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Stability of nonlinear normal modes in the Fermi-Pasta-Ulam β chain in the thermodynamic limit
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All possible symmetry-determined nonlinear normal modes (also called simple periodic orbits, one-mode
solutions, etc.) in both hard and soft Fermi-Pasta-Ulam β chains are discussed. A general method for studying
their stability in the thermodynamic limit as well as its application for each of the above nonlinear normal modes
are presented.
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I. INTRODUCTION

This paper is devoted to studying the stability of dy-
namical objects which are called by very different terms
such as one-mode solutions (OMSs) [1,2], simple periodic
orbits (SPOs) [3], low-dimensional solutions [4], and one-
dimensional bushes [5,6]. Below we refer to them as nonlinear
normal modes (NNMs). Let us comment on this terminology.

The concept of similar nonlinear normal modes was
developed by Rosenberg many years ago [7]. Each NNM
represents a periodic vibrational regime in the conservative
N -particle mechanical system for which the displacement xi (t)
of every particle is proportional to the displacement of an
arbitrary chosen particle, say, the first particle [x1(t)] at any
instant t ,

xi(t) = cix1(t), (1)

where {c1 = 1, c2, c3, . . . ,cN } are constant coefficients [8].
Note that convenient linear normal modes (LNMs) also

satisfy Eq. (1) since, for any such mode, one can write,

xi(t) = ai sin(ωt + φ0), i = 1, . . . ,N, (2)

where ai are constant amplitudes of individual particles, while
ω and φ0 are the frequency and initial phase of the considered
mode.

As a rule, NNMs can exist in the mechanical systems
with rather specific interparticle interactions, for example, in
systems whose potential energy represents a homogeneous
function with respect to all its arguments. However, in
some cases, the existence of NNMs is caused by certain
symmetry-related reasons. We refer to such dynamical objects
as symmetry-determined NNMs. In Ref. [9], we have found
all symmetry-determined NNMs in all N -particle mechanical
systems with any of 230 space groups. This proved to be
possible due to the group-theoretical methods developed
in Refs. [10–12] for constructing bushes of vibrational
modes.

There are many papers that discuss stability of NNMs
and other time-periodic regimes in different lattice models.
Great difficulties arise in studying the stability of nonlinear
vibrations in the thermodynamic limit, i.e., when the number
N of dynamical equations tends to infinity (N → ∞). In this
case, one can use the well-known Floquet method which
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leads to a system of N linear differential equations with
time-periodic coefficients. This so-called variational system
can be obtained by linearizing the original nonlinear equations
near the considered dynamical regime.

In Refs. [13,14], for physical systems with discrete sym-
metry, we have developed a group-theoretical method for
splitting a high-dimensional variational system into a number
of independent subsystems of much smaller dimensions and
have demonstrated how it works for some dynamical models. It
is important to emphasize that this method can be successfully
applied to analyze the stability of dynamical regimes of
different types—they can be periodic as well as nonperiodic
in time.

In this paper, we, first, demonstrate how the above method
of splitting the variational system into independent subsystems
can be applied in the case where N → ∞ and, second, we
develop a specific asymptotic technique to study the stability of
zero solution of these subsystems. Note that such an approach
can be used to analyze stability in the thermodynamic limit of
periodic dynamical regimes in a variety of physical systems
with discrete symmetry.

We demonstrate our mathematical techniques with one of
the dynamical models that have been proposed in the famous
work by Fermi, Pasta, and Ulam [15] in connection with the
investigation of energy equipartition between normal modes
in weakly nonlinear many-particle physical systems. In fact,
it is this work that has been used prominently in computer
simulations in modern science. The above models are now
called FPU chains of α and β types. These models have played
a fundamental role in the development of nonlinear dynamics
as an independent scientific discipline. Investigation of the
FPU chains dynamics has led to rediscovery of solitons, to
detecting some properties of the deterministic (dynamical)
chaos, and to revealing a number of new nonlinear dynam-
ical objects (see, for example, Ref. [16]). There are many
papers devoted to studying NNMs, discrete breathers, and
bushes of vibrational modes in the FPU chains and their various
generalizations. Keeping in mind the great role of FPU models
in analyzing various nonlinear dynamics problems, we have
studied the stability of all symmetry-determined NNMs in the
FPU β chain and present here some analytical results on their
stability properties in the thermodynamic limit (N → ∞). We
also compare our results with those by different authors when
it was possible.

The paper is organized as follows. In Sec. II the concept
of bushes of NNMs is discussed. Some comments on the
stability of NNMs are presented in Sec. III. In Sec. IV all
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possible symmetry-determined NNMs in the FPU β chain
are considered, while stability diagrams for these modes can
be found in Sec. V. An analytical method for studying the
stability of NNMs in the thermodynamical limit is presented
in Sec. VI. We list our results on the stability properties for
every NNM in Sec. VII. Some technical details are given in the
appendices.

II. NONLINEAR NORMAL MODES
AND THEIR BUSHES

The concept of bushes of modes was introduced in Ref. [10]
(the theory of these dynamical objects can be found in
Refs. [12,17]). In a rigorous mathematical sense, they represent
symmetry-determined invariant manifolds decomposed into
the basis vectors of irreducible representations of the sym-
metry group characterizing the considered mechanical system
(“parent” group). Because of the specific subject of the present
paper, it is sufficient to consider only bushes of vibrational
modes in nonlinear monoatomic chains. Such bushes have
been discussed in Refs. [5,6]. Let us reproduce here some
ideas and results from these papers.

Every bush B[G] describes a certain vibrational regime,
and some specific pattern of instantaneous displacements
of all the particles of the mechanical system corresponds
to it. In turn, this pattern is characterized by a symmetry
group G (in particular, such group can be trivial) which is
a subgroup of the symmetry group G0 of the mechanical
system in its equilibrium state. For example, let us consider the
two-dimensional bush B[a4,i] in the monoatomic chain with
periodic boundary conditions whose displacement pattern �X(t)
can be written as follows:

�X(t) = {x1(t),x2(t),−x2(t),−x1(t)|
x1(t),x2(t),−x2(t),−x1(t)| . . .}. (3)

This pattern is determined by two time-dependent functions
x1(t), x2(t), and the corresponding dynamical regime of the
N -particle chain is fully described by displacements inside the
vibrational primitive cell, which is 4 times larger than that of
the equilibrium state. We will refer to the ratio of the primitive
cell size of the vibrational state to that of the equilibrium
state as multiplication number (MN) and, therefore, for the
pattern (3), one can write MN = 4.

The symmetry group G = [a4,i] of the bush B[a4,i] is
determined by two generators: the translation (a4) by four
lattice spacings (a) and the inversion (i) with respect to the
center of the chain (note that the condition N mod 4 = 0 must
hold for the existence of such a bush).

If we decompose the displacement pattern (3) into the linear
normal coordinates [18],

��j =
{

1√
N

[
sin

(
2πj

N
n

)
+ cos

(
2πj

N
n

)]∣∣∣∣ n = 1 . . . N

}
(j = 0 . . . N − 1), (4)

we get the following form of the bush B[a4,i] in the modal
space:

�X(t) = μ(t) ��N/2 + ν(t) ��3N/4, (5)

where

��N/2 = 1√
N

{−1,1| −1,1|−1,1|−1,1| . . .}, (6)

��3N/4 = 1√
N

{−1,−1,1,1|−1,−1,1,1| . . .}, (7)

while μ(t) and ν(t) are time-dependent coefficients in front
of the normal coordinates ��N/2 and ��3N/4. Thus, only
m = 2 normal coordinates from the full set (4) contribute to the
“configuration vector” �X(t) corresponding to the given bush
and we will refer to m as the bush dimension.

In Ref. [6], we developed a simple crystallographic method
for obtaining the displacement pattern �X(t) for any subgroup
G of the parent group G0. Using this method, one can obtain
bushes of different dimensions for an arbitrary nonlinear chain.
The one-dimensional bushes (m = 1) represent symmetry-
determined nonlinear normal modes. The displacement pattern
�X(t) corresponding to a given NNM depends on only one
(time-periodic) function ν(t),

�X(t) = ν(t) · �c, (8)

where �c is a constant vector, which is formed by the coefficients
ci (i = 1 . . . N ) from Eq. (1), while the function ν(t) satisfies a
certain differential equation. This so-called governing equation
can be obtained by substitution of the ansatz (8) into the
dynamical equations of the considered chain.

In some sense, the concept of bushes of vibrational modes
can be considered as a certain generalization of the notion of
NNMs by Rosenberg. Indeed, if we substitute the ansatz (5)
into dynamical equations of the chain, we obviously get
two “governing” equations for the functions ν(t) and μ(t)
that determine the above-discussed two-dimensional bush
(note that, in contrast to a NNM, such a dynamical object
describes, in general, a quasiperiodic motion). Finally, one
can conclude that an m-dimensional bush is determined by m

time-dependent functions for which m governing differential
equations can be obtained from the dynamical equations of the
considered mechanical system. Let us emphasize that bushes
of modes represent a new type of exact excitation in nonlinear
systems with discrete symmetries and the excitation energy
proves to be trapped in a given bush for the case of Hamiltonian
systems.

It is very important to emphasize that there exist only a finite
number of vibrational bushes of any fixed dimension in every
N -particle mechanical system. As a consequence, there is a
sufficiently small number of NNMs (one-dimensional bushes)
in the FPU chains (three NNMs in the FPU α model and six—in
the FPU β model). All possible one-dimensional bushes are
explicitly listed in our papers [5,6] (see also Ref. [19]).

III. SOME COMMENTS ON THE STABILITY OF NNMS

The stability of some NNMs in the FPU chains has been
studied in Refs. [1–4,20–28] by use of numerical and analytical
methods. In Refs. [3,27], T. Bountis and coworkers have
investigated the destabilization thresholds (E1u and E2u) of
two nonlinear normal modes which they call SPO-1 and
SPO-2 by use of numerical methods. The authors of the
above papers tried to reveal some relations between the
destabilization thresholds E1u, E2u and the origin of the weak
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chaos in connection with the famous Fermi-Pasta-Ulam
problem of the energy equipartition between different modes.
In particular, they conclude that the main role in the weak
chaos appearance in the thermodynamic limit (N → ∞) is
played by SPO-2, because E2u ∼ 1

N2 , E1u ∼ 1
N

, and, therefore,
E2u < E1u. However, there are some other SPOs in the FPU
β chain and there is some interest in their role in the origin of
the weak chaos in the thermodynamic limit. Some comments
are appropriate at this point.

According to Lyapunov [29], a set of strictly periodic orbits
for nonlinear systems can be obtained from the linear normal
modes (which are introduced in the harmonic approximation)
by continuation with respect to a parameter characterizing the
strength of nonlinearity [30]. From this point of view, there
exist N different SPOs for longitudinal vibrations of an N

particle monoatomic chain. However, only a few of the modes,
constructed in such a way, possess an identical time depen-
dence of the displacements of all the particles. More exactly,
only few of the Lyapunov modes can be written in the form (8),
implying a separation of time and space variables that is typical
for the Rosenberg nonlinear normal modes. Indeed, in the
general case, xi(t) = νi(t)ci , where νi(t) (i = 1, . . . ,N), there
are different functions of time with identical periods. Note that
in the present paper we consider only extended SPOs, but the
same problem exists for localized periodic modes (discrete
breathers) and we have discussed it in Ref. [31].

As far as we aware, all periodic solutions in monoatomic
chains that have been studied (see the above cited papers [1–4]
and references therein) belong to the class of the Rosenberg
nonlinear normal modes determined by Eq. (8). Moreover,
the spatial profiles �c = {c1,c2, . . . ,cN } of these modes possess
certain symmetry properties. In particular, every such mode
can be characterized by a MN determining the enlargement of
the primitive cell of the vibrational state in comparison with
that of the equilibrium state. As was already noted, we refer to
these modes as symmetry-determined NNMs and there exist
only a finite number of such modes (even for the case where
N → ∞) for each nonlinear chain [5,6,19].

The above considered SPO-1 and SPO-2 and the well-
known π mode (zone boundary mode) represent NNMs with
multiplication numbers 4, 3, and 2, respectively. However,
among six symmetry-determined NNMs in the FPU β chain [6]
there exist another three NNMs with MN = 3, MN = 4, and
MN = 6. The stability of the second NNM with MN = 4 in
the thermodynamic limit were studied in Ref. [2] by both
numerical and analytical methods.

The stability diagrams for all the nonlinear normal modes
in the FPU β chain, as well as for the FPU α chain, can be
found in our paper [6]. With the aid of these diagrams, one
may reveal many stability properties of NNMs for an arbitrary
N , in particular, for the thermodynamic limit (N → ∞). Note
that these diagrams were obtained numerically.

IV. NONLINEAR NORMAL MODES IN THE FPU-β CHAIN

As already mentioned, there exist only a finite number of
symmetry-determined NNMs in any monoatomic chain. Every
NNM corresponds to a certain subgroup of the symmetry group
of the chain dynamical equations. The difference in the number
of nonlinear normal modes for the FPU α chain (three NNMs)

and for the FPU β chain (six NNMs) is associated with the
fact that the symmetry group of the FPU β chain dynamical
equations is higher than that of the FPU α chain [5,6,19].

The FPU β model represents a chain of unit masses coupled
with each other by the appropriate nonlinear springs. The
dynamical equations describing longitudinal vibrations of the
FPU β chain can be written in the form,

ẍi = f (xi+1 − xi) − f (xi − xi−1), i = 1 . . . N, (9)

where xi(t) is the displacement of the ith particle from its
equilibrium state at the instant t , while the force f (	x)
depends on the spring deformation 	x as

f (	x) = 	x + β(	x)3. (10)

The periodic boundary condition is assumed to hold

xN+1(t) ≡ x1(t), x0(t) ≡ xN (t). (11)

Let us now mention some results in Ref. [6], which are
necessary for further discussions.

Every NNM in the FPU β chain can be written as follows
[see Eq. (8)]:

�X(t) = ν(t) · �c,
where ν(t) satisfies the Duffing equation

ν̈ + ω2ν + γ
β

N
ν3 = 0 (12)

with different values ω and γ for different NNMs. The function
ν(t) describes the time evolution of a given NNM, while the
N -dimensional vector �c determines the pattern of the particle
displacements.

Below, we list all possible NNMs in the FPU β chain.
(1) B[a2,i]

�c = 1√
N

{1,−1|1,−1|1,−1| . . .},
(13)

ω2 = 4, γ = 16 (N mod 2 = 0).

This is a boundary zone mode or π mode.
(2) B[a3,i]

�c = 3√
6N

{1,0,−1|1,0,−1|1,0,−1| . . .},
(14)

ω2 = 3, γ = 27

2
(N mod 3 = 0).

There exist three “dynamical domains” of this NNM (see
below).

(3) B[a4,ai]

�c = 2√
2N

{0,1,0,−1|0,1,0,−1| . . .},
(15)

ω2 = 2, γ = 4 (N mod 4 = 0).

There exist two dynamical domains of this NNM.
(4) B[a3,iu]

�c = 1√
2N

{1,−2,1|1,−2,1|1,−2,1| . . .},
(16)

ω2 = 3, γ = 27

2
(N mod 3 = 0).

There exist three dynamical domains of this NNM.
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(5) B[a4,iu]

�c = 1√
N

{1,−1,−1,1|1,−1,−1,1| . . .},
(17)

ω2 = 2, γ = 8 (N mod 4 = 0).

There exist two dynamical domains of this NNM.
(6) B[a3u,ai]

�c = 3√
6N

{0,1,1,0,−1,−1|0,1,1,0,−1,−1| . . .},
(18)

ω2 = 1, γ = 3

2
(N mod 6 = 0).

There exist three dynamical domains of this NNM.
Let us comment on the above-listed NNMs in the FPU β

chain. Every NNM, denoted by the B[G], is characterized
by the corresponding symmetry group G, which represents a
certain subgroup of the symmetry group G0 = [a,i,u] of the
FPU β dynamical equations (9) and (10). We determine every
such group by the set of its generators using the following
notations: a, the translation of the chain by one lattice spacing;
i, the inversion with respect to the center of the chain; and u,
the operator, which changes signs of the displacements of all
particles without any their transposition.

The symmetry group G0 = [a,i,u] of the FPU β dynamical
equations is described by three generators (a, i, and u). The
corresponding transformations a, i, and u of N -dimensional
vectors �x = {x1,x2, . . . ,xN } do not change the dynamical
equations (9) and (10) of the FPU β chain.

All the above-listed groups of NNMs are fully described
by only two generators, but these generators can be written
as some products of the generators a, i, and u of the group
G0. For example, a2, a3, and a4 are translations of the chain
by two, three, and four lattice spacings, respectively. The
transformation ai means that we must perform the inversion
of the displacement pattern with respect to the chain center
and then translate it by one lattice spacing.

Note that transformations a and i do not commute,

ia = a−1i or ia = aN−1i (19)

[the relation a−1 = aN−1 holds because of the periodic bound-
ary condition (11)]. On the other hand, the transformation u

does commute with both a and i transformations,

ua = au, ui = iu. (20)

The transformation a2u means that we must change signs of
all displacements and then translate the displacement pattern
�X by two lattice spacings.

Some simple examples are worth mentioning at this point.
For the chain with N = 6 particles, we can write the following
relations:

a {x1,x2,x3,x4,x5,x6} = {x2,x3,x4,x5,x6,x1},
i {x1,x2,x3,x4,x5,x6} = {−x6,−x5,−x4,−x3,−x2,−x1},

iu {x1,x2,x3,x4,x5,x6} = {x6,x5,x4,x3,x2,x1},
a2i {x1,x2,x3,x4,x5,x6} = {−x4,−x3,−x2,−x1,−x6,−x5},
a2u {x1,x2,x3,x4,x5,x6} = {−x3,−x4,−x5,−x6,−x1,−x2},

and so on.

The displacement pattern corresponding to a given NNM
can be obtained as an invariant vector of its symmetry group
G ⊂ G0. For example, let us obtain the displacement pattern
for the NNM with G = [a4,ai] [see Eq. (15)]. For simplic-
ity, we demonstrate the method for obtaining displacement
patterns with the case where N = 8. Let

�X = {x1,x2,x3,x4,x5,x6,x7,x8},
where xi (i = 1 . . . 8) are arbitrary displacements of eight
particles of the chain. The vector �X must be invariant with
respect to the action of our two generators a4 and ai of the
symmetry group of the considered NNM,

a4 �X = �X, ai �X = �X. (21)

The former equation is reduced to the following form:

a4 �X = {x5,x6,x7,x8|x1,x2,x3,x4}
= {x1,x2,x3,x4|x5,x6,x7,x8},

from which we conclude that

x5 = x1, x6 = x2, x7 = x3, x8 = x4.

This displacement pattern is formed by two vibrational
primitive cells whose size is 4 times larger than that of the FPU
β chain in its equilibrium state. The sets of the displacements
in both cells are identical,

�X = {x1,x2,x3,x4|x1,x2,x3,x4}. (22)

Now let us take into account the second equation (21).
Acting on the vector (22) by ai, we obtain

ai �X = a{−x4,−x3,−x2,−x1| − x4,−x3,−x2,−x1}
= {−x3,−x2,−x1,−x4| − x3,−x2,−x1,−x4}.

Then, using the equation ai �X = �X, we get

x1 = −x3, x2 = −x2 = 0, x4 = −x4 = 0.

Thus, the invariant (under the action of the group G = [a4,ai])
vector �X depends on only one arbitrary parameter, which we
denote by x,

�X = {x,0,−x,0|x,0,−x,0}. (23)

(Note that this vector being invariant with respect to generators
of the group G = [a4,ai] will automatically be invariant
relative to all its other elements). Then the NNM corresponding
to the invariant vector (23) can be written as follows

�XNNM(t) = {ν(t),0,−ν(t),0|ν(t),0,−ν(t),0}
= ν(t){1,0,−1,0|1,0,−1,0}. (24)

To find all NNMs, we can try all subgroups of the symmetry
group G0 = [a,i,u] to choose those displacement patterns,
which depend on only one arbitrary parameter.

The patterns depending on m arbitrary parameters with
m > 1 form the m-dimensional bushes of vibrational modes.
In this sense, nonlinear normal modes may be called one-
dimensional bushes. In Refs. [10,12], three different group-
theoretical methods for constructing the bushes of vibrational
modes in arbitrary N -particle nonlinear mechanical systems
were developed. The most efficient of these methods uses the
concept of irreducible representations of the symmetry groups.
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TABLE I. Nonlinear normal modes in the FPU β chain.

NNM Displacement pattern Modal space representation Governing equation

B[a2,i] |1,−1| ν�N/2 ν̈ + 4ν + 16β

N
ν3 = 0

B[a3,i] |1,−1,0| ν 1√
2
(�N/3 − �2N/3) ν̈ + 3ν + 27β

2N
ν3 = 0

B[a3,iu] |1,1,−2| ν 1√
2
(�N/3 + �2N/3) ν̈ + 3ν + 27β

2N
ν3 = 0

B[a4,ai] |1,0,−1,0| ν 1√
2
(�N/4 − �3N/4) ν̈ + 2ν + 4β

N
ν3 = 0

B[a4,iu] |1,−1,−1,1| ν�N/4 ν̈ + 2ν + 8β

N
ν3 = 0

B[a3u,ai] |1,1,0,−1,−1,0| ν 1√
2
(�N/6 − �5N/6) ν̈ + ν + 3β

2N
ν3 = 0

Taking into account the above method that was used for
constructing Eq. (24), we conclude that every NNM can be
written in the form

�XNNM(t) = ν(t) · �c, (25)

where �c is a certain time-independent vector. Substituting
ansatz (25) into the dynamical equations (9) and (10) of the
FPU β chain, with explicit forms of the vectors �c from
Eqs. (13)–(18), one can find that FPU β equations are reduced
to only one differential equation (governing equation of the
corresponding NNM) of the form,

ν̈ + ω2ν + γ
β

N
ν3 = 0. (26)

This is the Duffing equation with different values ω and γ for
different NNMs which are listed in Eqs. (13)–(18).

Above, we have mentioned the existence of so-called
dynamical domains of all nonlinear normal modes presented in
Eqs. (13)–(18). Let us comment on this notion borrowed from
the theory of phase transitions. We have already emphasized
that a certain symmetry group G corresponds to every NNM.
This group is a subgroup of the symmetry group of the
considered mechanical system in its equilibrium state (G ⊂
G0). If we act on the vector �X(t) corresponding to a given NNM
by operator g ∈ G0, which does not belong to subgroup G,

we get the equivalent configuration vector �̃X(t) = g �X(t). The

equivalent vector �̃X(t) corresponds to a new NNM, which is
described by the same dynamical equations as that of the NNM
associated with the vector �X(t). For example, three dynamical
domains are associated with the NNM from Eq. (14),

B[a3,i] : �c = 3√
6N

{1,0,−1|1,0,−1| . . .}, (27)

B[a3,ai] : �c = 3√
6N

{0,1,−1|0,1,−1| . . .}, (28)

B[a3,a2i] : �c = 3√
6N

{1,−1,0|1,−1,0| . . .}. (29)

All the displacement patterns (27)–(29) differ from each
other by a cyclic transposition of the displacements inside each
primitive cell of the chain vibrational state. Let us note that the
symmetry groups Gj (j = 1,2,3) of NNMs from Eqs. (27)–
(29) prove to be conjugate subgroups in the parent group G0,
for example, G2 = g−1G1g (g ∈ G0).

Since the above-discussed “domains” possess equivalent
dynamical properties, we study below the stability of only one
copy of the full set of dynamical domains for every NNM in the
FPU β chain. All symmetry-determined NNMs that can exist

in the FPU β chain with an appropriate number of particles
are listed in Table I.

V. STABILITY DIAGRAMS FOR NNMS
IN THE FPU β CHAIN

The detailed numerical analysis of stability of NNMs in
the FPU chains can be found in Ref. [6], where results have
been presented in the form of certain “stability diagrams.” Let
us consider the structure of such diagrams and the method of
their obtaining.

Every NNM represents a periodic dynamical regime and
the standard Floquet method can be applied for investigation
of its stability. According to this method, we have to linearize
the nonlinear FPU β dynamical equations (9) and (10) in the
vicinity of a given NNM �XNNM(t). To this end, let us introduce
an infinitesimal vector

�δ = {δ1,δ2,δ3, . . . ,δN }, (30)

which determines a certain perturbation of the NNM. Letting

�X(t) = �XNNM(t) + �δ(t), (31)

we substitute �X(t) into nonlinear equations (9) and (10) and
omit all nonlinear terms in δj (t) (j = 1 . . . N). As a result of
this procedure, we get the linearized (variational) system

�̈δ = J (t) �δ, (32)

where J (t) is the corresponding Jacobian matrix (see details in
Ref. [6] and especially in Ref. [13]). Equation (32) represents
an N × N system of linear differential equations with time-
dependent coefficients, which, in turn, are determined by the
periodic function ν(t) describing the time evolution of the
considered NNM.

The straightforward way to analyze the stability becomes
practically impossible for N → ∞. In Ref. [13], the general
group-theoretical method has been developed for splitting

(decomposition) of the original system �̈δ = J (t) �δ of N linear
differential equations into certain subsystems of sufficiently
small dimensions Nj 
 N . For the FPU β chain, these
dimensions do not exceed three. We may then apply the Floquet
method for such subsystems of small dimensions. Moreover,
proceeding in this manner, one can reveal those subsets of the
vibrational modes which are responsible for the first loss of
stability of the considered NNM. As a consequence of this
approach, it proves to be possible to construct very transparent
diagrams which demonstrate explicitly stability properties of
each FPU nonlinear normal mode [6].
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FIG. 1. Stability diagrams for NNMs in the FPU β chain (left β > 0, right β < 0): (a) B[a2,i]; (b) B[a3,i]; (c) B[a4,ai]; (d) B[a3,iu];
(e) B[a4,iu]; and (f) B[a3u,ai].

In the explicit form, the above splitting can be found for
all NNMs in the FPU β chain in Table 8 of Ref. [6]. Let
us comment on that table using as an example the nonlinear
normal mode B[a4,iu] for β > 0, whose stability diagram
resembling rabbit ears is depicted in Fig. 1.

In this case, the variational system can be split into ( N
2 − 2)

two-dimensional systems of the following form:

δ̈j + 4 sin2

(
πj

N

) [
1 + 6β

N
ν2(t)

]
δj

= −12β

N
ν2(t) sin

(
2πj

N

)
δj ′ ,

δ̈j ′ + 4 sin2

(
πj ′

N

) [
1 + 6β

N
ν2(t)

]
δj ′

= −12β

N
ν2(t) sin

(
2πj

N

)
δj . (33)

Here j ′ = N
2 − j and j = 1, . . . ,(N

2 − 1).

Thus, the j th component of the infinitesimal vector �δ
(after the appropriate orthogonal transformation) turns out
to be coupled only to its j ′ component, where j ′ = N

2 − j .
Therefore, the investigation of the stability of the nonlinear
normal mode B[a4,iu] reduces the study of the stability of the
zero solution of Eqs. (33) with different values of the indices j

and j ′ = N
2 − j . It can be seen from Eqs. (33) that the pairs of

modes whose indices are situated symmetrically with respect
to the index j0 = N

4 of the considered NNM are coupled. Note
that Eqs. (33) represent the system of two coupled differential
equations with time-periodic coefficients determined by the
solution ν(t) of the Duffing equation (26). It is well known
that equations of such a type possess domains of stable and
unstable motion [32].

For the system of Eqs. (33), we can construct the stability
diagram in the plane (j -A), where A is the amplitude of the
NNM [i.e., the amplitude of the function ν(t) from Eq. (26)],
while j is its index. Such diagrams provide us with the most
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valuable information for the case of the “thermodynamic limit”
when the number of lattice cells tends to infinity (N → ∞).

When N → ∞, the number of modes also tends to
infinity and it is convenient to introduce the wave number
k (0 � k < 2π ) instead of the mode index j :

k =
(

2π

N

)
j, j = 1 . . . N. (34)

In Eq. (4) there is a normalizing coefficient 1/
√

N orig-
inating from the conventional definition of the mode norm
| ��j |2 = 1. As a consequence, displacements of all particles
corresponding to a given normal mode with fixed amplitude
tend to zero with N → ∞, while the coefficient 1/N appears in
Eqs. (26) and (33), etc., in combination with the coefficient β.

Hereafter, we use a more convenient (for our purposes) nor-
malization of normal modes (normalization to the “volume”
of the system), namely we assume | ��j |2 = N . This permits us
to exclude the coefficient 1/N coupled to β. Moreover, using
a trivial coordinate rescaling, one can set |β| = 1. As a result,
Eqs. (33) are transformed to the following forms:

δ̈k + 4 sin2

(
k

2

)
[1 ± 6ν2(t)]δk = ∓12ν2(t) sin(k) δk′,

(35)

δ̈k′ + 4 cos2

(
k

2

)
[1 ± 6ν2(t)]δk′ = ∓12ν2(t) sin(k) δk.

Here the upper and lower signs correspond to β > 0 and β < 0,
respectively.

Following this idea, we construct our stability diagrams
in the (k-A) plane, where A is the amplitude of a normal
mode subjected to the above-mentioned normalizing condition
| ��j |2 = N . For any fixed N , the permissible values of the
wave number k represent the equidistant set inside the interval
[0,2π ]. When N → ∞, these values of k form a dense set on
the above interval, depicted on the horizontal axis of diagrams
in Fig. 1. Rich information about stability properties of NNMs
can be obtained from diagrams of such a type. Let us consider
this idea in more detail using as an example the stability
diagram of the NNM B[a4,iu] depicted in Fig. 1(e) for β > 0.

In this diagram, we denote the permissible values of
the wave number k for N = 12 by the dotted vertical
lines (k = γ, 2γ, 3γ, . . . ,12γ , where γ = 2π/12). The black
color corresponds to the regions of unstable motion in
the plane (k-A). From Fig. 1(e) one can see that for the
FPU β chain with N = 12 particles the NNM B[a4,iu]
with �c = {1,−1,−1,1|1,−1,−1,1|1,−1,−1,1} turns out to be
stable for every amplitude A up to 2 (actually, at least, up to
A = 20). Indeed, the dotted vertical lines do not cross the black
(unstable) regions in the form of the rabbit ears. Obviously, the
mode B[a4,iu] is also stable for the chains with N = 4 and
N = 8 particles since the vertical dotted lines, similar to those
depicted in Fig. 1(e), are more distant from each other than for
N = 12, and the regions of instability situate fully between
the neighboring lines.

In the case where N = 16, there exist such dotted vertical
lines that are tangents to the rabbit-ears unstable regions, while
for N > 16 (note that the relation N mod 4 = 0 must hold),
these lines begin to cross the unstable regions. Therefore, we
can conclude that the considered nonlinear normal mode in
the FPU β chains with N > 16 particles becomes unstable for

the vibrational amplitudes, which fall into the black regions in
Fig. 1(e). The case where N = 16 represents the “boundary”
case between stable and unstable behavior of the B[a4,iu]
NNM for appropriate amplitudes.

From Fig. 1(e), it can be seen that the critical amplitude
Ac of the nonlinear normal mode B[a4,iu], for which this
mode loses its stability, decreases with increasing N and we
can evaluate numerically the corresponding scaling law of the
function Ac(N ) in the thermodynamic limit N → ∞.

Let us consider this question in more detail. The instability
regions touch the k axis at the points π

2 (j = N
4 ) and 3π

2
(j = 3N

4 ), which correspond to the NNM B[a4,iu] and its
dynamical domain B[a4,a2iu], respectively. Specifically, near
these points the considered NNMs loses their stability in the
thermodynamic limit N → ∞.

Let us focus on the point (k = π
2 ), which corresponds to

the index j0 = N
4 of the mode B[a4,iu]. All the neighboring

k points correspond to the “sleeping” modes, i.e., modes with
zero amplitudes for the stable behavior of the mode B[a4,iu].
If we increase the amplitude A of the NNM B[a4,iu] from
zero, the sleeping modes, which become excited first, are those
with indices j ′ = N

4 ± 1, i.e., the modes closest in number to
the index j0 = N

4 of the NNM B[a4,iu].
We denote by Ac(N ) the critical value of the amplitude A

of the considered nonlinear normal mode for which the loss
of its stability takes place, i.e., Ac(N ) is the threshold of the
B[a4,iu] NNM stability for a given N . Note that we can speak
about the threshold value A

(j )
c for the excitation of the sleeping

j mode as a result of its interaction with the B[a4,iu] NNM
whose index is equal to j0 = N

4 . From Fig. 1(e) we then obtain

Ac(N ) = min
j

A(j )
c = A

( N
4 ±1)

c . (36)

For the index j situated near j0 = N
4 (k = π

2 ), one can see
from Fig. 1(e), that

A(j )
c = 	k tan α, (37)

where 	k = 2π
N

is the minimal distance between the neighbor-
ing permitted points on the k axis and tan α is determined by
the tangent to the black unstable region near the point k0 = π

2 .
The scaling law of the function Ac(N ) for N → ∞ can be

deduced from Eqs. (36) and (37):

Ac(N ) = 2π

N
tan α (N → ∞). (38)

Here tan α ∼ 1, as shown in Fig. 1(e).
The above-discussed threshold function Ac(N ) for N → ∞

can be calculated analytically. For the nonlinear normal mode
B[a4,iu], such a calculation has been recently performed
in Ref. [2]. The similar analytical results for the π mode
(j0 = N

2 ) were earlier obtained in Refs. [1,20,22–26]. In the
present paper, we present the analytical estimations of stability
thresholds for N → ∞ for all those possible in the FPU β

(β > 0 and β < 0) nonlinear normal modes (see Sec. VI).
Let us return to the stability diagram in Fig. 1(e) for the

NNM B[a4,iu] for β > 0. It is very interesting that for the
sufficiently large amplitudes (A > Ac ≈ 0.346) the nonlinear
normal mode B[a4,iu] again becomes stable even in the
thermodynamic limit N → ∞. Such results cannot be obtained
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by use of the analytical methods applied in Ref. [2] and in the
present paper. However, the stability of NNMs for nonlinear
chains in the case of large amplitudes can be analyzed by use
of the numerical method used in Ref. [6] which provides us
with the stability diagrams depicted in Fig. 1.

In a recent paper [28], the existence of the “second stability
threshold” Ec for the NNM B[a4,iu] was also revealed.
Beyond Ec, the stability of the mode B[a4,iu] (in Ref. [28],
it is called π/2 mode) is restored. This result was obtained
by numeric methods. In term of the partial energy per one
particle of the FPU β chain, this threshold turns out to be
equal to Ec = 0.14715. On the other hand, we can find an
approximate value for Ec directly from diagram depicted in
Fig. 1(e): Ec ≈ 0.15. This value is in good agreement with
that from Ref. [28].

Moreover, one can reveal such a “surprising behavior” (as
has been written in Ref. [28]) directly from our stability
diagrams presented in Ref. [6] for NNMs B[a3,i] and
B[a3,iu]. We reproduce these diagrams in Figs. 1(b) and 1(d)
of the present paper, and they show the approximate values of
the “second stability thresholds” for the above-mentioned non-
linear normal modes: Ec(B[a3,i]) ≈ 3.70 and Ec(B[a3,iu]) ≈
24.8.

In the right column of Fig. 1, we present new results on
the stability of all possible NNMs in the FPU β chain with
β < 0. In contrast to the case where β > 0, the chain with
β < 0 is unstable itself for the mode amplitudes which exceed
a certain critical value (this case corresponds to the region
depicted by gray color in Fig. 1). Note that beyond E = 0.092
for the NNM B[a3,i] and E = 0.14 for the NNM B[a3,iu],
all sleeping modes turn out to be excited simultaneously. We
have previously revealed such a remarkable behavior for the
stability properties of the FPU α chain (see Ref. [5]).

VI. ANALYTICAL METHOD FOR STABILITY
ANALYSIS OF NONLINEAR NORMAL MODES

IN THE THERMODYNAMIC LIMIT

For studying the stability of NNMs in the thermodynamic
limit (N → ∞), we use a method which is similar, in some
sense, to that developed in Ref. [2]. However, our method is
more general and, as a consequence, it can be applied to all
nonlinear normal modes in the FPU β chain for the case where
N → ∞. This method is described in detail below.

The standard linear stability analysis of a given NNM leads
us to Eq. (32) representing an N × N system of differen-
tial equations with periodic coefficients. Obviously, such a
straightforward method proves to be especially complicated
when N → ∞.

On the other hand, we can apply the general group-
theoretical method [13] for splitting the system (32) into some
independent subsystems Lj of small dimensionalities nj due
to the symmetry properties of the considered NNM. In Ref. [6],
it has been shown that for all NNMs in the FPU β chain these
dimensionalities (nj ) do not exceed 3. This fact is extremely
useful for stability studying and we have already used it in
Ref. [6] for numerical construction of the stability diagrams
for NNMs in the FPU β model with β > 0.

At this point it is appropriate to dwell on the physical cause
of the stability loss of nonlinear normal modes. This loss of

stability can be treated in terms of “parametric interactions”
between a given excited NNM and other modes with zero
amplitudes (“sleeping” modes) (see Ref. [12]).

In the simplest case, such an interaction can be described
by the Mathieu equation. Indeed, studying the stability of
the π mode in the FPU β chain, we deal with splitting of
the N -dimensional variational system into individual scalar
equations,

ν̈j + 4

[
1 + 12β

N
ν2(t)

]
νj sin2 k = 0, (39)

where νj = νj (t) is a sleeping mode, while the solution ν(t)
of the Duffing equation (26) describes the time evolution of
the π mode.

In some approximation, we can replace the exact function
ν(t) by its first Fourier harmonic. After substitution of
this approximate function into Eq. (39), the latter can be
transformed to the standard form of the Mathieu equation,
which possesses an infinite set of stable and unstable regions.
Depending on the value of the considered NNM amplitude
[the function ν(t)] one can get into a region of unstable motion
and then infinitesimal solution of the Mathieu equation begins
exponentially increase in amplitude over time evolution. This
means that the original NNM loses its stability and transforms
into a two-dimensional bush of vibrational modes.

The above phenomenon represents a parametric resonance:
the parameter in square brackets in Eq. (39) changes peri-
odically, which leads, under certain conditions, to excitation
of the sleeping degree of freedom described by the function
νj (t). Let us note that different sleeping modes νj (t) turn out
to be unequal in relation to excitation by the given NNM
ν(t). Indeed, in Fig. 1(a) it can be seen that νj (t) with wave
numbers k closer to kres = π/2 prove to be excited earlier,
i.e., for smaller amplitudes A of the π mode. The values kres

for different NNMs in the limit N → ∞ can be revealed in
Fig. 1: They correspond to the points that contact with the
k axis. We need to study vicinities of the points (k = kres,
A = 0) for obtaining scaling of the stability thresholds in the
thermodynamic limit (N → ∞).

In the general case, parametric interaction with the original
(active) NNM leads to exciting not only one sleeping mode
but also a certain set of such modes (for the FPU β this set can
consist of one, two, or three sleeping modes). For example,
the variational system for NNM B[a4,iu] can be decomposed
into two-dimensional subsystems L

(2)
j [see Eqs. (33) and the

discussion below this equation]. Each of these subsystems
contains two sleeping modes νj (t) and νj ′ (t), where j ′ = N

2 −
j [in terms of wave number (34), these modes are denoted by
νk(t) and ν π

2 −k(t)]. This means that when NNM ν(t) loses its
stability, both sleeping modes νk(t) and ν π

2 −k(t) are excited
simultaneously.

Similarly, the variational system for the NNMs B[a3,i]
and B[a3,iu] can be decomposed into three-dimensional
independent subsystems L

(3)
j . This means that these nonlinear

normal modes lose their stability simultaneously relative to the
three sleeping modes with wave numbers k, k + 2π

3 , k + 4π
3 .

Since there are no analytical results on parametric resonance in
such cases, we have to use the general Floquet stability analysis
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to obtain thresholds of the stability loss of the corresponding
NNMs.

In terms of the Floquet method, the stability loss of a
given NNM can be interpreted in the following manner. When
we vary the amplitude A of NNM in the stability region,
Floquet multipliers move on the unit circle. Some of them
can leave this circle after colliding with each other, and this
phenomenon means that the considered NNM loses stability.
On the other hand, Floquet multipliers represent eigenvalues
of the monodromy matrix X̂(π ), and they can be found as the
roots λj of its characteristic polynomial.

A bifurcation from stability to instability of the considered
NNM takes place when some roots of this polynomial coincide
with each other. This fact can be revealed by vanishing of
the discriminant D of the monodromy matrix characteristic
polynomial. Indeed, in the general case,

D =
∏
i<j

(λi − λj )2 (40)

and coincidence of every pair of eigenvalues (λi,λj ) leads to
the relation D = 0.

Now let us consider some technical details of our method for
studying stability of NNMs in the thermodynamic limit. The
explicit form of the independent subsystems Lj for all FPU β

NNMs can be found in Ref. [6]. In the present paper, we write
Lj for each NNM in the following matrix-vector form:

�̈μ + [aω̂2 + bν2(t)M̂] �μ = 0. (41)

Here ω̂2 and M̂ are nj × nj constant matrices depending
on the harmonic frequencies of the variables coupled by
Eq. (41). In Table II, we present the matrices ω̂2 and M̂

for each of six NNMs permissible in the FPU-β chain in
terms of the frequencies ω̃1 = sin( k

2 ), ω̃2 = sin( k
2 + π

3 ),
ω̃3 = sin( k

2 + 2π
3 ), and ω̃4 = sin( k

2 + π
2 ).

The time-depending function ν(t) entering Eq. (41) is a
periodic solution to the governing Eq. (12). For every NNM
in the FPU β chain, this governing equation represents the
Duffing equation

ν̈ + aν + bν3 = 0, (42)

TABLE II. Input data for stability analysis of nonlinear normal
modes in the FPU β chain.

Energy vs.
NNM NNM’s amplitude ω̂ M̂

B[a2,i] 2A2 + 4β

N
A4 ω̃1 3 ω̃2

1

B[a3,i] 3
2 A2 + 27β

8N
A4 2√

3

(
ω̃1

ω̃2

ω̃3

)
4
3

(
2ω̃2

1 −ω̃1ω̃2 ω̃1ω̃3

−ω̃1ω̃2 2ω̃2
2 −ω̃2ω̃3

ω̃1ω̃3 −ω̃2ω̃3 2ω̃2
3

)

B[a3,iu] 3
2 A2 + 27β

8N
A4 2√

3

(
ω̃1

ω̃2

ω̃3

)
4
3

(
2ω̃2

1 ω̃1ω̃2 −ω̃1ω̃3

ω̃1ω̃2 2ω̃2
2 ω̃2ω̃3

−ω̃1ω̃3 ω̃2ω̃3 2ω̃3

)

B[a4,ai] A2 + β

N
A4

√
2ω̃1 6 ω̃2

1

B[a4,iu] A2 + 2β

N
A4

√
2

(
ω̃1

ω̃4

)
3

(
ω̃2

1 ω̃1ω̃4

ω̃1ω̃4 ω̃2
4

)

B[a3u,ai] 1
2 A2 + 3β

8N
A4 2

(
ω̃1

ω̃2

ω̃3

)
4

(
2ω̃2

1 −ω̃1ω̃2 ω̃1ω̃3

−ω̃1ω̃2 2ω̃2
2 −ω̃2ω̃3

ω̃1ω̃3 −ω̃2ω̃3 2ω̃2
3

)

where a is the squared frequency of the harmonic approxima-
tion, while b = β

N
γ is a nonlinearity coefficient. Equation (42)

is called the hard (soft) Duffing equation if b > 0 (b < 0). For
both cases, analytical solutions of this equation are known (see
Appendix A).

Our further stability analysis of NNMs reduces to investi-
gating the stability of the zero solution of Eq. (41). The analysis
consists of the following steps.

A. Step 1: Simplification of Eq. (41)
in the thermodynamic limit

In this case b ∼ 1/N and we can decompose the coefficients
of Eq. (41) into power series with respect to the small
dimensionless parameter,

ε = bA2

a
. (43)

This very cumbersome decomposition has been performed
with the aid of the MAPLE mathematical package. The
corresponding result can be written as follows:

d2

dτ 2
�μ +

{
ω̂2 +

[
−3

4
ω̂2 +

(
1

2
+ 1

2
cos 2τ

)
M̂

]
ε

+
[

75

128
ω̂2 +

(
−13

32
− 3

8
cos 2τ + 1

32
cos 4τ

)
M̂

]
ε2

+
[
−243

512
ω̂2 +

(
87

256
+ 597

2048
cos 2τ − 3

64
cos 4τ

+ 3

2048
cos 6τ

)
M̂

]
ε3

}
�μ + O(ε4) = 0. (44)

B. Step 2: Solving Eq. (44)

This equation represents a system of differential equations
with time-periodic coefficients and to construct the corre-
sponding monodromy matrix we must obtain its solution for
t = π . On the other hand, for small time intervals, the solution
of Eq. (44) can be found by a simple perturbation theory. To
that end we decompose �μ(t) into a formal series,

�μ(t) =
∞∑

n=0

εn �μn(t), (45)

substitute it into Eq. (44) and equate to zero the terms with
every fixed power of the small parameter ε. As a result, we get
the following set of differential equations

�̈μ0 + ω̂2 �μ0 = 0, (46a)

�̈μ1 + ω̂2 �μ1 =− [− 3
4 ω̂2 + (

1
2 + 1

2 cos 2τ
)
M̂

] �μ0, (46b)

�̈μ2 + ω̂2 �μ2 =−[− 3
4 ω̂2 + (

1
2 + 1

2 cos 2τ
)
M̂

] �μ1

− [
75

128 ω̂2 + (− 13
32 − 3

8 cos 2τ

+ 1

32
cos 4τ

)
M̂

] �μ0, . . . . (46c)

Because of the diagonal form of the matrix ω̂2 (see Table II),
these equations determine certain sets of harmonic oscillators
with different time-periodic external forces. Each of these
oscillators is described by equation

ẍ + ω2x = f (τ ).
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The general solution to this equation, obtained by the method
of variation of arbitrary constants, can be written in the
form

x(τ ) = c1 sin ωτ + c2 cos ωτ + 1

ω

∫ τ

0
f (t) sin[ω(τ − t)]dt,

(47)

where f (t), in our case, represents a sum of time-periodic
functions whose frequencies are incommensurable. Indeed, for
the most NNMs from Table II, ω̂2 are matrices with different
diagonal elements and, therefore, the components of the vector
�μ0(τ ) from (46a) vibrate with different frequencies. Substi-
tuting �μ0(τ ) into (46b) leads to mixing its time-dependent
components because of multiplying by the matrix M̂ , and
such mixing produces more and more complicated terms in
the right-hand side of Eqs. (46) when we take into account
higher orders in the decomposition (44).

C. Step 3: Constructing monodromy matrix

The usual way to study the stability of a given periodic
dynamical regime is by use of the Floquet method. In this
method, we linearize nonlinear equations of motion in the
vicinity of the periodic solution and calculate the monodromy
matrix X̂(T ) by integrating 2n times the linearized equations
with time-periodic coefficients over one period T using
specific initial conditions [n is the number of equations in
Eq. (44)]. These conditions are determined by the successive
columns of a 2n × 2n identity matrix.

Solving Eqs. (46) in a step-by-step manner, we can
construct the approximate analytical solution to Eq. (44) up
to a fixed order of the small parameter ε. With the aid of this
solution, we are able to obtain the monodromy matrix X̂(π )
for Eq. (44), where π is the period of its coefficients.

The stability of the considered periodic solution is deter-
mined by Floquet multipliers representing eigenvalues of the
monodromy matrix. If all these multipliers lie on the unit circle,
the solution is linear stable. In other case, the solution linear
unstable.

D. Step 4: Obtaining discriminants
of characteristic polynomials

We can obtain eigenvalues of the monodromic matrix X̂(π )
as the roots of its characteristic polynomial, which, in turn,
can be expressed via different traces of X̂(π ).

For the discriminants D1, D2, and D3 of the characteristic
polynomials of n = 1, 2, 3 degrees we obtained the following
formulas:

D1 = (a1 + 2)(a1 − 2), (48)

D2 = (a2 + 2a1 + 2)(a2 − 2a1 + 2)
(
8 + a2

1 − 4a2
)2

, (49)

D3 = (a3 + 2a2 + 2a1 + 2)(a3 − 2a2 + 2a1 − 2)

· (9a2
1 + 54a1a3 − 27a2

3 − 42a2
1a2 + 18a1a2a3

−4(a2 − 3)3 + 8a4
1 + a2

1a
2
2 − 4a3

1a3
)2

, (50)

where coefficients a1, a2, a3 are determined via traces of the
monodromy matrix X̂(π ):

a1 = TrX̂(π ),

a2 = 1
2 [Tr2X̂(π ) − TrX̂2(π )], (51)

a3 = 1
6 [Tr3X̂(π ) − 3TrX̂(π )TrX̂2(π ) + 2TrX̂3(π )].

E. Some examples

We now present some illustrations of the above-discussed
technique.

Example 1. Nonlinear normal mode B[a2,i] (π mode):
|x,−x|.

First, let us discuss the case where β > 0. One can see
that there exist modes, corresponding to the left and right
sides of the black region in Fig. 1(a), which are not excited
by parametric interactions with the π mode. This fact was
revealed analytically in Ref. [22] with the aid of the rotating
wave approximation (RWA). In Ref. [24], in the framework
of the same approximation, the following relation between the
amplitude threshold value Ac and the wave number k [i.e., the
boundary curve of the black region in Fig. 1(a)] was obtained
as follows:

Ac =
∣∣ sin k−π

2

∣∣√
9 cos2 k−π

2 − 3
,

This analytical formula is in good agreement with the
numerical results.

Let us now consider the stability threshold of the π mode in
the thermodynamic limit N → ∞ using the above-discussed
method. We have to consider the vicinity of the point (π

2 ,0) on
the (k-A) plane (kres = π/2). The one-dimensional constant
matrices of the decoupled variational system can be found in
Table II,

ω̂2
k = sin2 k

2
, M̂k = 3 sin2 k

2
.

The monodromy matrix also depends on the wave number
k and we can decompose its trace TrX̂(π ) into the Taylor series
in two small parameters, 	k = k − kres and ε = bA2/a (in our
case, a = 4, b = 16β/N and, therefore, ε = 4βA2/N). This
decomposition reads,

TrX̂(π ) = (−2 + 1
64π2	k4 − 1

1536π2	k6 + · · ·)
+ (− 3

32π2	k2 + 7
512π2	k4 + · · · )ε

+ 27
256π2	k2ε2 + · · · .

In the considered case, n = 1 and the corresponding
discriminant is

D1 = (a1 + 2)(a1 − 2),

where a1 = TrX̂(π ).
The condition D1 = 0 leads to the equations

a1 + 2 = 0 or a1 − 2 = 0. (52)

From the first of these equations, we find

a1 + 2 = a
(

1
64π2	k4 − 1

1536π2	k6
)

+ (− 3
32π2	k2 + 7

512π2	k4
)
ε + 27

256π2	k2ε2 = 0,
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and we then obtain

ε = 1
6	k2 + 7

144	k4 + O(	k6).

Substitution of ε = 4β

N
A2

c and 	k = 2π
N

leads us to the
following result:

Ac = π√
6βN

+ 7π3

12N2
√

6βN
+ O(N−9/2).

The corresponding energy per one particle is

Ec

N
= 1

N

(
aA2

c

2
+ bA4

c

4

)
= π2

3βN2
+ 11π4

36βN4
+ O(N−6).

The second equation (52) leads to a contradiction with the
condition of smallness of the parameter ε and, therefore, this
equation does not produce instability of the π mode in the
limit N → ∞. Note that the analytical dependence Ec/N =
π2/(3βN ) was revealed in Ref. [21] and later was recovered
in Refs. [1,23].

In the case where β < 0, the stability properties of the π

mode differ utterly. Indeed, one can see in Fig. 1(a) (right
column) that this mode turns out to be stable up to the finite
value of its amplitude Ac. Using a numerical method, we
found that in the thermodynamic limit N → ∞ Ac ≈ 0.393
(Ec ≈ 0.213).

Example 2. Nonlinear normal mode B[a4,iu]:
|x,x,−x,−x|.

The variational system for this NNM is decoupled into
2 × 2 subsystems with time-periodic coefficients. As a result,
for studying the stability loss of the mode B[a4,iu] we have to
vanish the discriminant D2 from (49).

The first factor of D2 near the resonance wave number
kres = π/2 is equal to

a2 + 2a1 + 2 = 9
128ε2π4	k2 + 1

16π4	k4 + · · · . (53)

Being positive, this factor cannot lead to the condition D2 = 0.
The second factor of D2 from Eq. (49) reads,

a2 − 2a1 + 2 = 16 + O(ε2,	k2), (54)

which also does not vanish in the thermodynamic limit
N → ∞.

Only the last factor of the discriminant D2,

9
64ε2π4	k2 − 1

16π4	k6 + · · · , (55)

can lead to fulfillment of the condition D2 = 0. This yields

ε = ± 2
3	k2,

and, therefore,

Ac =
√

2π√
3|β|N , Ec = 2π2

3|β|N2
. (56)

Note that this NNM was investigated thoroughly in Ref. [2].
Above, we simply reproduced the main result of this paper by
use of our method.

Example 3. Nonlinear normal modes B[a3,i]: |x,0,−x| and
B[a3,iu]: |x,−2x,x|.

The variational systems for these NNMs can be decoupled
into 3 × 3 independent subsystems whose matrices are pre-
sented in Table II. One now has to vanish the discriminant D3

from Eq. (50). With the aid of our method, we get the following
results.

For both modes B[a3,i] and B[a3,iu], we have obtained
identical scaling for the case N → ∞,

Ac = 2π

3
√

βN
, Ec = 2π2

3βN2
. (57)

Some numerical results on stability of the NNM B[a3,i]
have been found in Ref. [3], but we do not know any results
on stability properties of the NNM B[a3,iu]. In conclusion,
let us consider another scenario of the stability loss of NNMs.
Indeed, up to this point, we have discussed only the loss of
stability associated with parametric interactions of a given
NNM with other (linear) normal modes of the FPU β chain.

Some NNMs in the FPU β chain, when ε = bA2/a → 0,
transform not into one linear normal mode (LNM) but into
a certain superposition of such modes. For example, NNM
B[a4,ai]

�X(t) = ν(t)
2√
2N

{0,1,0,−1 | 0,1,0,−1 | . . .} (58)

transforms, in the case ε → 0, into the linear combination

ξ1 ��N/4(t) + ξ2 ��3N/4(t), ξ1 = −ξ2 = 1√
2

(59)

of two linear normal modes

��N/4(t) = �cN/4 cos(ωt), ��3N/4(t) = �c3N/4 cos(ωt), (60)

where

�cN/4 = 1√
N

{1,−1,−1,1 | 1,−1,−1,1 | . . .},

�c3N/4 = 1√
N

{−1,−1,1,1 | −1,−1,1,1 | . . .}, (61)

ω2 = 2.

One can also say that NNM B[a4,ai] is the result of the
continuation of the superposition (59) with respect to the
nonlinearity parameter ε of the considered FPU β chain.
We have to emphasize that the continuation of an arbitrary
linear combination of the two above-discussed LNMs does not
represent an exact solution to nonlinear dynamical equations of
the FPU β chain, while the superposition with ξ1 = −ξ2 = 1√

2
produces an exact solution.

The following question then arises: If we increase the
parameter ε from zero, is it possible that the discussed
NNM (58) loses stability because of transformation into a
two-dimensional bush,

ν(t)�cN/4 + μ(t)�c3N/4, (62)

with two different functions of time ν(t), μ(t)? In general, such
a bush describes not periodic but a quasiperiodic dynamical
regime in the FPU β chain. In contrast to the previous case, this
stability loss scenario does not imply any extension of the vi-
brational modes set, but it means breaking the correlation (59)
between two LNMs, νN/4(t) ��N/4 and ν3N/4(t) ��3N/4. We do
not discuss this scenario of the stability loss in the present
paper. However, our analysis allows us to assert that such a
scenario is inessential for all six symmetry-determined NNMs
in the FPU β chain.
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TABLE III. Asymptotic behavior of the critical parameters of
NNMs in the thermodynamic limit for the FPU β chain with β > 0.

NNM Ac Ec/N Refs.

B[a2,i] π√
6βN

π2

3βN2 [1,20–27]

B[a3,i] 2π

3
√

βN

2π2

3βN2 [3]

B[a4,ai]
√

2π

3β

2π

3βN
[3,27]

B[a3,iu] 2π

3
√

βN

2π2

3βN2

B[a4,iu]
√

2π√
3βN

2π2

3βN2 [2]

B[a6,ai,a3u] 2π√
3βN

2π2

3βN2

VII. RESULTS AND DISCUSSION

With the aid of the above-discussed method, we investigated
scaling of stability thresholds in the thermodynamic limit N →
∞ for all possible nonlinear normal modes in the FPU β

chain for both cases β > 0 and β < 0. The summary results
are presented in Tables III and IV. Let us comment on these
results.

In the first column of Tables III and IV, the symbols of
NNMs are given. In two next columns, we present the scaling
laws for N → ∞ of stability thresholds for the amplitude of
each NNM, Ac(N ), and for its specific energy, εc(N ) (the
energy per one particle of the chain). In the last column of the
above tables, we give references to the papers in which stability
thresholds of the corresponding NNMs are also discussed.

A. The case β > 0

First, let us pay attention to the following interesting fact:
four of six NNMs in the FPU β chain, namely,

B[a3,i] = ν(t)
3√
6N

{1,0,−1 | 1,0,−1 | · · ·},

B[a3,iu] = ν(t)
1√
2N

{1,−2,1 | 1,−2,1 | · · ·},
(63)

B[a4,iu] = ν(t)
1√
N

{1,−1,−1,1 |1,−1,−1,1 | · · ·},

B[a3u,ai]=ν(t)
3√
6N

{0,1,1,0,−1,−1|0,1,1,0,−1,−1| · · ·},

possess identical scaling of the stability threshold in the limit
N → ∞:

εc(N ) = 2π2

3βN2
. (64)

TABLE IV. Asymptotic behavior of the critical parameters of
NNMs in the thermodynamic limit for the FPU β chain with β < 0.

NNM Ac Ec/N Refs.

B[a4,ai]
√

2π

3|β|
2π

3|β|N

B[a4,iu]
√

2π√
3|β|N

2π2

3|β|N2 [2]

B[a6,ai,a3u] 0 0

Note that time dependence of these modes, i.e., the function
ν(t), obeys different Duffing equations (12)–(18).

The scaling of εc(N ) for the π mode

B[a2,i] = ν(t)
1√
N

{1,−1 | 1,−1 | . . .} (65)

is exactly twice less than that determined by Eq. (64).
Only for the mode

B[a4,ai] = ν(t)
2√
2N

{0,1,0,−1 | 0,1,0,−1 | . . .} (66)

does the scaling law of the stability threshold turns out to differ
cardinally,

εc(N ) = 2π

3βN
. (67)

A qualitative difference in scaling between this mode and
all other NNMs for the FPU β chain with β > 0 can be seen
in the left column of Fig. 1.

B. The case β < 0

The stability properties of the same NNMs in the FPU β

chain with β < 0 prove to differ essentially, as one can see in
the right column of Fig. 1.

First, for three NNMs, namely B[a2,i], B[a3,i], and
B[a3,iu], the stability thresholds εc(N ) do not tend to zero
when N → ∞. These modes lose their stability for a certain
finite value Ac of the NNM’s amplitude. For the above listed
nonlinear normal modes, these values are equal respectively
to 0.213, 0.092, and 0.138. The fundamental difference
between scaling of εc(N ) for the modes B[a4,ai] and B[a4,iu]
takes place in the case where β < 0, as well as for the
above-discussed case β > 0: εc(N ) ∼ 1/N for B[a4,ai] and
εc ∼ 1/N2 for B[a4,iu] (see Table IV).

Studying the stability threshold for the NNM B[a3u,ai]
proves to be more difficult. In this case, the loss of stability
is determined by the second scenario discussed at the end of
Sec. VI. Normalizing the variational equations and describing
the dynamics of the vibrational modes with basis vectors ��N/2,

1√
2
( ��N/6 ± ��5N/6) simultaneously with the Duffing equation,

corresponding to NNM B[a3u,ai], we infer that for β < 0
there exists an exponential detuning between the above modes
for an arbitrary small amplitude of the investigated NNM. This
means that εc(N ) turns out to be equal to zero, as indicated in
Table IV.

VIII. SUMMARY

In the present paper, a certain asymptotic technique for
studying the stability loss of nonlinear normal modes in
the FPU β chain in the thermodynamic limit N → ∞ is
developed. Using this technique, we were able to obtain
the scaling laws of the stability threshold εc(N ) for all six
symmetry-determined NNMs that are possible in the FPU β

chain for both cases β > 0 and β < 0.
The general method [13] for splitting the variational system

for a given dynamical regime in a physical system with discrete
symmetry into independent subsystems of small dimensions

056601-12



STABILITY OF NONLINEAR NORMAL MODES IN THE . . . PHYSICAL REVIEW E 85, 056601 (2012)

was applied for investigating the stability of NNMs in the
FPU β chain. The above dimensions for the considered case
turn out to be equal to 1, 2, and 3. This splitting allows us
to construct numerically the stability diagrams (Fig. 1) that
can help to reveal many interesting properties of nonlinear
normal modes, such as the qualitative behavior of the stability
thresholds εc(N ) in the thermodynamic limit N → ∞, the
existence of the “second stability threshold” for some NNMs,
the existence of finite limits of εc(N ) for certain modes, and
so on.

APPENDIX A: SOLUTION
OF THE DUFFING EQUATION

For initial conditions ν(0) = A, ν̇(0) = 0, the solution of
the hard Duffing equation can be written in the form

ν(t) = Acn(�t,κ2). (A1)

Here

�2 = a/(1 − 2κ2), (A2)

while modulus κ of the Jacobi elliptic cosine is determined by
the relation

2κ2 = bA2/(a + bA2). (A3)

The solution (A1) represents a periodic function with the
period

T = 4K(κ)/�, (A4)

where K(κ) is the complete elliptic integral of the first
kind.

For the same initial conditions, the solution of the soft
Duffing equation (b < 0) can be written in the form

ν(t) = Asn(�t + K(κ),κ2), (A5)

with

�2 = a/(1 + κ2), (A6)

κ2 = |b|A2/(2a − |b|A2), (A7)

T = 4K(κ)/�. (A8)

It is convenient to introduce the time scaling

τ = 2π

T
t = π�

2K(κ)
t, (A9)

which transforms Eq. (41) into the equation with π -periodic
coefficients. As a result of this scaling the form of Eq. (41)
does not change, but the constant a and b, entering this
equation, must be multiplied by 4K2(κ)/(π2�2). We do not
change notations in Eq. (41); however, we imply that the above
transformations are already fulfilled.

APPENDIX B: ASYMPTOTIC EXPANSION
OF SOME ELLIPTIC FUNCTIONS

The function ν(t) in the form (A1) for the case β > 0 and
in the form (A5) for β < 0 must be substituted into Eq. (41)
taking into account that modulus κ goes to zero when N → ∞.
To simplify ν(t), we use the following formulas from the theory
of elliptic functions [33]:

cn(u,κ2) = 2π

κK(κ)

∞∑
n=1

q
2n−1

2

1 + q2n−1
cos

(2n − 1)πu

2K(κ)
, (B1)

sn(u,κ2) = 2π

κK(κ)

∞∑
n=1

q
2n−1

2

1 − q2n−1
sin

(2n − 1)πu

2K(κ)
, (B2)

where

K(κ) = π

2

{
1 +

(
1

2

)2

κ2 +
(

1 · 3

2 · 4

)2

κ4

+ · · · +
[

(2n − 1)!!

2nn!

]2

κ2n + · · ·
}

(B3)

is the complete elliptic integral of the first kind, while

q = q(κ) = exp

[
−π

K(κ ′)
K(κ)

]

(κ ′ = √
1 − κ2 is the complimentary modulus of the elliptic

functions). Note that the modulus κ depends on bA2 in a
different manner for the cases β > 0 and β < 0 [see Eqs. (A3)
and (A7), respectively].

We then have to decompose the left-hand-side of Eq. (41)
into the power series with respect to the small parameter
ε = bA2/a.

APPENDIX C: NEWTON FORMULAS

According to the Newton formulas, the coefficients of the
characteristic polynomial

det(Â − λÊ) ≡ (−1)N (λN + p1λ
N−1 + · · · + pN−1λ + pN )

of any N × N matrix Â can be expressed via the sums

sk =
N∑

i=1

λk
i , k = 1, . . . ,N (C1)

with the aid of the recurrence relation

pk = −(sk + p1sk−1 + p2sk−2 + · · · + pk−1s1)/k.

Thus, we have

p1 = −s1, p2 = −(s2 + p1s1)/2,

p3 = −(s3 + p1s2 + p2s1), . . . .

On the other hand, all sums sk in Eq. (C1) can be found
directly by means of traces of the matrix Â:

sk = Tr(Âk), k = 1, . . . ,N.
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It is well known that, in the case of any Hamiltonian system
with n degree of freedom, Floquet multipliers λi form pairs
λi,λ

−1
i (i = 1, . . . ,N ) and, as a consequence, the characteristic

polynomial f (λ) of the monodromic matrix X̂(π ) proves to be
palindromic:

f (λ) = λ2n − a1λ
2n−1 + a2λ

2n−2 − · · · + a2λ
2 − a1λ + 1 = 0

(C2)

with the following coefficients ai :

a1 = TrX̂(π ), a2 = 1
2 [Tr2X̂(π ) − TrX̂2(π )], . . . .

One can express discriminant (40) explicitly via these
coefficients of the characteristic polynomial. With the aid of
Newton formulas applied to polynomial (C2) and using the
mathematical package MAPLE, we, finally, find Eqs. (48)–(50)
from the main text of the paper.
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