal, that is, τs = 1/2fp, it appears that the
mathematical conditions for synchronized dynamics between

TABLE I. Set of parameters of the modified Colpitts oscillator.
The BJT transistor Q2N2222 BJT is the Quad two common NPN
bipolar junction transistor.

Circuit components Circuit elements Numerical values

Q2N2222 BJT Vth 25 mV
T 295 K
RB 10 �

β 255.9
Is 14.34 × 10−15 A

Voltage polarization Vcc0 12 V
Vcc1 6 V
VDD 12 V
E1 5 V
E2 0.25 V

vb ≡ E4 1.5 V

AD633 multiplier � 0.1 V−1

Resistors R1 400 �

R2 20 �

R3 300 �

R4 2000 �

χ 0.35

Inductance L1 0.2 mH

Capacitance C1 0.32 nF
C2 0.096 nF

BA220 diode Vth 0.5V

G 0.8

the MCO and the NLTL parts are

μcvc/2π ≈ fp and f = fp = �osc

2π

1√
L1

C1C2
C1+C2

, (58)

where fp = ωp/2π . This equation associated with the
analytical expression of vc is very important in the design
guidelines of the generator.

IV. NUMERICAL SIMULATIONS

In this section, we first set the numerical values used for the
circuit elements as well as for the parameters characterizing
the electronic components. Next, details of the numerical inte-
grations performed on the mathematical equations describing
the dynamics of the MCO part are given, and finally the results
of the PSPICE simulations of the oscillator’s circuit. In fact, the
parameters used in the analysis are listed in Table I for the
MCO part while the characteristic parameters of the NLTL are
Vd = 1.5 V for the polarization voltage, and Ls = 0.47 mH
and Lp = 0.22 mH for the inductances. The nonlinear capaci-
tor in the series branch is an XD2D1 diode or a Pspice BB112
diode with C0s = 10 pF and series resistance Rs = 0.2 �,
while the nonlinear capacitor in the shunt branch D1N5225
diode, a N silicon metal-oxide-semionductor varactor diode,
with C0p = 316 pF and associated resistance Rp = 0.2 �.
The resistor R5 is used as a control parameter of the system and
its value may vary according to the desired phenomena. In fact,
analytical results indicate a threshold in R5 under which the
oscillations of the MCO are established. Similarly, since REE

and ρ are R5 dependent, they are not listed in the table, while
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FIG. 6. Behavior of the MCO at gates S1 (top panels) and S3 (bottom panels): (a) Analytical result, (b) result of the numerical integration,
and (c) PSPICE simulations. The parameters of the system are defined by Eq. (59) with the control parameter R5 = 60 �.

the summer and multiplier are chosen in the PSPICE netlist.
With the above characteristics of the circuit, the following
value of the fundamental angular frequency of the MCO is
obtained: ωref = 8.23 × 106 rad/s leading to f ∗ = 1.31 MHz.

To check the above analytical results performed on the
MCO, the set of equations (25) governing the dynamics of
the MCO in dimensionless units is first solved numerically
by means of the fourth-order Runge-Kutta scheme with the
time step �τ = 2 × 10−3. The parameters of this equation are
calculated according to the numerical values of the electronic
components listed in Table I. It follows that

ε = 3.333, a1 = 0.6005, a3 = 0.3843. (59)

In addition, taking for example the value of the control
parameter as R5 = 60 �, we get the following numerical
values of the R5-dependent parameters: REE = 41 �, g0 =
5.99 × 10−13, ρ = 18.4021, and γ1 = 0.4855. The results of
these numerical simulations displayed in Fig. 6 show a signal
at gate S3 with a compact shape obtained from harmonic
oscillations of the Colpitts oscillator at gate S1, as shown in
the phase-plane plot (x1,x1 + x2) (see Fig. 7). However, at

large values of R5, for example, R5 = 250 �, the signal at
the output S1 still remains coherent but contains more than
one harmonic, and consequently the gate S3 no longer delivers
a harmonic signal, as illustrated in Fig. 8. This means that
the parameters of the circuit in general and the numerical
value of R5 in particular have to be selected carefully so that
the signal delivered at the output S1 has a sinusoidal shape.
The numerical experiments indicate that R5 may vary in the
ranges [0.5 �,4.2 �] and [55 �,200 �] without noticeable
change of the sinusoidal shape delivered by S1. In addition,
the pulse width and signal frequency are less affected by this
variation of the control parameter. Similarly, the fact that
the use of different initial conditions to run the integration
of the circuit’s equations (25) leads to the same closed orbit in
the phase plane indicates the presence of a stable limit cycle.

Next, the set of equations (25) and (7) is also integrated
numerically with the coupling (55) in order to check the
validity of the analytical condition of synchronization of the
two subsystems. The parameters of the circuits are carefully
chosen so that the temporal width τs matches the temporal
width of the compact dark solitons exhibited by the NLTL
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FIG. 7. Typical phase space obtained with the parameters of the system identical to those of Fig. 6: (a) Analytical, (b) numerical, and
(c) PSPICE results.

and described by Eqs. (20) and (57). The numerical results
are in good agreement with the analytical predictions and
simulations of the circuit diagram. Figure 9 shows the compact
modulated signal voltages at cells 100 and 130 of the NLTL,
respectively, obtained through the PSPICE software. It appears
that the signal’s amplitude decays in propagation due to
losses of the network components such as the nonlinear
diodes and the linear inductors. Examples of the circuit’s

characteristics as well as the resulting circuit performance
are vc = 0.91 cells/μs, τs = 5.87 μs, and f = 0.437 MHz
for the pulse’s speed, width, and repetition rate, respectively,
at the working frequency 0.87 MHz belonging to the allowed
frequency band [0.86,0.96] (MHz) of the circuit.

The performance strongly depends on the carrier frequency
(working frequency) due to the dependence of the circuit’s
characteristics on this input parameter. The performance may
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FIG. 8. Behavior of the MCO at the gate S1: (a) signal x1(t) and (b) phase portrait, resulting from the numerical integrations; (c) signal
voltage V1(t) and (d) corresponding phase portrait, from the PSPICE simulations. The parameters of the system are still given by Eq. (59) but
the control parameter is R5 = 250 �. It appears that the behavior of the MCO is no longer harmonic.
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FIG. 9. Results of the simulation of the
NLTL dark compacton generator (MCO +
NLTL part) by means of the PSPICE professional
simulator. Signals at two different cells of the
NLTL: (a) cell 100 and (b) cell 130. The ampli-
tude of the signal at cell 130 is smaller than that
at cell 100 due to the dissipation effects induced
by the losses of the NLTL. The parameters of the
circuit are given in Sec. IV and Table I.

be improved by an appropriate choice of the values of the
inductance and capacitances L1, C1, and C2 for the MCO and
Lp, Ls , C0s , and C0p for the NLTL. For example, taking the
inductance on the order of nanohenries and the capacitance
on the order of femtofarads, the circuit performance is
considerably improved.

V. CONCLUSIONS

In this paper, we have proposed an electrical device working
as a generator of a train of modulated dark-compacton-like
signals. The device consists of a modified Colpitts oscillator
associated with a NLTL. The NLTL part is a nonlinear elec-
trical transmission line with intersite nonlinearities allowing
the propagation of modulated dark compacton signals with
interesting properties compared to those of solitons. First,
after deriving the equations of state governing the dynamics
of the MCO part, we showed that, in certain regimes of
the control parameter, the system may exhibit a limit cycle
characterizing the presence of oscillation, where the amplitude
can be modified by varying the dc potential E2. Through the
Van der Pol method, the frequency of oscillations of the system
was then evaluated. Next, the performance of the generator,
namely, the pulse width and the repetition rate, was also
derived; it is closely connected to the fundamental frequency
of the MCO. Accordingly, the performance of the device can
be controlled from the MCO components while the amplitude
of the signal is controlled by varying the dc potential E2.
However, the characteristics of the NLTL components must
be chosen carefully in order to avoid mismatch between the
temporal width of the dark compactons and the pulse width
generated by the MCO. Finally, the simulation of the circuit
through the PSPICE professional simulator has demonstrated

its capacity to work as a 0.4 MHz generator of a train of
modulated compact dark signals with temporal width 5.87 μs.
This performance is not dictated by the design criteria or
technical characteristics of the device but only by our difficulty
to use the appropriate components of the NLTL in the PSPICE

netlist. Thus, with the appropriate components it is possible
to obtain for this generator performance characteristics up to
gigahertz for the repetition rate and nanoseconds for the pulse
temporal width.

APPENDIX: DERIVATION OF A HARMONIC SOLUTION
FOR THE MCO

In order to solve Eq. (43), let us use Van der Pol methods
[26,27]. So the solution of the above equation is found as

x1(τ ) = A0(τ ) + A1(τ ) sin[ψ(τ )], (A1)

with ψ(τ ) = �oscτ + φ(τ ). Taking into account the fact that
A0(τ ), A1(τ ), and φ(τ ) do not vary considerably in one period
interval, the first, second, and third derivatives of x1(τ ) with
respect to time can be calculated as

ẋ1 = �oscA1 cos ψ, ẍ1 = −�2
oscA1 sin ψ,

˙ẍ1 = −�3
oscA1 cos ψ + �2

oscȦ0, (A2)

with the constraints

Ȧ0 + Ȧ1 sin ψ + A1φ̇ cos ψ = 0,
(A3)

Ȧ1 cos ψ − A1φ̇ sin ψ = 0.

By inserting the set of equations (A2) into Eq. (43), one obtains
the following expression for Ȧ0:
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Ȧ0 = h1(A0,A1,ψ) = A1 cos ψ + A1 sin ψ

[
a3 + a1γ1 + a1ρ exp(A0 + A1 sin ψ)

βF

]

−a1a3A1

�osc

[
(1 + ε + γ1) cos ψ + (cos ψ + a1A1 cos2 ψ)

ρ

βF

exp(A0 + A1 sin ψ)

]

−εa2
1a3γ1(A0 + A1 sin ψ) + εa2

1a3ρ

αF

[g0 − exp(A0 + A1 sin ψ)], (A4)

while from the set of equations (A3), we have

Ȧ1 = − sin(ψ)h1, A1φ̇0 = − cos(ψ)h1. (A5)

Taking the average of the set of Ȧ0, Ȧ1, and A1φ̇0 in the time interval corresponding to ψ ∈ [0,2π ], i.e.,

Ȧ0 = 1

2π

∫ 2π

0
h1(A0,A1,ψ)dψ, Ȧ1 = 1

2π

∫ 2π

0
− sin(ψ)h1(A0,A1,ψ)dψ,

A1φ̇0 = 1

2π

∫ 2π

0
− cos(ψ)h1(A0,A1,ψ)dψ, (A6)

the set of equations (A4) and (A5) leads to the following set of ordinary differential equations:

Ȧ0 = εa2
1a3

�2
osc

(
g0ρ

αF

− γ1A0

)
+ ρa1 exp(A0)

2βF

[
(1 − a1a3) A2

1 − εa1(1 + βF )(4 + A2
1)

2�2
osc

]
,

Ȧ1 = A1

2

(
εa3a

2
1γ1

�2
osc

− a3 − a1γ1

)
− ρa1A1 exp(A0)

2βF

[
1 + 3A2

1

8
− a1a3A

2
1

4
− a1a3ε(1 + βF )

(
8 + A2

1

)
8�2

osc

]
, (A7)

A1φ̇ = A1

2�osc

[
−�2

osc + a1a3(1 + ε + γ1) + a1a3
(
8 + A2

1

)
ρ exp(A0)

8βF

]
.

The solution of the set of equations (A7) is stationary if Ȧ0 = Ȧ1 = A1φ̇ = 0, leading to

�2
osc = a1a3

[
1 + ε + γ1 +

(
1 + A2

1

8

)
ρ

βF

exp(A0)

]
, (A8)

A2
1 = 4εβF

ρ exp(A0)

{
ρ(βF + 1)( exp(A0) − g0a3) + βF a3γ1A0

2a3(1 − a1a3)
[
βF (1 + ε + γ1) + ρ exp(A0)

] − εβF (1 + βF )

}
, (A9)

where A0 verifies Eq. (45). The solution of Eq. (43) is then given by

x1(τ ) = A0 + A1 sin(�oscτ + φ0). (A10)
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