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We consider two-dimensional bright matter-wave solitons in two-dimensional Bose-Einstein condensates.
From the asymptotic form of their wave function, we derive an analytic expression for the force of interaction
between solitons in the large separation limit, which turns out to decay with solitons separation � as F (�) ∝
exp(−�)/

√
�. Simulating the dynamics of two solitons using the relevant Gross-Pitaevskii equation, we obtain

the force of the interaction for the full range of �, which turns out to be of molecular type. We show that
many-soliton molecules can exist as a result of such a molecular-type of interaction. These include string-shaped,
ring-shaped, or regular-lattice-shaped soliton molecules. By calculating their binding energy, we investigate the
stability of these structures. Contrary to one-dimensional soliton molecules, which have no binding energy,
two-dimensional molecules of a lattice of solitons with alternating phases are robust and have a negative binding
energy. Lattices of size larger than 2 × 2 solitons have many discrete equilibrium values of the separation between
two neighboring solitons.
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I. INTRODUCTION

It is well established that bright solitons are not stable
against collapse or decay in two- and three-dimensional
homogeneous spaces [1]. Different mechanisms to stabilize
these solitons have been considered, including dissipation and
gain effects [2], higher-order contributions such as the cubic-
quintic nonlinearity [3], saturable nonlinearity, and composite
solitons in multicomponent systems [4–9]. Two-dimensional
lump solitons were also shown to exist [10]. Vortex solitons
(or doughnut-shaped solitons) were also found to have stability
windows for some of their parameter regimes [11]. The force
of the interaction between one-dimensional solitons is well
known and has been well studied for decades in optical solitons
in fibers [12–14] and in quasi-one-dimensional matter-wave
soliton trains [15,16]. Interactions within N -soliton trains have
also been studied both in the homogeneous case [17] and in
the presence of external potentials [18,19]. The interaction
between solitons in two and three dimensions has also been a
subject of interest for many researchers. In Ref. [3] the force
of the interaction between two- and three-dimensional solitons
was derived in the large separation limit in the presence of
cubic-quintic nonlinearity. In Ref. [4] it was shown that a state
of spiraling two-dimensional spacial solitons is possible as a
stable dynamical regime, in agreement with the experimental
observation. In Ref. [6] a vortex mode vector soliton was
suggested and in Ref. [5] a robust optical vector soliton (dipole
mode vector soliton) was predicted, which was experimentally
realized afterward [7]. In Ref. [20] it was shown that even
in a homogeneous medium with only cubic self-focusing
nonlinearity a necklace-shaped ring soliton exhibits stable
propagation for distances much larger than the dispersion
length.

The above-mentioned mechanisms will have their effect
on the nature of the interaction between solitons. Ideally,
one would be interested in finding the force between soli-
tons that is intrinsic to their mutual interaction, i.e., in a
homogeneous background and with the presence of only the
cubic nonlinearity. It is therefore more appealing to consider a
confining potential as a stabilizing mechanism. In a confining

potential, such as the harmonic trapping potential of Bose-
Einstein condensates, two- and three-dimensional solitons can
be stabilized [21]. The effect of the harmonic potential on
the interaction between solitons can be removed by setting
solitons in an orbital motion around the center of the trapping
potential with an angular speed that equals the characteristic
angular frequency of the trapping potential. The centripetal
force cancels that of the trapping potential and the relative
dynamics of the two solitons is governed only by their mutual
interaction. This work is therefore distinguished from previous
studies by accounting for the intrinsic interaction between
solitons in terms of the full range of their separation, which
will show clearly the molecular shape of the potential. The
molecular potential is then exploited to construct different
stable molecular structures. We refer to these structures as
soliton molecules, which correspond to two- and many-soliton
solutions of the nonlinear Schrödinger equation. The main
goals of this paper are thus to (i) obtain the force of the
interaction between two-dimensional bright solitons for all
separations and (ii) explore the implications on the existence
and stability of two-dimensional soliton molecules. This work
is also distinguished from the above-mentioned previous works
first by the alternative approach and setup we follow to extract
the force of interaction between two two-dimensional solitons
in a harmonic trapping potential. Second we find that, unlike
one-dimensional soliton molecules, two-dimensional soliton
molecules may be robust and stable for some discrete values
of the bond length.

We approach this problem by first considering two bright
Bose-Einstein solitons confined by a cylindrically symmetric
trapping potential that is much tighter in the axial direction
than in the radial one [21]. The force of the interaction between
solitons in this case will be the resultant of that of the trapping
potential and the mutual interaction between the solitons. The
latter is typically defined to be proportional to the acceleration
of the solitons separation [13]. This requires the center of
mass of the solitons to be well defined, which is the case when
the solitons are sufficiently separated from each other such
that interference effects are not large enough. Alternatively,
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a more rigorous definition can be found in Ref. [22]. In this
manner we obtain the force of the interaction between the
solitons for the full range of their separation. As expected,
the force turns out to be composed of a negative part for
large separations and a positive part for short separations. Such
a molecular type of interaction indicates the possibility of
forming two-dimensional soliton molecules, which is another
subject of interest in this paper.

It is known for one-dimensional solitons that a soliton
molecule forms only when two solitons are located close
enough to each other with zero relative speed [23]. It is
expected that similar conditions are required to create a
soliton molecule in two dimensions. In the presence of the
harmonic confining potential, the condition of zero relative
speed can be achieved only by rotating both solitons around
the axis of the trap with the same angular speed such that
the centripetal force cancels the force of the trap. In the
rotating frame the solitons will be stationary with respect to
each other and the molecule forms only due to their mutual
interaction. A similar setup is proposed in Ref. [24] in a
homogeneous medium. Interesting structures, which can also
be considered as many-soliton molecules, such as a string
of solitons, a soliton ring, or a regular lattice of solitons
turn out to be stable in such a setup. Considering the initial
relative phases of the solitons, two distinct situations turn
out to be particularly interesting, namely, the case with zero
relative phase for the neighboring solitons and the case of
alternating phases between 0 and π . The dynamics and
stability of these two cases will be drastically different. For
instance, a regular square lattice of size n × n of solitons
with vanishing relative phases will be oscillating between
its initial lattice size and a reduced square lattice of size
(n − 1) × (n − 1). For a similar lattice with relative phases
alternating between 0 and π , such transitions do not occur
and the initial structure of the lattice is maintained with small
soliton vibrations around their equilibrium positions. Another
interesting example is the soliton ring that results from the out-
of-phase superposition of two or more solitons. In Refs. [25,26]
it was shown that such a structure corresponds to a vortex
soliton.

The binding energy of a soliton molecule is an important
indication of its stability. In addition to its dependence on
the initial relative phase between neighboring solitons, as
mentioned above, the binding energy of a soliton lattice
oscillates with the size of the primitive cell. As an example, the
binding energy of a molecule composed of a string of solitons
has no local minima, indicating that a finite equilibrium soliton
separation does not exist. This is contrary to the case of,
for instance, an n × n square lattice, where a number of
local minima (depending on n) in the binding energy exists.
Furthermore, the value of the binding energy at these minima is
relatively large and negative, which means that such structures
are predicted to be stable and robust.

The rest of the paper is organized as follows. In Sec. II we
derive an analytic form of the interaction potential between
two-dimensional solitons in the large separation limit and
obtain the force of interaction for the complete range of sep-
arations numerically. In Sec. III we present two-dimensional
molecules. In Sec. IV we discuss their stability. We conclude
in Sec. V with discussion of our results and outlook.

II. FORCE OF THE INTERACTION BETWEEN
TWO-DIMENSIONAL SOLITONS

The dynamics of solitons in axially symmetric traps, with
tight binding in the axial direction, is described by the
dimensionless effective Gross-Pitaevskii equation

i
∂ψ

∂t
=

[
−1

2

(
∂2

∂x2
+ ∂2

∂y2

)
+ 1

2
λ2(x2 + y2) − g|ψ |2

]
ψ.

(1)
Here the strength of the trapping potential is given in terms
of the anisotropy ratio λ = ωz/ω⊥ � 1, where ωz and ω⊥ are
the characteristic frequencies of the trapping potential in the
axial and radial directions, respectively. The effective two-
dimensional interaction strength is given by g = √

8πNa/az,
where a is the magnitude of the s-wave scattering length,
az = √

h̄/mωz, and N is the number of atoms in the soliton. In
Eq. (1) the length is scaled to a⊥ = √

h̄/mω⊥, time is scaled
to 1/ω⊥, and the order parameter ψ is scaled to 1/a⊥.

Solitonic solutions to the homogeneous version of this
equation exist in either a numerical form [27] or an analytic
(algebraic) form, which are known as two-dimensional lumps
[28]. However, as mentioned above, these solutions are
unstable against collapse or decay. While the analytic form
of localized solitonic solutions of Eq. (1) is not known, the
asymptotic behavior of the solution at a large distance can be
derived.

At large distances from the center of the soliton the density
is low and the nonlinear term in Eq. (1) can be ignored. The
trapping potential can also be ignored in the local density
approximation, i.e., when the size of the soliton is much less
than the characteristic length of the trapping potential. Under
these assumptions, the asymptotic form of the interaction
potential is shown in the Appendix to take the form

V (�) ∝ e−�

√
�

. (2)

This is to be compared with the one-dimensional result
V (�) ∝ e−�. A similar calculation can be performed for the
three-dimensional case and the result will be V (�) ∝ e−�/�.
It should be mentioned that in the proportionality constant the
phase factor cos ϕ is present, where ϕ is the phase difference
between solitons. A similar result was derived in Ref. [3] for
a Gross-Pitaevskii equation with qubic-quentic nonlinearity.

To account for the interaction potential between solitons
for all separations we simulate, with the Gross-Pitaevskii
equation (1), the dynamics of two solitons. The dynamics
is started with two solitons of equal number of atoms at
opposite sides from the center of the trap and with zero initial
center-of-mass speeds. The normalized initial wave function
is taken as

ψ0 = A(e−2g(r−x1)2 + e−2g(r−x2)2+iϕ0 ), (3)

where r =
√

x2 + y2, x1 and x2 are the initial positions of the
center of mass of the two solitons, ϕ0 is an initial phase dif-
ference, and A = (4g/π )1/4exp(2gx2

1 )/
√

exp(4gx2
1 ) + cosϕ0

is a factor that guarantees normalization to 2. Two distinct
behaviors are obtained for ϕ0 = 0 and π . While in the former
case the two solitons coalesce, the π -phase difference in the
latter case prevents them from doing so. The center-of-mass
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FIG. 1. (Color online) Separation between solitons �(t). Dots
correspond to the numerical solution and the curve corresponds to
the noninteracting case. The parameters are x1 = −x2 = −2, λ = 2,
and g = 0.5.

separation �(t) is plotted in Fig. 1. The deviation of the
separation �(t) from that of the noninteracting solitons
increases when the separation is small as a result of the
interaction between solitons. Obtaining the force between
the solitons by differentiating numerically �(t) twice with
respect to time and then eliminating time between �(t) and
�̈(t), we obtain the force in terms of separation, as shown in
Fig. 2. The curve in this figure corresponds to the resultant
force FR = Ftrap + Finteraction, where Ftrap is the force due
to the trapping potential and Finteraction is the force of the
interaction between solitons. For large separations the curve
asymptotically approaches that of two noninteracting solitons
in a trap. This is of course expected since the interaction force
between solitons decays at large separations. Subtracting the
force due to the trapping potential λ2�, we obtain the force
between the two solitons that is due to their mutual interaction.
The result is shown in Fig. 3, where F (�) has a negative part
acting at large separations and a repulsive part that acts at small
separations.

III. TWO-DIMENSIONAL SOLITON MOLECULES

Due to the molecular nature of the interaction potential
between two solitons, it is expected that stable molecular
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FIG. 2. (Color online) Resultant force between solitons FR(�) ≡
�̈ = Ftrap(�) + Finteraction(�). The dashed line corresponds to the
force between the solitons due to the trapping potential. The
parameters of Fig. 1 are used.
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FIG. 3. Force of interaction between solitons Finteraction(�) ≡
F (�). The parameters of Fig. 1 are used.

structures exist. In this section we investigate the existence
of such structures. While the trapping potential is needed
for the internal stability of the solitons, its effect on their
dynamics hides the interesting dynamics of the solitons due to
their mutual interaction. Setting the solitons in orbital motion
around the axis of the trap with an angular speed equal to
the angular frequency of the trapping potential will result in a
centripetal force that cancels the force of the trap. In such a
rotating frame the dynamics of the solitons will be driven
only by their mutual interaction. Therefore, all molecules
considered in this section will be given such an initial angular
speed. The initial wave function of an n-soliton molecule can
be written as

ψ0 =
√

4g

π

n∑
i=1

e−2g[(x−xi )2+(y−yi )2]+i[vix (x−xi )+viy (y−yi )+ϕi ],

(4)
where xi , yi , vix , viy , and ϕi denote the initial center-of-mass
positions, speeds, and phase of the ith soliton.

The simplest structure that can be considered is a two-
soliton molecule. We set the two solitons initially on the
x axis, symmetrically distributed off the origin, with co-
ordinates (x1,y1) = (−1,0) and (x2,y2) = (1,0). The initial
speeds needed to cancel the trapping force are given by
(v1x,v1y) = (0, − λ) and (v2x,v2y) = (0,λ). The initial wave
function thus takes the form

ψ0 =
√

4g

π
[e−2g[y2+(x−1)2]+iλy + e−2g[y2+(x+1)2]−iλy+iϕ0 ]. (5)

For a zero initial phase difference ϕ0 = 0, the two solitons
coalesce, as shown by the top panels in Fig. 4. The lower
panels show that a ϕ0 = π phase difference prevents the two
solitons from coalescing.

A generalization of this type of molecule is a string of finite
number of solitons, as shown in Fig. 5. The initial state is a
string of seven solitons that are in phase, as in the top panels, or
out of phase with respect to each other, as in the bottom panels.
The initial wave function for the latter molecule is given by

ψ0 =
√

4g

π
[−e−2g[y2+(x−3)2]+3iλy + e−2g[y2+(x−2)2]+2iλy

− e−2g[y2+(x−1)2]+iλy + e−2g(y2+x2) − e−2g[y2+(x+1)2]−iλy

+ e−2g[y2+(x+2)2]−2iλy − e−2g[y2+(x+3)2]−3iλy]. (6)
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FIG. 4. (Color online) Density plots of the amplitude of the
wave function |ψ(x,y,t)|2 of a soliton molecule in a harmonic trap.
The molecule is rotating counterclockwise with a frequency equal
to λ = 2. The initial wave function is given by Eq. (5) with the
parameters x1 = −x2 = −1, y1 = y2 = 0, and g = 0.5. The initial
phase difference equals zero in the top panels and equals π in the
bottom panels.

For the in-phase solitons a flat-top-like soliton forms, while
for the out-of-phase case the initial soliton string periodically
transforms to a deformed soliton ring. This again shows the
importance of the relative phase in giving rise to different
dynamics of soliton molecules.

Another interesting generalization is a lattice of solitons.
As an example we take a square lattice of 6 × 6 solitons.
The initial wave function of this lattice takes a form similar
to that of the previous one [Eq. (6)] but with 36 terms.
The center-of-mass positions of the soliton at the bottom
left corner are (xi,yi) = (−40/9, − 40/9) and the distance
between two consecutive solitons is 16/9. The speeds are
given by (vix,viy) = λ(−yi,xi). In Fig. 6 we show in the
top panels the case with in-phase solitons and in the bottom
panels the case with alternating phases. For the case of
in-phase solitons the lattice preserves its structure and number
of solitons. Strikingly, the lattice of out-of-phase solitons
oscillates between the initial 6 × 6 and a 5 × 5 square lattice.
Similar results are obtained for a hexagonal lattice.

Decreasing the solitons separation in a lattice with out-
of-phase solitons results in a soliton ring. For the in-phase
solitons the same procedure results in a high-intensity soliton
that collapses later on. For small lattice sizes the resulting ring
will be deformed from the circular shape, as shown previously

FIG. 5. (Color online) String of seven solitons molecule peri-
odically transforming to a ring soliton. The molecule is rotating
counterclockwise with a frequency equal to λ = 2. The initial wave
function is given by Eq. (6) with the parameters xi = −3,−2,

−1,0,1,2,3; yi = 0, and g = 0.5. The initial phase difference equals
zero in the top panels and alternates between 0 and π in the bottom
panels.

FIG. 6. (Color online) Square lattice of the initially 6 × 6 soliton
molecule. The molecule is rotating counterclockwise with a frequency
equal to λ = 2. The parameters are as follows: the coordinate of
the soliton at the lower left corner (x1,y1) = (−40/9, − 40/9), the
initial soliton separation equal to 16/9, and g = 1.5. The initial phase
difference is equal to zero in the top panels and alternates between 0
and π in the bottom panels.

in the bottom panels of Fig. 4. In addition, the intensity will
be oscillating considerably along the circumference of the
ring. The shape of the soliton ring becomes more circular
and with more homogeneous intensity for larger lattice sizes
such as the case of size 3 × 3 shown in Fig. 7. The initial wave
function corresponding to this soliton ring is similar to that
of the previous case of the square lattice molecule but with
considerably smaller distance between nearest neighbors. The
left soliton ring at the initial time is formed by a square lattice
with center-of-mass positions of the soliton at the bottom
left corner equal to (xi,yi) = (−3.5,2.7) and those of the
right ring are (xi,yi) = (3.5,2.7). The distance between two
consecutive solitons in both cases is 0.2. The speeds of the
solitons in the left ring, which is rotating clockwise, are given
by (vix,viy) = λ(yi, − xi) while those for the right ring rotating
counterclockwise are (vix,viy) = λ(−yi,xi). We show also in
this figure a collision between two soliton rings initially set
with opposite speeds on the same circular orbit around the
axis of the trap. It is clear that after the collision the two
soliton rings preserved their shapes, confirming their solitonic
nature.

IV. STABILITY ANALYSIS

To investigate the stability of the soliton molecules descried
in the preceding section we calculate their binding energy. The
binding energy is defined as the difference between the energy
of the molecule and that of its constituent solitons. Energy
is calculated in terms of the wave function of the n-soliton

FIG. 7. (Color online) Collision of two ring solitons. The param-
eters are g = 1 and λ = 2. The ring soliton is a superposition of nine
out-of-phase solitons on a 3 × 3 square lattice of lattice size equal to 1.
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FIG. 8. Binding energy of a 2 × 2 square lattice of solitons versus
the soliton separation. The parameters are the same as in Fig. 6 for
(a) in-phase solitons and (b) out-of-phase solitons.

molecule

ψm(x,y) =
n∑

j=1

ψsj (x,y), (7)

where ψsj (x,y) is the wave function of the j th single soliton.
The binding energy is thus written as

Eb = E[ψm] −
n∑

j=1

E[ψsj ], (8)

where the energy functional reads

E[ψ] =
∫ ∞

−∞
dx dy

[
1

2

( ∣∣∣∣∂ψ

∂x

∣∣∣∣
2

+
∣∣∣∣∂ψ

∂y

∣∣∣∣
2 )

+ 1

2
λ2(x2 + y2)|ψ |2 − 1

2
g|ψ |4

]
. (9)

As an example, we calculate the binding energy of a 2 × 2
square lattice. The result is shown in Fig. 8(a) for in-phase
solitons and in Fig. 8(b) for out-of-phase solitons. The curves
show that the binding energy of the first case is the negative of
the second case. The curves show that no stable equilibrium
exists for the in-phase case while a stable equilibrium exists
for the out-of-phase case at L = 1.75.

Increasing the size of the lattice to 3 × 3, the binding
energy acquires more structure, as shown in Fig. 9. Similarly,
the binding energy of the in-phase case is the negative of
the binding energy of the out-of-phase case. Here a stable
equilibrium exists for both cases. More than one equilibrium
point exists if we increase the size of the lattice, as shown in
Fig. 10 for a 4 × 4 lattice where two main equilibrium points
exist for both the in-phase and out-of-phase cases. However,
the greater depth of the energy at the equilibrium point for the
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FIG. 9. Binding energy of a 3 × 3 square lattice of solitons versus
the soliton separation. The parameters as the same as in Fig. 6 for (a)
in-phase solitons and (b) out-of-phase solitons.
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FIG. 10. Binding energy of a 4 × 4 square lattice of solitons
versus the soliton separation. The parameters are the same as in
Fig. 6 for (a) in-phase solitons and (b) out-of-phase solitons.

out-of-phase case indicates that soliton molecules are more
stable than for the in-phase case.

In contrast to the above cases of lattice molecules, no stable
equilibrium exists for string molecules, where we found the
energy to decrease (increase) monotonically to zero for the
out-of-phase (in-phase) case. This is consistent with the known
exact result that the binding energy vanishes for n-soliton
molecules in the homogeneous one-dimensional case [29]. The
above results show that this is not the case for lattice soliton
molecules. To understand this behavior and to confirm the role
of dimensionality in stabilizing the molecule, we calculate
analytically the binding energy of a string of two solitons and
a lattice of 2 × 2 solitons for the out-of-phase case. For the
string molecule, we use the wave function

ψstring = A(�)[e−(x−�)2−(y−�)2
ei[−�(x−�)+�(y−�)]

+ e−x2−(y−�)2
e−i�(x−�)eiπ ], (10)

where A(�) is a normalizing factor. This wave function
corresponds to two solitons located at (x,y) = (�,�) and
(x,y) = (0,�) with tangential speeds (vx,vy) = (−�,�) and
(vx,vy) = (−�,0), respectively. The speeds are calculated
such that the centripetal force cancels that of the trapping
potential. Similarly, the wave function of a lattice of 2 × 2
solitons is constructed as

ψlattice = A(�)[e−(x−�)2−(y−�)2
ei[−�(x−�)+�(y−�)]

+ e−x2−(y−�)2
e−i�(x−�)eiπ

+ e−(x−�)2−y2
ei�(y−�)eiπ

+ e−x2−y2
]. (11)

This wave function corresponds to four solitons located at
the vertices of a square of side � with appropriate tangential
speeds so that the centripetal force cancels that of the trap. The
binding energy for the string and lattice are then calculated in
terms of �:

Estring = −25�2 + 8e−5�2/8 + 16e−3�2/8 − 32e−3�2/16 + 8

32(1 − e5�2/8)
(12)

and

Elattice = f0 + f1cos

(
�2

2

)
+ f2cos(�2) + f3cos(2�2)

+ f4cos

(
3�2

2

)
+ f5sin(�2), (13)
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FIG. 11. Binding energy of a two-solitons molecule (dashed
curve) and a 2 × 2 square lattice (solid curve) of solitons versus
the soliton separation. The curves are calculated from the analytic
expressions of the binding energy, as described in Sec. IV. The
parameters are λ = g = 1.

where

f0 = π

16A
e−5�2/2[e15�2/8(9�2 − 8) + 16e7�2/16 − 32e�2/2

− 32e7�2/8 − 32e3�2/2 + 32e27�2/16

− e5�2/4(25�2 + 4) − 4],

f1 = π

A
e−29�2/16[8 − 3e3�2/16],

f2 = π

16A
e−9�2/4[e�2

(4 − 25�2) + 32e3�2/16 − 32e5�2/8

+ 32e23�2/16 + e13�2/8(41�2 − 8) − 32],

f3 = − π

4A
e−5�2/2[−4e7�2/16 + 2e5�2/4 + 1],

f4 = −π

A
e−13�2/8, f5 = 5π

4A
e−5�2/4�2,

and

A=πe−5�2/4[−2e5�2/8+2e5�2/4+(1 − 2e5�2/8)cos(�2)+1].

In contrast to the case of the string molecule, the energy
of the lattice molecule turns out to contain oscillatory terms,
which result in the local minima of the binding energy. This
is clear in Fig. 11, where we plot the binding energy for the
two cases. It is thus evident that molecules composed of a
two-dimensional geometry such as square lattices are expected
to be more robust than one-dimensional structures such as a
string molecule.

V. CONCLUSION

In Refs. [25,26] the dynamical instabilities of vortices
in two- and three-dimensional geometries were studied. By
introducing the appropriate symmetry-breaking perturbation,
the Bogoliubov–de Gennes equations were used to calculate
the energy spectrum and showed that with the perturbation
corresponding to the dipole mode, for instance, the vortex
splits into two clusters that revolve around the center of the
trap and undergo split-merge cycles. This behavior is similar
to our finding for the case of a two-soliton molecule evolving
into a ring soliton, as shown in Fig. 4, where the hole between
the two solitons of this figure can now be regarded as a vortex.
As we have seen above, a ring soliton can be generated with

any number of bright solitons provided they are out of phase
and initially close enough to each other. For instance, nine
solitons form the ring soliton of Fig. 7. Similar examples can
be considered to generate the quadrupole and octupole modes
of Ref. [25,26]. For the case of square lattice out-of-phase
solitons, we have seen above that an n × n lattice undergoes
a cycle into an (n − 1) × (n − 1) lattice. Within the present
context, this is a dynamical instability of the lattice into one of
its excited modes. Such a ringlike type (necklace) of molecules
was also considered in optical solitons [20,24].

The possibility of obtaining stable two-dimensional struc-
tures of solitons, as shown in this paper, lays the groundwork
for a realistic study of a two-dimensional soliton gas. One can,
for instance, start with solitons distributed randomly and assign
a random speed to each soliton in addition to the angular speed
required to cancel the force of the trap. The properties of the gas
can thus be studied in the rotating frame. Two main features of
the soliton interaction are expected to considerably distinguish
the resulting dynamics in comparison with a classical gas.
These are the phase-dependent interaction and the possibility
of solitons crossing each other [30].

Experimentally, the soliton molecules described in this
paper can be excited by an appropriate phase mask with a laser
beam that has a Gaussian intensity profile. This will mimic the
initial wave function that we have employed here.
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APPENDIX: DERIVING THE ASYMPTOTIC
FORM OF THE INTERACTION BETWEEN SOLITONS

IN TWO DIMENSIONS

The time-independent Gross-Pitaevskii equation takes the
form

μψ = 1

2

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ

)
ψ, (A1)

where ρ =
√

x2 + y2 and μ is the chemical potential. The
solution of this equation that satisfies the boundary condition
ψ(ρ → ∞) → 0 takes the asymptotic form

ψ(ρ,t) = i

√
8

π
√

2μ
eiμt e

−√
2μρ

√
ρ

.

The interaction energy between two solitons separated by a
distance � will be proportional to the spacial integral of the
overlap between the two tails of the solitons, namely,

V (�) ∝
∫ �

0
ρ dρ

∫ 2π

0
dφ

e−ρ

√
ρ

e−
√

(ρ−� cosφ)2+(� sinφ)2√
(ρ − � cosφ)2 + (� sinφ)2

,

(A2)

where φ is the angle between � and ρ. This gives the result in
Eq. (2).
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