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Instabilities for a relativistic electron beam interacting with a laser-irradiated plasma
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The effects of a radiation field (RF) on the unstable modes developed in a relativistic electron beam-plasma
interaction are investigated assuming that ω0 > ωp , where ω0 is the frequency of the RF and ωp is the plasma
frequency. These unstable modes are parametrically coupled to each other due to the RF and are a mix between
two-stream and parametric instabilities. The dispersion equations are derived by the linearization of the kinetic
equations for a beam-plasma system as well as the Maxwell equations. In order to highlight the effect of the
radiation field we present a comparison of our analytical and numerical results obtained for nonzero RF with
those for vanishing RF. Assuming that the drift velocity ub of the beam is parallel to the wave vector k of the
excitations two particular transversal and parallel configurations of the polarization vector E0 of the RF with
respect to k are considered in detail. It is shown that in both geometries resonant and nonresonant couplings
between different modes are possible. The largest growth rates are expected at the transversal configuration when
E0 is perpendicular to k. In this case it is demonstrated that, in general, the spectrum of the unstable modes in
the ω-k plane is split into two distinct domains with long and short wavelengths, where the unstable modes are
mainly sensitive to the beam or the RF parameters, respectively. In the parallel configuration, E0 ‖ k, and at short
wavelengths the growth rates of the unstable modes are sensitive to both beam and RF parameters remaining
insensitive to the RF at long wavelengths.
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I. INTRODUCTION

The interaction of a relativistic electron beam (REB) with a
plasma is a subject of relevance for many fields of physics,
ranging from inertial fusion to astrophysics [1–5]. This
interaction is also relevant, among others, for the fast ignition
scenario (FIS) [6,7], where the precompressed deuterium-
tritium (DT) core of a fusion target is to be ignited by a
laser-generated relativistic electron beam. The REB quickly
prompts a return current so one eventually has to deal with a
typical two-stream configuration which is subjected to various
electromagnetic instabilities. Much effort has been devoted
in the past few years to investigate these instabilities [8–21],
whether it is the two-stream [22,23], the filamentation [24],
or Weibel [25] instabilities. These instabilities are usually
analyzed by linearizing the relativistic Vlasov or fluid and
Maxwell equations. The response of the linearized equation
to a perturbation then is investigated and one eventually finds
some unstable self-excited modes. At this stage, the orientation
of the wave vector k of the excitations plays an important
role. Choosing a wave vector parallel to the beam velocity ub

yields the two-stream unstable modes which are of electrostatic
nature and therefore characterized by wave and electric field
vectors both parallel to the beam propagation direction. On
the other hand, choosing a wave vector normal to the beam
yields the purely transverse filamentation unstable modes.
They are mostly electromagnetic, purely growing, and develop
preferentially in the plane normal to the beam. The exploration
of the much less investigated intermediate orientations has
brought a very important result by showing that the strongest
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instability suffered by the system is eventually to be found
for an oblique wave vector [14–20,26,27]. This most unstable
mode is a mixture of the two-stream and the filamentation
instabilities but it is not damped as the last two ones. For
example, the maximum two-stream growth rate is reduced
by a factor of γ −1 in the relativistic regime, while the most
unstable mode only decreases by a factor of γ −1/3, where
γ is the beam relativistic factor. The filamentation growth
rate varies as γ −1/2 and may be reduced, even canceled, by a
transverse beam temperature [12], whereas the most unstable
mode is quite insensitive to temperatures as long as they are
nonrelativistic [15].

In general beam-plasma instabilities have been studied in
detail for many physical situations, including the interaction
of the cold, warm, inhomogeneous, or anisotropic electron
or ion beams with cold, warm, magnetized, unmagnetized,
inhomogeneous, or anisotropic plasmas; see, e.g., Refs. [8–21]
and references therein (see also Refs. [28,29] for detailed
bibliography). In this paper, we present a study of the effects
of a radiation field (RF) on the interaction of REB with
a plasma. More specifically, our objective is to study the
beam-plasma instabilities in a laser-irradiated plasma which,
to our knowledge, has not been discussed in the literature. The
principal motivation of the present paper is the research on the
topic of the FIS for inertial confinement fusion [6,7] which
involves the interaction of a laser-generated REB with a hot
plasma. Although the concept of the FIS implies an overdense
plasma and the propagation of a relativistic electron beam from
the border of a precompressed target to the dense core occurs
without crossing the laser beam, the target plasma is assumed
to be parametrically excited by the RF through high-harmonics
generation. In addition, a promising inertial confinement
fusion scheme has been recently proposed [30–32], in which
the plasma target is irradiated simultaneously by intense laser
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and ion beams. In both situations, the presence of the RF
can dramatically change the main features of the standard
(i.e., when the laser is off) beam-plasma instabilities.

Previously, the interaction of charged particles with plasma
in the presence of the RF has been a subject of great activity in
the contexts of the stopping power [33–36] (see also references
therein) and other processes of interest for applications in
optics, solid-state, and fusion research. In particular, the
analytical calculations [33–35] as well as the particle-in-cell
(PIC) numerical simulations [36] show that the propagation
and the subsequent stopping of the charged particles would
be essentially affected by the parametric excitations of the
plasma target by means of laser irradiation. It is well known
that, in general, in the absence of the charged-particle beams
the laser-irradiated plasma is subjected to the parametric
instabilities [37,38]. Therefore, in the present context it is
expected that the above-mentioned beam-plasma unstable
modes developed in a plasma irradiated simultaneously by
laser and electron beams are parametrically coupled to each
other and are not, in principle, distinguishable.

The plan of the paper is as follows. In Sec. II, we outline
the kinetic formulation for the interaction of the REB with
a laser-irradiated plasma. The full electromagnetic response
of the plasma is considered. The general linear dispersion
relations are derived in Sec. III, which are studied for two
particular cases in Secs. IV and V with transversal and parallel
configurations of the polarization vector of the RF with respect
to k, respectively. Furthermore, assuming nonrelativistic laser
intensities, only the lowest (zero, first, and second) harmonics
of the electromagnetic fields are considered. The obtained
dispersion equations are investigated numerically in Sec. VI.
The results are summarized in Sec. VII, which also includes
discussion and outlook. In Appendix A we consider the
standard (in the absence of the RF) stable and unstable modes
of the beam-plasma system in a cold-fluid approximation.
The asymptotic behavior of the frequencies and the growth
rates of these modes at large and small k are considered.
In Appendix B, we provide some technical details for an
evaluation of the sum containing Bessel functions. An equation
describing the evolution of the amplitude of the parametrically
excited plasma waves and involving all excited harmonics
is derived and discussed in Appendix C. Throughout, the
Gaussian units are used unless otherwise indicated.

II. THEORETICAL BACKGROUND

In this section, we consider the main aspects of the
interaction of the relativistic electron beam (REB) with a
homogeneous, collisionless, and unmagnetized plasma in
the presence of high-frequency radiation field (RF), E0(t) =
E0 sin(ω0t). Here E0 and ω0 are the amplitude and the
frequency of the RF. The problem is formulated using the
perturbative treatment and includes the effects of the RF
in a self-consistent way. The RF is treated in the long-
wavelength limit, and the plasma particles (electrons and ions)
are considered nonrelativistic. These are good approximations
provided that (1) the wavelength of the RF (λ0 = 2πc/ω0) is
much larger than the Debye screening length λD = vth/ωp,
with vth the thermal velocity of the electrons and ωp the
plasma frequency, and (2) the “quiver velocity”of the electrons

in the RF (vE = eE0/mω0) is much smaller than the speed
of light c. These conditions can be alternatively written as
(1) ω0/ωp � 2πc/vth and (2) IL � 1

2nemc3(ω0/ωp)2, where
IL = cE2

0/8π is the RF intensity. As an estimate in the case
of dense plasma, with electron density ne = 1023 cm−3, we
get 1

2nemc3 � 1.2 × 1020 W/cm2. Thus, the limits (1) and (2)
are well above the values obtained with currently available
high-power RF sources, and so the approximations are well
justified. Furthermore, we consider an underdense plasma with
ω0 > ωp.

The dynamics of the beam-plasma system is governed by
the relativistic and nonrelativistic Vlasov kinetic equations
for the distribution functions of the REB fb(r,v,t) and the
plasma fα(r,v,t) (where α = e,i indicates the plasma species),
respectively, as well as by the Maxwell equations for the
electromagnetic fields. Thus,

∂fα,b

∂t
+ v · ∂fα,b

∂r
+ eα,b

{
E0(t) + E + 1

c
[v × B]

}
· ∂fα,b

∂p
= 0,

(1)

where eα and eb are the charges of the plasma and beam
particles, respectively, and E and B are the self-consistent
electromagnetic fields which are determined by the Maxwell
equations,

∇ × E = −1

c

∂B
∂t

, ∇ × B = 4π

c

(∑
α

jα + jb

)
+ 1

c

∂E
∂t

,

(2)

∇ · E = 4π

(∑
α

eαnα + ebnb

)
, ∇ · B = 0. (3)

Here nα(r,t) and nb(r,t) are the densities for the plasma species
α and for the relativistic beam, respectively, and jα(r,t) and
jb(r,t) are the corresponding currents induced in plasma and
beam, respectively,

nα,b(r,t) =
∫

fα,b(r,p,t)dp,

(4)
jα,b(r,t) = eα,b

∫
vfα,b(r,p,t)dp.

As mentioned above we consider a nonrelativistic plasma
and in Eq. (1) for the distribution function fα the momentum
connects linearly to the particle velocity, p = mαv, where
mα is the mass of the plasma species α. Equation (1) for
the distribution function fb is relativistic and p = mbγ v
in this case, where γ = (1 − v2/c2)−1/2 and mb are the
relativistic factor and the rest mass of the beam particles.
Moreover, we consider an ultrarelativistic electron beam with
γb = (1 − u2

b/c
2)−1/2 � 1, where ub is the beam drift velocity,

and, therefore, the influence of the RF E0(t) on the beam is
ignored in the kinetic equation (1) for the distribution function
fb(r,p,t).

For sufficiently small perturbations, we assume fα,b =
f0α,b + f1α,b (with f1α,b � f0α,b), where f0α and f0b are the
equilibrium distribution functions of the plasma species α and
the beam in an unperturbed state, respectively. The solution
of the linearized kinetic equation (1) for the relativistic beam,
when the RF E0(t) in Eq. (1) is neglected, is well known.

056414-2



INSTABILITIES FOR A RELATIVISTIC ELECTRON . . . PHYSICAL REVIEW E 85, 056414 (2012)

This standard calculation is explained at length in a number of
plasma physics textbooks [38–41], and we just here mention
the final result. In terms of the Fourier-transformed quantities,
the solution of the kinetic equation reads

f1b(k,ω,p) = iebEj (k,ω)

[
δij

(
1 − ksvs

ω

)
+ kivj

ω

]

× ∂f0b(p)

∂pi

1

k · v − ω − i0
. (5)

Here E(k,ω) and f1b(k,ω,p) are the Fourier transforms of the
electric field and the beam distribution function, respectively,
with respect to variables r and t , δij is the unit tensor of rank 3.
Note that the positive infinitesimal +i0 in Eq. (5) guarantees
the causality of the response.

The perturbations of the densities and the currents induced
in the plasma and the beam are determined from Eq. (4). The
Fourier transforms of these quantities are then given by

n1α,b(k,ω) =
∫

f1α,b(k,ω,p)dp,

(6)
j1α,b(k,ω) = eα,b

∫
vf1α,b(k,ω,p)dp.

Substituting the distribution function (5) into these quantities
and integrating by parts with the help of the relation ∂vi/∂pj =
(1/mbγ )(δij − vivj /c

2) [where γ 2(p) = 1 + p2/m2
bc

2] for
the induced current and the density of the beam we obtain

j1b,i(k,ω) = σb,ij (k,ω)Ej (k,ω), (7)

ebn1b(k,ω) = ie2
b

mbω
E(k,ω) ·

∫ [
k + v

k2 − (k · v)ω/c2

ω − k · v + i0

]

× f0b(p)dp
γ (p)(ω − k · v + i0)

, (8)

where σb,ij (k,ω) is the conductivity tensor of the relativistic
charged-particle beam,

σb,ij (k,ω) = ie2
b

mbω

∫ [
δij + vikj + kivj

ω − k · v + i0

+ vivj

k2 − ω2/c2

(ω − k · v + i0)2

]
f0b(p)dp

γ (p)
. (9)

Consider now the solution of the kinetic equation (1) for the
plasma electrons and ions in the presence of the high-frequency
RF. In an unperturbed state (i.e., neglecting the self-consistent
electromagnetic fields E and B in Eq. (1) and assuming the
homogeneous initial state) the distribution function satisfies
the equation

∂f0α

∂t
+ eαE0 sin(ω0t) · ∂f0α

∂p
= 0, (10)

which yields the equilibrium distribution function for the
plasma species α,

f0α(p,t) = Fα[p + mαvEα cos(ω0t)]. (11)

Here Fα(p) is an arbitrary function. Below we will assume
that this function is isotropic in momentum space. vEα =
eαE0/mαω0 and aα = eαE0/mαω2

0 are the quiver velocity and
the oscillation amplitude of the plasma species α, respectively,
driven by the RF.

Next we consider the linearized kinetic equation for
the plasma species α. Introducing the Fourier transforms
f1α(k,p,t), E(k,t), and B(k,t) with respect to the coordinate
r, the linearized kinetic equation reads

[
∂

∂t
+ i(k · v) + eαE0 sin(ω0t) · ∂

∂p

]
f1α(k,p,t)

= −eα

[
E(k,t) + 1

c
[v × B(k,t)]

]
· ∂f0α

∂p
. (12)

In order to solve Eq. (12) it is convenient to introduce a new
unknown function 
α via relation

f1α(k,p,t) = eiζα sin(ω0t)
α(k,P,t), (13)

where ζα = (k · aα) and P = p + mαvEα cos(ω0t). Substitut-
ing this relation into Eq. (12) it is easy to see that the obtained
equation for the unknown function 
α constitutes an equation
with periodic coefficients where the role of the dynamic
momentum is now played by the quantity P. Therefore, we
introduce the decomposition

Q(k,p,t) =
∫ ∞

−∞
dωe−iωt

∞∑
n=−∞

Q(n)(k,ω,p)e−inω0t , (14)

where Q(k,p,t) represents one of the quantities 
α(k,p,t),
E(k,t), and B(k,t) and Q(n)(k,ω,p) is the corresponding
amplitude of the nth harmonic. From Maxwell equation we
express the magnetic field through the electric field. In terms
of the amplitudes of the nth harmonics [see definition given
by Eq. (14)] this relation is given by

B(n)(k,ω) = c

ω + nω0
[k × E(n)(k,ω)]. (15)

Also in the kinetic equation derived for 
(n)
α the term [kivj −

δij (k · v)](∂Fα/∂pi) = 0 vanishes due to the isotropy of the
equilibrium distribution function Fα of the plasma particles.
Thus, using the Fourier series representation of the exponential
function [42] [see also Eq. (C2)] for the amplitude of the nth
harmonic of the distribution function, we finally obtain


(n)
α (k,ω,p) = − ieα

ω + nω0 − k · v + i0

∂Fα(p)

∂pi

×
∞∑

�=−∞
Jn−�(ζα)

[
δij + (n − �)ω0

ω + �ω0

(
δij − kiaα,j

ζα

)]

×E
(�)
j (k,ω). (16)

Here Jn is the Bessel function of the nth order. Throughout
this paper the upper indices given in the parentheses indicate
the harmonic number while the lower indices determine the
components of the vectors and tensors.

The amplitudes of the harmonics of the induced current
and the charge density in a plasma are obtained from
Eqs. (6), (13), (14), and (16). Straightforward calculations
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yield

j (s)
r (k,ω) =

∞∑
�=−∞

σ
(s�)
rj (k,ω)E(�)

j (k,ω), (17)

eαn(s)
α (k,ω) = − ik

4π

∞∑
n=−∞

Jn−s(ζα)δεα‖(n)
∞∑

�=−∞

ω + nω0

ω + �ω0

× Jn−�(ζα)[χ (�n)(k,ω) · E(�)(k,ω)] (18)

for the Fourier transforms of the sth harmonics of the current
and the charge density, respectively, with

χ (�n)(k,ω) = k
k

+ (� − n)ω0

ω + nω0

k

ζα

aα. (19)

Here we have introduced the conductivity tensor σ
(s�)
rj (k,ω)

σ
(s�)
rj (k,ω) = 1

4πi

∑
α

∞∑
n=−∞

(ω + nω0)2

ω + �ω0
Jn−�(ζα)Jn−s(ζα)

×
[(

δjr − kj kr

k2

)
δεα⊥(n)

+χ
(�n)
j (k,ω)χ (sn)

r (k,ω)δεα‖(n)

]
(20)

and the abbreviations δεα‖;⊥(n) ≡ δεα‖;⊥(k,ω + nω0), where
δεα‖(k,ω) and δεα⊥(k,ω) are the partial contributions of the
plasma species α to the longitudinal and transversal (with
respect to the wave vector k) dielectric functions (see, e.g.,
Ref. [39]), respectively,

δεα‖(k,ω) = 4πe2
α

k2
ki

∫
∂Fα(p)

∂pi

dp
ω − k · v + i0

, (21)

δεα⊥(k,ω) = 2πe2
α

ω

∫ [
vi − (k · v)ki

k2

]
∂Fα(p)

∂pi

× dp
ω − k · v + i0

. (22)

Note that since the equilibrium distribution function Fα is
isotropic, the partial dielectric functions δεα‖;⊥(k,ω) are also
isotropic, i.e., they do not depend on the direction of the
wave vector k. The obtained expressions (17)–(22) with
Eqs. (7)–(9) as well as the Maxwell equations (2) and
(3) written in the Fourier space completely determine the
electromagnetic response in the beam-plasma system in the
presence of the RF. Using this system of equations the general
dispersion equations are derived in the next section.

We would like to close this section with the following
two remarks. First, the distribution function f1b(k,ω,p) of
the beam particles given by Eq. (5) as well as the induced
current (7) and the charge density (8) are determined by the
Fourier transform E(k,ω) of the electric field. In contrast to
this case, the distribution function [Eq. (13) with Eqs. (14)
and (16)], the induced current [Eq. (17)] and the density
[Eq. (18)] of the plasma are determined by the Fourier
transform of the amplitude of the harmonics of the electric
field, E(n)(k,ω). From Eq. (14) it is straightforward to deduce
the connection between the Fourier transforms E(k,ω) and
E(n)(k,ω). Changing the integration variable in each term of

summation in Eq. (14) according to ω + nω0 → ω, we obtain

E(k,ω) =
∞∑

n=−∞
E(n)(k,ω − nω0). (23)

Thus, E(k,ω) is the sum of all harmonics E(n)(k,ω) with shifted
frequencies ω ± nω0. Second, assuming an ultrarelativistic
beam for derivation of the distribution function (5) we have
neglected the RF in the kinetic equation (1) for fb. And as a
consequence, the perturbation of the beam distribution func-
tion is determined by E(k,ω). Although the RF is not directly
involved in the kinetic equation (1) for fb, it affects this dis-
tribution function via the self-consistent electric field E(k,ω)
containing all harmonics produced by the RF [see Eq. (23)].

III. DISPERSION EQUATION

In this section, using the expressions derived for the induced
currents in the beam and plasma, we consider the dispersion
equation of the waves excited in a plasma by the relativistic
beam of charged particles. For this purpose, we employ the
Maxwell equations (2). Introducing Fourier transforms of the
electric field and the currents according to Eq. (14), and
excluding the magnetic field from these equations by means
of Eq. (15) from Eqs. (2), (7)–(9), and (17)–(20) for the
components of the amplitude of the nth harmonic of the electric
field, we obtain{

δrj

[
k2 − (ω + nω0)2

c2

]
− krkj

}
E

(n)
j (k,ω)

= 4πi(ω + nω0)

c2

[ ∞∑
�=−∞

σ
(n�)
rj (k,ω)E(�)

j (k,ω)

+ δn0σb,rj (k,ω)Ej (k,ω)

]
. (24)

Here the conductivity tensors of the plasma σ
(n�)
rj (k,ω) and

the beam σb,rj (k,ω) are determined by Eqs. (20) and (9),
respectively. It is seen that, in the right-hand side of Eq. (24),
the beam current vanishes for any nonzero harmonic number,
n �= 0.

Before starting the systematic investigation of the general
dispersion equation for the beam-plasma system in the pres-
ence of the RF it is constructive consider briefly two limiting
cases of Eq. (24). First, at the vanishing RF (i.e., at ζα → 0)
from Eq. (20), it is straightforward to calculate the conductivity
tensor σ

(n�)
ij (k,ω) of the plasma, which reads, in this limit,

σ
(n�)
ij (k,ω) = δn�

ω + nω0

4πi
[εij (n) − δij ] ≡ δn�σij (n). (25)

Here we have introduced (as above) the abbreviations
σij (n) ≡ σij (k,ω + nω0), εij (n) ≡ εij (k,ω + nω0), ε‖;⊥(n) ≡
ε‖;⊥(k,ω + nω0) and σij (k,ω) and

εij (k,ω) = kikj

k2
ε‖(k,ω) +

(
δij − kikj

k2

)
ε⊥(k,ω) (26)

are the conductivity and the dielectric tensors of an
isotropic plasma, respectively, with longitudinal [ε‖(k,ω)]
and transversal [ε⊥(k,ω)] dielectric functions (see, e.g.,
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Refs. [38,39]),

ε‖,⊥(k,ω) = 1 +
∑

α

δεα‖,⊥(k,ω). (27)

Substituting Eq. (25) into Eq. (24), we obtain that E(n)
j (k,ω) =

δn0Ej (k,ω) and Eq. (23) is fulfilled automatically. Thus, after
some simplifications, we arrive at{

k2δij − kikj − ω2

c2
[εij (k,ω) + δεb,ij (k,ω)]

}
Ej (k,ω) = 0.

(28)

Here εij (k,ω) + δεb,ij (k,ω) is the total dielectric tensor of the
beam-plasma system, where δεb,ij (k,ω) = (4πi/ω)σb,ij (k,ω)
is the partial contribution of the beam to the total dielectric
tensor of the system. Equating the determinant of the system
of linear equations (28) to zero yields the general dispersion
equation for the beam-plasma system. In the past few years this
equation has been studied in detail for arbitrary orientation of
the electron beam propagation direction with respect to the
wave vector k; see, e.g., Refs. [10–21]. In particular, assuming
a cold, homogeneous, and monochromatic charged-particle
beam with an unperturbed distribution function f0b(p) =
nbδ(p − pb), where nb is the beam density, from Eq. (9) one
obtains

δεb,ij (k,ω) = − ω2
b

γbω2

[
δij + ubikj + ubj ki

ω − k · ub

+ ubiubj (k2 − ω2/c2)

(ω − k · ub)2

]
. (29)

Here pb = mbγbub, γb = (1 − u2
b/c

2)−1/2, and ω2
b = 4πnbe

2
b/

mb are the relativistic factor and the plasma frequency of the
beam, respectively. At this stage it is convenient to represent
the vectors (particularly the electric field) in the form of an
expansion in the components parallel, A‖ = (k · A)/k, and
perpendicular, A⊥ = A − (k/k)A‖, to the wave vector k. In
particular, choosing a wave vector k parallel to the beam
velocity ub yields the two-stream (TS) unstable modes which
are of electrostatic nature with E‖(k,ω) �= 0 and E⊥(k,ω) = 0.
Introducing the longitudinal dielectric function of the beam by
means of the relation

δεb‖(k,ω) = kikj

k2
δεb,ij (k,ω) = − ω2

b

γ 3
b (ω − kub‖)2

, (30)

the dispersion equation in this case for a beam-plasma system
then reads

D‖(k,ω) ≡ ε‖(k,ω) + δεb‖(k,ω) = 0. (31)

On the other hand, choosing k normal to the beam velocity ub

yields the purely transverse (electromagnetic) filamentation
unstable modes. It should be emphasized that we have
considered above an infinite beam of charged particles and,
as a consequence, the plasma return current is not involved in
Eqs. (29)–(31) in self-consistent manner. This is not, however,
a strong limitation of the present treatment. For instance, the
drift velocity ue of the plasma return flow can be deduced from
the beam current neutralization condition, neue � −nbub.
Then, within a cold-fluid model, the return current is included

by adding into Eqs. (29) and (30) the similar terms but with a
flow velocity ue and plasma density ne [14–16].

Second, in the case of the absence of the external beam,
the last term in the right-hand side of Eq. (24) vanishes. The
remaining infinite system of equations for the electric field
harmonics then represents the electromagnetic response of the
plasma to the RF. In general, the longitudinal and transversal
components of the electric field are coupled parametrically
and the excitations are a mixture of both types of modes.
Previously, the parametrically unstable modes have been
studied in detail both for the electrostatic [43] (see also
Refs. [37,38]) and electromagnetic [44,45] excitations. The
purely electrostatic excitations with E(�)

⊥ = 0 are possible when
the polarization vector of the laser radiation is parallel to the
wave vector k (E0⊥ = 0). In this case, the plasma electrons
and ions are driven by the laser field only in the direction of k.

To illustrate the problem of the charged-particle beam-
plasma instabilities developed in a laser-irradiated plasma, we
consider below two examples when the polarization vector E0

of the RF is perpendicular (Sec. IV) or parallel (Sec. V) to
the wave vector k. We consider an infinite and cold beam of
charged particles of velocity ub aligned with the direction of
k and uniform density nb passing through a homogeneous
electron plasma with density of electrons ne. Therefore,
the partial contribution of the beam to the total dielectric
function of the beam-plasma system is given by Eq. (29).
For simplicity, we will use throughout the notation ub‖ = ub

for the beam velocity. In the case the RF is off the chosen
geometry corresponds to the excitations of the TS unstable
modes provided that the return plasma current is included
in the dispersion relations. Nevertheless, in the present study
neglecting the return current we will adopt the terminology
“two-stream instability.” This should not be confusing as long
as the velocity of the beam is parallel to k.

IV. TRANSVERSAL POLARIZATION OF THE RF (E0 ⊥ k)

In this section we consider Eq. (24) for the harmonics of
the electric field when the polarization vector E0 of the laser
field is perpendicular to k [(k · E0) = 0 and ζα = 0]. From
Eq. (20) it then is seen that the nonvanishing components of
the conductivity tensor are σ

(�,�)
rj , σ

(�,�±1)
rj , σ

(�,�±2)
rj �= 0 while

σ
(�,�±p)
rj = 0 at p � 3. Using this fact Eq. (24) for the electric

field harmonics is represented as[
k2δrj − krkj − (ω + �ω0)2

c2
�rj (�)

]
E

(�)
j (0)

= D+
rj (�)E(�+1)

j (0) + D−
rj (�)E(�−1)

j (0) + R+
rj (�)E(�+2)

j (0)

+R−
rj (�)E(�−2)

j (0) + ω2

c2
δ�0δεb,rj (k,ω)Ej (0), (32)

where we have introduced the following notations: E(n)(�) ≡
E(n)(k,ω − �ω0), E(�) ≡ E(k,ω − �ω0), �rj (�) ≡ �rj (k,ω +
�ω0), D±

rj (�) ≡ D±
rj (k,ω + �ω0), R±

rj (�) ≡ R±
rj (k,ω + �ω0),

δεb,rj (�) ≡ δεb,rj (k,ω + �ω0), and

�rj (k,ω) = εrj (k,ω) + k2ω2
0

4ω2

∑
α

aαraαj

× [δεα‖(−1) + δεα‖(1)], (33)

056414-5



HRACHYA B. NERSISYAN AND CLAUDE DEUTSCH PHYSICAL REVIEW E 85, 056414 (2012)

D±
rj (k,ω)

= −ω0ω

2c2

∑
α

[
ω

ω ± ω0
kraαj δεα‖(0) + kjaαrδεα‖(±1)

]
,

(34)

R±
rj (k,ω) = k2ω2

0

4c2

ω

ω ± 2ω0

∑
α

aαraαj δεα‖(±1). (35)

In the following we consider throughout an electron plasma
neglecting the dynamics of plasma ions. Thus we restrict
ourself by the frequency domain well above the ionic frequen-
cies. We introduce the oscillation amplitude and the quiver
velocity of the electrons via relations ae = −ae, vEe = −vEe,
vE = eE0/mω0, a = eE0/mω2

0 (−e is the electron charge),
and e = E0/E0. So the quantities a and vE are positive by
definition.

Next, for the exclusion of harmonics E
(�)
j (0) in Eq. (32),

the frequency ω is replaced by ω − �ω0 and, using Eq. (23),
we perform summation over �. This yields an equation for the
amplitude Ej (0) of the electric field,

[
k2δrj − krkj − ω2

c2
�rj (0)

]
Ej (0)

= D+
rj (0)Ej (−1) + D−

rj (0)Ej (1) + R+
rj (0)Ej (−2)

+R−
rj (0)Ej (2) + ω2

c2
δεb,rj (0)Ej (0). (36)

The resulting equation represents an infinite system of linear
equations for the quantities Ej (±p) (with p = 0,1,2, . . . ).
The (infinite) determinant of this system determines the dis-
persion equation for the beam-plasma system in the presence
of the RF.

It follows from Eq. (36) that, for the perturbations of which
electric vector E(0) is polarized perpendicular to the plane of
the vectors k and E0, there is no instability. The dispersion
equation for these modes is given by D⊥(k,ω) = 0, where

D⊥(k,ω) = 1 + 1

k2c2

[
ω2

b

γb

− ω2ε⊥(k,ω)

]
. (37)

This is simply the dispersion equation for the ordinary
transverse electromagnetic modes propagating in an isotropic
plasma [38,39] in the absence of the RF but modified due to
the presence of the beam. The second term in the right-hand
side of Eq. (37) with the minus sign is the partial contribution
of the transverse dielectric function of a cold beam to the total
transverse dielectric function of the beam-plasma system. It
is noteworthy that this contribution depends on γ −1

b while the
longitudinal contribution (30) decays as γ −3

b with the beam
relativistic factor.

To reveal the instability we consider, therefore, the case
of a polarization wherein the electric vector E(0) of the
perturbations lies in the plane containing the vectors k and
E0. Introducing the components of the electric field parallel
(E‖) and perpendicular (E⊥) to the wave vector k, for these

modes from Eq. (36), we obtain

D‖(0)E‖(0) = −kvE

2
[ψ(1) + ψ(−1)]δε‖(0), (38){

D⊥(0) − v2
E

4c2
[δε‖(1) + δε‖(−1)]

}
ψ(0)

= v2
E

4c2
[ψ(−2)δε‖(1) + ψ(2)δε‖(−1)]

+ vE

2kc2
[E‖(−1)δε‖(1) + E‖(1)δε‖(−1)], (39)

where D‖(�) ≡ D‖(k,ω + �ω0), D⊥(�) ≡ D⊥(k,ω + �ω0),
and ψ(k,ω) = [e · E⊥(k,ω)]/ω with ψ(�) ≡ ψ(k,ω − �ω0).
Let us recall that the function D‖(0) given by Eq. (31)
is the total longitudinal dielectric function of the beam-
plasma system in the absence of the RF. In this case, the
transverse and longitudinal modes are independent with the
dispersion relations D⊥(0) = 0 and D‖(0) = 0, respectively.
However, in the presence of the laser radiation these modes
are parametrically coupled according to Eqs. (38) and (39).
The longitudinal electric fields in Eq. (39) can be excluded
inserting the values E‖(−1) and E‖(1) calculated by means
of Eq. (38) into Eq. (39). The given equation then contains
only the harmonics ψ(0) and ψ(±2). Similarly, the transverse
fields can be partially excluded from Eq. (38), evaluating the
harmonics ψ(1) and ψ(−1) by means of Eq. (39). In this case,
Eq. (38) cannot be decoupled completely since it involves
not only the longitudinal electric fields but also the higher
harmonics of the transverse fields. Also, it should be noted
that the nonlinear response of the system is accompanied
by the magnetic-field generation according to Eq. (15). It
follows from this equation that the magnetic field is directed
perpendicularly to the plane containing the vectors k and E0.

In principle, the dispersion equations of the perturbations
can be deduced from Eqs. (38) and (39) by solving these
equations by iteration to any order of accuracy. However,
taking into account the smallness of the parameter vE/c, it
suffices to restrict the analysis of the system (38) and (39) to
the harmonics E‖(0), E‖(±2), and ψ(0), ψ(±2). In this case,
the longitudinal and transversal modes are decoupled and we
obtain the following dispersion equations:

D‖(k,ω) + v2
E

4c2

[
1

D⊥(k,ω − ω0)
+ 1

D⊥(k,ω + ω0)

]
× δε2

‖(k,ω) = 0, (40)

D⊥(k,ω) = v2
E

4c2

∑
ν=±

δε‖(k,ω + νω0)εb‖(k,ω + νω0)

D‖(k,ω + νω0)
, (41)

for longitudinal and transversal modes, respectively. Here
εb‖(k,ω) = 1 + δεb‖(k,ω).

A. Longitudinal modes

Let us now investigate the dispersion equations (40) and
(41) in detail within the fluid model (or the cold plasma
approximation) when the partial dielectric functions are given
by

δε⊥(k,ω) = δε‖(k,ω) ≡ δε(ω) = −ω2
p

ω2
. (42)
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Here ω2
p = 4πnee

2/m is the plasma frequency. Thus, we
consider only the high-frequency modes assuming that |ω| �
kvth, where vth is the thermal velocity of the electrons. We
look for the solutions of the dispersion equations in the form
ω = ωr + iγ , where ωr is the (real) frequency and γ is the
damping rate (when γ < 0) or the growth rate (when γ > 0)
of the modes, respectively. In the absence of the laser field
(vE = 0), the transverse modes are stable and their frequency
is determined by

ω2
⊥(k) = k2c2 + ω2

b

γb

+ ω2
p. (43)

It is seen that the frequency of the ordinary transverse modes is
modified by the charged-particle beam effectively increasing
the total plasma frequency of the beam-plasma system. Also,
it should be noted that the contribution of the beam to the
dispersion relation of the transverse modes is ∼ω2

b/γb while
for the longitudinal modes it is given by ∼ω2

b/γ
3
b [see, e.g.,

Eq. (30)]. This is a consequence of the anisotropy of the
effective electron mass with respect to the driving force
acting either in the longitudinal or transversal directions. The
stability of the mode (43) can be easily understood taking into
account the fact that the electric field vector in this mode is
perpendicular to the beam and, hence, the work performed by
this field on the beam particles is zero.

The longitudinal two-stream modes are unstable in a long-
wavelength regime (see, e.g., Ref. [28]) with 0 � k � kc ≡
ωc/ub, where ωc = ωp(1 + ξ 1/3/γb)3/2 and ξ = ω2

b/ω
2
p. Note

that, in practice, ξ � 1 and ωc � ωp. Assuming that k � kc,
the growth rate and the frequency of the two-stream modes
read [cf. with Eqs. (A4) and (A5)]

γ TS(k) � kub

(
ξ
/
γ 3

b

)1/2

1 + ξ
/
γ 3

b

, ωTS
‖ (k) � kub

1 + ξ/γ 3
b

, (44)

respectively. It is seen that the real frequency of the TS modes
�kub, i.e., it is a frequency-locked oscillation, the frequency
depending only the Čherenkov-type term and not on the natural
frequency of the oscillations (∼ωp). The maximal value of
γ TS(k) is achieved at k � kc [28] and is given by

γ TS
max

ωp

�
√

3

24/3

ξ 1/3

γb

. (45)

In the presence of the laser field (vE �= 0), the high-
frequency transversal and the low-frequency longitudinal
modes, Eqs. (43) and (44) and then (45), respectively, of the
beam-plasma system are parametrically coupled according
to Eqs. (40) and (41). These equations can be satisfied
only when one of the ordinary dispersion functions D‖(k,ω)
or D⊥(k,ω), becomes nearly equal to zero. This is not,
however, sufficient to cause parametric TS instability, which
occurs when at least two of the zeros of the dispersion
functions merge, as in the case of the standard TS instability
[28,38]. In the case of the longitudinal waves, there are three
such situations: (i) Čherenkov-type coupling when ωr � kub;
(ii) D‖(k,ω) � 0 and D⊥(k,ω ± ω0) � 0; (iii) D⊥(k,ω +
ω0) � 0 and D⊥(k,ω − ω0) � 0. Cases (i) and (ii) correspond
to the resonant coupling, and case (iii) corresponds to the
nonresonant coupling.

Consider the situation (i) which corresponds to the low-
frequency [ω ∼ ωTS

‖ (k)], long-wavelength excitations. Close

to the Čherenkov resonance, ω � kub, the most important term
in Eq. (40) is involved in δεb‖(k,ω) [Eq. (30)]. Consequently,
we look for the solution of the dispersion equation (40) in
the form ω = kub + ω1, where |ω1| � kub. In this case, the
instability occurs at kub � ωs ∼ ωp with the growth rate
(ω1 = iγ ) [cf. with Eq. (44)]

γ (k) �
(

ξ

γ 3
b

)1/2
kub√
F (kub)

, (46)

where ωs is the zero of the function F (ω), F (ωs) = 0, and

F (ω) = 1 − ω2

ω2
p

− v2
E

4c2

ω2
p

ω2

×
[

1

D⊥(k,ω − ω0)
+ 1

D⊥(k,ω + ω0)

]
. (47)

It is noteworthy that the root k0 of the transversal dispersion
function, D⊥(k,ω − ω0) � 0 with ω = kub, at ω0 � 2ωp may
lie in the domain kub � ωs and the growth rate (46) changes the
slope close to this root. At k � k0 the function F (ω) becomes
negative and the relation (46) is violated. However, at ω0 �
2ωp the formula (46) remains valid in the whole domain of
the instability. Also, the maximal growth rate is achieved at
kub � ωs . Equation (46) is clearly invalid in this case and more
rigorous treatment of the dispersion equation yields

γmax �
√

3

24/3

[
ξ

γ 3
b

2ω2
s

|F ′(ωs)|
]1/3

. (48)

Here the prime indicates the derivative of the function with
respect to the argument.

We have considered above the low-frequency and long-
wavelength regime when the dispersion properties of the
system are strongly determined by the beam characteristics
(density and the energy). Next we consider the high-frequency
[ω > ωTS

‖ (k)], short-wavelength regime with kub � ωs . This
case corresponds to the situations (ii) and (iii) introduced
above. Assuming a low-density beam with nb � ne, we note
that the role of the beam in the dispersion properties of
the system becomes less pronounced in this high-frequency
regime, and, as a first approximation, the terms proportional
to ω2

b can be neglected in Eq. (40). This is a regime of purely
parametric excitations in a plasma.

The resonant coupling (ii) occurs when the following
resonance condition is satisfied:

ω0 � ωp + ω⊥(k). (49)

In either case, |ω| is assumed to be much smaller than ω0 and
ω⊥(k). We can then make the resonance approximation for the
dispersion function D⊥(k,ω ± ω0) to obtain

D⊥(k,ω ± ω0) � ∓ 1

k2c2
(2ω0 − δ)(ω ± δ), (50)

where δ(k) = ω0 − ω⊥(k) is the mismatch of the laser fre-
quency from the frequency of the natural transversal mode.
Substituting Eq. (50) into (40) and neglecting the contribution
of the beam in the dispersion relation of the left-hand side of
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Eq. (40) yields a cubic equation for ω2,

ω2
(
ω2 − ω2

p

)
(ω2 − δ2) + k2v2

E

4

ω4
pδ

ω0 − δ/2
= 0, (51)

which can be solved analytically. However, we restrict ourself
to the simple and qualitative solutions of the dispersion
equation and more rigorous numerical calculations will be
presented in Sec. VI.

As mentioned above, there are two types of solutions of the
high-frequency [ω > ωTS

‖ (k)] dispersion equation (51). First,
we consider the resonant solution assuming that δ � ωp > 0.
Note that this type of instability resembles the resonant decay
instability. The sum frequency of the excited modes is exactly
equal to the laser frequency ω0 [see Eq. (49)]. Introducing
the frequency mismatch �(k) = δ(k) − ωp (� � ωp, δ), the
dispersion equation (51) for the resonant growth rate yields

γr (k) = 1
2

√
ε2k2c2 − �2(k), (52)

where ε = (vE/2c)(τ − 1/2)−1/2, τ = ω0/ωp. The resonant
unstable mode exists only at τ � 2. The maximal growth rate
γr, max is achieved at k = kr, max with

kr, max = ωp

c

√
(τ − 2 + ε2)(τ − ε2)

1 − ε2
, (53)

γr, max = ωp

2
ε

√
τ (τ − 2) + ε2

1 − ε2
. (54)

Now, in this high-frequency domain, the characteristics of
the instability are only weakly sensitive to the beam density and
energy (γb) but essentially depend on the laser intensity and
the frequency. It is seen that the maximal growth rate is scaled
as (at τ � 1) γr, max ∼ [IL(ωp/ω0)]1/2, where IL is the RF
intensity. It is also noteworthy that at τ � 1 the position kr, max

of the maximum of the resonant growth rate is independent
on the laser intensity (kr, max � ω0/c). Equations (52)–(54)
can be compared with the growth rate of the ordinary two-
stream instability, Eq. (45). Assuming, for simplicity, a high-
frequency laser field (ω0 � ωp), one obtains that, at vE/c >√

3/τ (4ξ/γ 3
b )1/3, the growth rate γr, max exceeds γ TS

max. Note
that the last inequality is easily fulfilled for the REB.

In the nonresonant case (iii), assuming that |ω| � ωp

from Eq. (51), one obtains a quadratic equation for ω2. A
simple analysis of this equation shows that, in this case,
the instability occurs at −δm � δ � ω0 − ωp, where δm =
ωp[2ε1(kc/ωp)]2/3 with ε1 = (vE/2c)(τ − δ/2ωp)−1/2. Two
distinct branches of the instability should be considered
separately. At the positive frequency mismatch, 0 � δ � ω0 −
ωp [or k � k2 ≡ (ωp/c)(τ 2 − 1)1/2], the instability is almost
aperiodic (i.e., ωr � 0) with the growth rate

γ = δ1/4

√
2

(√
δ3 + δ3

m − δ3/2
)1/2

, (55)

while at the negative values with −δm � δ � 0 (k2 � k � k1,
where δ = −δm at k = k1), the instability is periodic (i.e.,
ωr �= 0) and the growth rate becomes

γ = |δ|1/4

2
(δ3/2

m − |δ|3/2)1/2. (56)

The real frequency of the unstable mode (56) is obtained by
changing the minus sign in this formula by a plus sign. We

note that the latter nonresonant case with δ < 0 resembles the
oscillating two-stream instability.

Thus, summarizing this section, we emphasize that, in
the spectrum of the longitudinal unstable modes, there are
basically three domains with strictly different properties. The
“long wavelength” domain with k � ωp/ub (we denote this
parameter regime as Domain I) is basically determined by the
beam density and the energy (γb) and corresponds to the TS
instability [see, e.g., Eqs. (45) and (46)]. The intermediate
(Domain II, k � k2) and the short-wavelength (Domain III,
k2 � k � k1) regimes mainly depend on the laser intensity
and are only weakly sensitive to the beam parameters. In
Domains II and III the growth rates can be approximated
by Eqs. (55) and (56), respectively. In addition, in Domain
II at ω0 � 2ωp, it is possible to witness a resonant excitation
of the unstable modes with maximal growth rate (54) which
resembles the resonant decay instability. Finally, Domain I
may merge to Domain II at k � ωp/ub while Domain II merges
to Domain III at the zero-frequency mismatch, δ = 0 (k = k2).

B. Transversal modes

In this section we turn to the investigation of the unstable
transversal modes generated in the beam-plasma system. Our
starting point is the dispersion equation (41) for these modes.
As in Sec. IV A, we adopt here a cold-fluid approximation
when the partial dielectric functions of the beam and the
plasma are given by Eqs. (30) and (42), respectively. An
inspection of the dispersion equation (41) shows that there is
only one resonant coupling between different modes. This is
the situation when D⊥(k,ω) � 0 and D‖(k,ω − ω0) � 0. This
system of equations require that ω � ω0 + ωs(k) + �ω(k)
and ω⊥(k) � ω0 + ωs(k), where �ω � ω0 + ωs , ω⊥(k) is the
frequency of the ordinary transversal modes, Eq. (43), and ωs is
the real root of the ordinary dispersion equation,D‖(k,ωs) = 0,
for the longitudinal modes. Note that the resonant condition
ω⊥ � ω0 + ωs cannot be satisfied in the domain where
the two-stream instability occurs, where ωs(k) = ωTS

‖ (k) +
iγ TS(k) [see, e.g., Eqs. (44) and (45)] is a complex quantity.
Therefore, it is expected that the resonance occurs at short
wavelengths (k � kc) and at high frequencies (ω � ωTS

‖ (k))).
Inserting ω � ω0 + ωs + �ω and ω⊥ � ω0 + ωs into Eq. (41)
and neglecting a small term depending on the frequency
ω + ω0 in the right-hand side of this equation, for the maximal
growth rate we obtain

γr, max

ωp

� vE

4c

√
− 2ω2

p

ω⊥ω4
s

k2c2

∂
∂ω
D‖(k,ωs)

. (57)

In addition, the resonant instability occurs only for a negative
derivative, ∂

∂ω
D‖(k,ωs) < 0, of the longitudinal dispersion

function. An analysis shows that there is only one real root
ωs = ω−

r1 of the equation D‖(k,ωs) = 0 which satisfies this
condition (see Appendix A for details). This root is negative
and is represented here as ω−

r1(k) = −ωpg(k), where the
function g(k) is positive and decreases monotonically from
(1 + ξ/γ 3

b )1/2 (at k � 0) to 1 (at k � kc); see Eqs. (A6) and
(A1), respectively.

The maximal growth rate (57) is reached at k = kmax,
which is determined by the resonant condition above,
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ω⊥(k) = ω0 − ωpg(k). Assuming short wavelengths (k � kc),
this equation can be solved iteratively. The result reads as

k2
maxc

2

ω2
p

� [τ − g(κ)]2 − ξ

γb

− 1, (58)

where κ2c2 = ω2
p[τ (τ − 2) − ξ/γb]. Note that the resonant

instability occurs only at high frequencies of the RF, τ �
τc ≡ g(κ) + (1 + ξ/γb)1/2 (for a low-density electron beam
this condition is roughly equivalent to ω0 � 2ωp).

Substituting Eq. (58) into Eq. (57) we arrive at

γr, max

ωp

� vE

4c

√
[τ − g(κ)]2 − ξ/γb − 1

g(κ)[τ − g(κ)]

1

1 + (
ξ/γ 3

b

)
H (κ)

(59)

with

H (κ) =
[

g(κ)

κub/ωp + g(κ)

]3

. (60)

The maximal growth rate for the resonant instability is
strongly simplified for a very low density (nb � ne) or for
an ultrarelativistic electron beam (γb � 1). In this case the
instability occurs at τ � 2 and kmaxc = ωp[τ (τ − 2)]1/2. The
growth rate γr, max is then simply given by

γr, max

ωp

� vE

4c

√
τ (τ − 2)

τ − 1
(61)

and is completely independent on the beam parameters (this
is a regime of a purely parametric instability). Note that
similar to Eq. (54) for the longitudinal resonant unstable
mode the resonant growth rate (61) at ω0 � ωp is scaled
as γr, max ∼ [IL(ωp/ω0)]1/2. Thus, the growth rates of the
resonant longitudinal and transversal unstable modes may be
of the same order.

In addition to the resonant mode there also exist two
nonresonant transversal modes. The dispersion equations
for these modes follow from Eq. (41) and are given by
D‖(k,ω ± ω0) � 0, which implies that ω = ∓ω0 + ωs + �ω±
(with |ω±| � |∓ω0 + ωs |). Here ωs = ωTS

‖ + iγ TS [see, e.g.,
Eqs. (44) and (A4), (A5)] is the solution of the longitudinal
dispersion equation in the domain of the two-stream instability
which occurs at the low frequencies [ω � ωTS

‖ (k)] and at the
long wavelengths (k � kc).

The quantity �ω± can be roughly estimated using the
dispersion equation (41). First, in the leading order, we
represent the dispersion function in the form D‖(k,ω ± ω0) �
�ω± ∂

∂ω
D‖(k,ωs). Second, the derivative of the dispersion

function is estimated employing Eqs. (A4) and (A5). Assum-
ing a low-density (nb � ne) or an ultrarelativistic (γb � 1)
electron beam this quantity in the leading order of the
dimensionless parameter ξ/γ 3

b is represented as ∂
∂ω
D‖(k,ωs) �

(2i/γ TS)(ωp/ωTS
‖ )2. Inserting these results into dispersion

equation (41) in the leading order of ξ/γ 3
b , one then finally

arrives at

�ω± � −i
k2v2

E

8

ω2
pγ TS

(ωTS
‖ )2[(ω0 ∓ ωTS

‖ )2 − ω2
⊥]

. (62)

The real frequencies and the growth rates of the nonresonant
modes are simply given by ωr = ∓ω0 + ωTS

‖ and γ = γ TS +

Im[�ω±], respectively. It should be emphasized that the
frequency shift (62) is valid when Im[�ω±] � γ TS. Moreover,
since the nonresonant unstable modes appear in the domain of
the two-stream instability with k � kc, the frequencies ωTS

‖
and ω⊥ in the brackets of the denominator of Eq. (62) can
be neglected and, hence, �ω+ � �ω−. The expression (62)
can be further simplified recalling that ωTS

‖ � kub and the
ratio γ TS/ωTS

‖ � (ξ/γ 3
b )1/2 is almost independent on k [see,

e.g., Eqs. (A4) and (A5)]. Therefore, the growth rate of the
nonresonant modes is given by

γ (k) � γ TS(k)

[
1 − 1

8

(
vE

ub

)2(
ωp

ω0

)2]
. (63)

It is noteworthy that this growth rate is proportional to the
growth rate γ TS(k) of the standard two-stream instability
and only the factor in the brackets depends on the laser
intensity. Thus, γ (k) is weakly sensitive to the laser intensity
(because in the present approximation vE � ub and ω0 > ωp)
and is mainly determined by the beam-plasma interaction. In
addition, the nonresonant unstable modes do not disappear
with decreasing the laser intensity as it occurs for the resonant
ones.

V. LONGITUDINAL POLARIZATION OF THE RF (E0 ‖ k)

With the theoretical formalism presented in Secs. II and
III, we now take up another configuration of the laser
polarization. In the following we study in detail the parametric
two-stream instabilities in the laser-irradiated plasma when
the polarization vector of the laser field is parallel to the
wave vector k of the excitations (E0 ‖ k), assuming, again,
that the beam is directed in the direction of k. It is expected
that the beam-plasma and the laser-plasma unstable modes are
strongly coupled in this regime compared to the transversal
configuration (E0 ⊥ k) since the electrons are effectively
driven by a laser radiation in the direction of k (‖ ub) in this
case.

Our starting point is the general equation (24) for the har-
monics which for the configuration E0 ‖ k ‖ ub is decoupled
into two independent equations for the longitudinal (E‖) and
transversal (E⊥) electric fields, respectively,

E
(n)
‖ (0) +

∞∑
�,s=−∞

E
(�)
‖ (0)J�−s(ζ )Jn−s(ζ )δε‖(s)

= −δn0E‖(0)δεb‖(0), (64)

E(n)
⊥ (0) = ω + nω0

k2c2 − (ω + nω0)2

∞∑
�,s=−∞

E(�)
⊥ (0)

(ω + sω0)2

ω + �ω0

× J�−s(ζ )Jn−s(ζ )δε⊥(s) − δn0
1

k2c2 − ω2

ω2
b

γb

E⊥(0).

(65)

Here ζ ≡ a(k · e) = ±ka and the other notations have been
introduced in Secs. II and III. As in the preceding sections
we consider throughout an electron plasma neglecting the
dynamics of plasma ions.

To exclude the electric field harmonics E
(n)
‖ in Eq. (64), we

multiply both sides of this equation by Jn−p(ζ )J�−p(ζ ) and
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perform a summation over n and p. As a result, we arrive at

E
(n)
‖ (0) = −E‖(0)δεb‖(0)

∞∑
s=−∞

Js(ζ )Jn+s(ζ )

1 + δε‖(−s)
. (66)

Thus, the harmonics E
(n)
‖ are completely expressed by the

total field E‖. Also, in deriving Eq. (66), we have used the
summation formula for the Bessel functions [42]

∞∑
s=−∞

Js−�(ζ )Js−n(ζ ) = δ�n. (67)

Next, in Eq. (66), the frequency ω is replaced by ω − nω0

and, using Eq. (23), we perform a summation over n. This
yields an equation for the amplitude E‖(0) of the electric field

[1 + δεb‖(0)]E‖(0) =
∞∑

�=−∞
E‖(�)
�(ζ )δεb‖(−�), (68)

where


�(ζ ) =
∞∑

s=−∞

δε‖(−s)

1 + δε‖(−s)
Js−�(ζ )Js(ζ ). (69)

It is noteworthy that in the E0 ‖ k geometry the system of
Eqs. (64) and (65) involves all (infinite number) the harmonics
of the electric field, whereas, in the transversal case, E0 ⊥ k,
considered in Sec. IV each harmonic E(n)(0) with given
frequency ω connects only to the nearest neighbors E(n±1)(0)
and E(n±2)(0). These features are the peculiarities of the
specific laser polarization directed parallel or perpendicularly
to the wave vector k.

Similarly, it is possible to exclude the harmonics E(n)
⊥ of the

transversal electric field from Eq. (65) and derive an equation
for the electric field E⊥,

E⊥(0)

(
k2c2 + ω2

b

γb

− ω2

)
= ω

∞∑
�,s=−∞

E⊥(−�)
(ω + sω0)2

ω + �ω0

× J�−s(ζ )J−s(ζ )δε⊥(s). (70)

First, we note that, at vanishing laser intensity from
Eqs. (68)–(70), we recover the standard dispersion equations
for the longitudinal,D‖(k,ω) = 0, and transversal,D⊥(k,ω) =
0, waves given by Eqs. (31) and (37), respectively. Second,
within a cold-fluid approximation [the dielectric functions are
determined by Eq. (42)] using the summation formula (67)
for the transversal modes, we arrive at the same dispersion
relation as in Eq. (43). Therefore, within this approximation
the laser field has no influence on the dispersion properties of
the transversal modes, which are stable in this case. Third, in
contrast to the longitudinal modes (68), the transversal ones
are only weakly sensitive to the beam parameters [see the
left-hand side of Eq. (70)] and the instability of these modes
is parametric in nature. These instabilities have been studied
previously in Ref. [44]. Consequently, in the following we
consider throughout only the dynamics of the longitudinal
modes E‖.

As was mentioned in the previous sections, the dispersion
equation of the perturbations can be deduced, in principle, from
Eq. (68) by solving this system of equations by iteration to any
order of accuracy. However, to gain more insight we consider

the long-wavelength limit of Eq. (68) when the parameter
|ζ | = ka is small, which suffices to restrict the analysis of
the system (68) to the harmonics E‖(0) and E‖(±1). In this
case, we obtain the following dispersion equations for the
longitudinal modes:

D‖(k,ω) = k2a2

4
δεb‖(k,ω)[P1(k,ω) + P−1(k,ω)], (71)

where

P±1(k,ω) = δεb‖(k,ω ± ω0) + ε‖(k,ω)

D‖(k,ω ± ω0)

[
ε‖(k,ω ± ω0)

ε‖(k,ω)
− 1

]
.

(72)

The dispersion equation (71) can be compared with
Eqs. (40) and (41) obtained for the E0 ⊥ k geometry. It should
be emphasized that, unlike the E0 ⊥ k geometry, the dispersion
equation (71) [see also the more correct relation (68)] in the
absence of the charged-particle beam (δεb‖ = 0) yields the
standard dispersion equation ε‖(k,ω) = 0 for the longitudinal
modes. Thus, in this case, the laser radiation with E0 ‖ k
does not influence the dispersion properties of the plasma
in the k direction but it affects the dispersion relation in
the transversal direction [see Eq. (70)]. This result sounds
paradoxical, considering that the plasma oscillations should be
effectively driven by the laser field in the E0 ‖ k configuration.
However, let us recall that the dynamics of the plasma ions
is completely neglected here. In reality, the laser radiation
with E0 ‖ k stimulates low-frequency (typically with the ion
plasma frequency) electron-ion-coupled oscillations [37,38]
and the dispersion relation is not simply given by the equation
ε‖(k,ω) = 0.

The simplest way to investigate the parametric TS in-
stabilities determined by Eq. (71) is the cold-fluid model
when the dielectric functions are given by Eq. (42). In this
specific case, the function 
�(ζ ) is evaluated analytically
in Appendix B [Eqs. (B3) and (B4)] using the Newberger’s
summation formula [46]. Since the function 
�(ζ ) decays
exponentially with � the harmonics E‖(�) in Eq. (68) and the
corresponding dispersion relations can be effectively evaluated
numerically to any order of �. Furthermore, within the cold-
fluid approximation, it is possible to derive a dynamical
equation for the complex amplitude of the excited waves. This
is done in Appendix C; see Eq. (C6).

One characteristic feature of the dispersion equation (71)
for the longitudinal modes in E0 ‖ k geometry is the absence
of the contribution of the transverse modes. We consider, first,
the situation (i) (see Sec. IV A) which corresponds to the low-
frequency [ω ∼ ωTS

‖ (k)], long-wavelength excitations. Close

to the Čherenkov resonance, ω � kub, we look for the solution
of the dispersion equation (71) in the form ω = kub + ω1,
where |ω1| � kub. In this case, the instability occurs at kub �
ωp with the growth rate (ω1 = iγ ) [cf. with Eqs. (44) and (46)]

γ (k)

ωp

=
(

ξ

γ 3
b

)1/2
kub√

ω2
p − (kub)2

G(k,kub), (73)

where

G(k,ω) =
{

1 − k2a2

4
[P1(k,ω) + P−1(k,ω)]

}1/2

. (74)
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Note that Eq. (73) is valid far from the roots of the equation
ε(ω ± ω0) = ω2

b/γ
3
b ω2

0, where ε(ω) = 1 + δε(ω) is the dielec-
tric function in a cold-fluid approximation.

The maximal growth rate is achieved at kub � ωp. Sim-
ilarly to Eq. (46), the relation (73) is clearly invalid in this
case and more rigorous treatment of the dispersion equation
for the frequency correction ω1 yields a fourth-order algebraic
equation

ω4
1 = ξω3

p

2γ 3
b

[
ω1 + v2

E

8u2
b

ωpξ

γ 3
b τ 4

(p1 + p−1)

]
. (75)

Here

p±1 = ε(ω0 ± ωp)

ε(ω0 ± ωp) − ω2
b/γ

3
b ω2

0

, (76)

and the laser frequency ω0 is not too close to the value 2ωp[1 +
(ξ/2γ 3

b )]. It can be shown that the second term in the right-hand
side of Eq. (75) is systematically smaller than the first one.
Neglecting this term, we arrive at the maximal growth rate γ TS

max
of the two-stream instability; see Eq. (45). Thus, as expected,
in the situation (i) the maximal growth rate is only weakly
affected by the RF.

Next we consider a high-frequency [ω > ωTS
‖ (k)], short-

wavelength regime with kub � ωc. The nonresonant coupling
similar to (iii) is determined by the intersection of the different
roots of the dispersion equations D‖(k,ω ± ω0) � 0. If ωs1

and ωs2 are two different roots of the parallel dispersion
function, D‖(k,ωs1) = D‖(k,ωs2) = 0, the above-mentioned
intersection of the roots simply yields ωs1 = ωs2 + 2ω0. This
equation implies that both roots ωs1 and ωs2 should be real,
which is possible only outside the domain of the two-stream
instability (kub � ωc; see also Appendix A). In addition, the
frequency shift �ω determined by the relation ω + ω0 =
ωs1 + �ω (or, alternatively, ω − ω0 = ωs2 + �ω), is also real
and can be calculated from the dispersion equation (71).
Therefore, in this case, the nonresonant coupling merely shifts
the real frequencies of the modes and does not cause any
instability in the beam-plasma system.

Instability may occur in situation (ii) with the resonant
coupling. In this case, D‖(k,ω) � 0 and D‖(k,ω ± ω0) � 0.
Again introducing two different real roots ωs1 and ωs2 of
the parallel dispersion function, we consider the frequency
shift �ω with ω = ωs2 + �ω, such that |�ω| � |ωs1,2|. The
resonant coupling occurs when ωs2 = ωs1 ± ω0. Substituting
this relation and the frequency ω into dispersion equation (71)
and taking into account the smallness of the quantity �ω, we
obtain

�ω2 � k2a2

4

[ε(ωs2) − ε(ωs1)]2

∂
∂ω
D‖(k,ωs1) ∂

∂ω
D‖(k,ωs2)

. (77)

It is seen that this expression is symmetric with respect to the
exchange of the roots ωs1 and ωs2 and yields an unstable mode
if the derivatives of the longitudinal dispersion functions in
the denominator of Eq. (77) have different signs. The resonant
coupling condition, ωs2 = ωs1 ± ω0, and the restriction on the
signs of the derivatives of the longitudinal dispersion functions
in Eq. (77) reduce the possible candidates for the quantities
ωs1 and ωs2. From Appendix A it follows that there are only
three choices as follows: (a) ωs1(k) = ω−

r1(k) and ωs2(k) =

ωr3(k) with ωr3(k) = ω0 + ω−
r1(k); (b) ωs1(k) = ω+

r1(k) and
ωs2(k) = ωr2(k) with ωr2(k) = ω0 + ω+

r1(k); and (c) ωs1(k) =
ω+

r1(k) and ωs2(k) = ω−
r1(k) with ω+

r1(k) = ω0 + ω−
r1(k). In

these cases, the derivatives in the denominator of Eq. (77) have
different signs and the corresponding modes are unstable. The
positions kmax of the maximal growth rates of these modes can
be determined from the resonant coupling condition. Using
the asymptotic behavior of the roots ω±

r1(k), ωr2(k), and ωr3(k)
at k � kc, Eqs. (A1)–(A3), respectively, we introduce four
new functions f±(k) and h±(k), which are determined through
relations (

ωr2(k)

ωr3(k)

)
= kub ∓ ωp

√
ξ

γ
3/2
b

h±(k), (78)

ω±
r1(k) = ±ωp

[
1 + ξ

γ 3
b

f±(k)

]
. (79)

Then, in the cases (a) and (b) with ωs2 = ωs1 + ω0, the
resonant coupling conditions for the determination of kmax

in a leading order of the parameter ξ/γ 3
b yields a pair of the

transcendental equations

kub = ω0 ± ωp ±
√

ξ

γ
3/2
b

ωph±(k), (80)

which can be solved iteratively. Here the minus and plus
signs are related to the cases (a) and (b), respectively.
Since the functions h±(k) at k � kc behave as h±(k) =
1 + O[(ωp/kub)2] (see Appendix A) within zero order, the
last term in Eq. (80) can be neglected, which yields κ± =
(ω0 ± ωp)/ub. Substituting this value into the arguments of
the functions h±(k) in the last term of Eq. (80), one obtains
the corrections to κ±. The maximal growth rates are obtained
from Eq. (77), where k = kmax. In the leading order of ξ/γ 3

b

the result reads

γ ±
r, max

ωp

� vE

4ub

(
ξ

γ 3
b

)1/4∣∣∣∣τ ± 2

τ ± 1

∣∣∣∣[h±(κ±)]3/2. (81)

For an estimate the approximate expressions h±(κ±) � 1 +
(1/2)(τ ± 1)−2 for the functions h±(k) can be used. Here
γ −

r, max and γ +
r, max are related to the maximal growth rates in the

regimes (a) and (b), respectively. Let us note that for a validity
of Eq. (81) in the regime (a) the laser frequency ω0 should not
be too close to the plasma frequency. From Eqs. (71) and (77) it
is straightforward to obtain the profiles of the resonant growth
rates in the regimes (a) and (b). Introducing the frequency
mismatch δ = ωs2 − ωs1 − ω0, these profiles are determined
by

γ ±
r (k) = 1

2

√
4(γ ±

r, max)2 − δ2(k). (82)

Here γ ±
r, max are the maximal growth rates [see Eq. (81)] which

are achieved at δ = 0. It is seen that the quantities γ −
r (k)

and γ +
r (k) vanish at k1;2 � κ− ± 2γ −

r, max/ub and k3;4 � κ+ ±
2γ +

r, max/ub, respectively.
Consider now the regime (c) when ωs2 = ωs1 − ω0. In this

case, the resonant coupling condition reads

ω0 − 2ωp = ωp

ξ

γ 3
b

[f+(k) + f−(k)]. (83)

It is clear that this relation can be satisfied only at ω0 > 2ωp

since the functions f±(k) are positive (see Appendix A). On
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the other hand, ω0 should be sufficiently close to 2ωp because
the dimensionless parameter ξ/γ 3

b is small. Assuming, for
instance, τ − 2 � ξ/γ 3

b and employing the results of the
Appendix A the solution of Eq. (83) reads as k0ub/ωp �
(ξ/γ 3

b )1/2(τ − 2)−1/2 � 1. This value of k determines the
position of the maximal growth rate in (c) which is obtained
from Eq. (77) and is given by

γr, max

ωp

� vE

ub

τ − 2

τ
� vE

ub

ξ

τγ 3
b

. (84)

Confronting this relation with the growth rates γ ±
r, max, we

conclude that γr, max � γ ±
r, max. In addition, it should be noted

that, in general, k0 � κ± and the growth rate γr, max may be
strongly shifted toward very large k values.

Unlike E0 ⊥ k geometry the beam-plasma and the laser-
plasma parametric modes are strongly coupled here. As a
result, the resonant modes (81) and (84) depend essentially
on the laser intensity and the beam density.

Let us now compare the growth rates in the regimes (a)
and (b) for the resonant unstable modes with the quantity
γ TS

max, assuming, for simplicity, τ � 1 (ω0 � ωp). In this
case, γ +

r, max � γ −
r, max. It is seen that γ ±

r, max exceed the growth
rate γ TS

max of the two-stream instability at sufficiently intense
RF, vE/c > 3.02(γ TS

max/ωp)1/4. It is clear that this condition
requires very low density beams (compared to ne) and is
increasingly difficult to fulfill with increasing nb. Also, the
growth rates in Eq. (81) should be compared with the growth
rates of the resonant longitudinal Eq. (54) and the transversal
Eqs. (59) and (61) modes as well as with the nonresonant
longitudinal modes Eqs. (55) and (56) excited in E0 ⊥ k
geometry. Again assuming, for simplicity, the ω0 � ωp limit,
we conclude that the unstable modes grow much faster in this
geometry, where the parametric effects are more pronounced.
However, it should be emphasized that the resonant unstable
modes in E0 ⊥ k geometry are only effectively excited starting
with the threshold frequency ω0 � 2ωp of the laser radiation.
Below this threshold (with ω0 � 2ωp), only the unstable mode
(63) in the long-wavelength domain and the modes (55), (56),
and (81) in the short-wavelength domain are excited in E0 ⊥ k
and E0 ‖ k configurations, respectively.

VI. NUMERICAL TREATMENT

Using the theoretical findings of Secs. III–V, we present
here the results of our numerical calculations of the growth
rates for the longitudinal and the transversal unstable modes
assuming the transverse (E0 ⊥ k) and the parallel (E0 ‖ k)
configuration of the RF amplitude E0 with respect to the wave
vector k. The calculations have been done for an electron
beam with a small dimensionless density parameters ξ =
(ωb/ωp)2 = nb/ne = 0.1 and ξ = 0.3 and for a relativistic
factor γb = 5. For the laser intensity parameter α = v2

E/c2

we have adopted the values α = 0, 0.01, 0.1, and 0.2. It is
convenient to represent the laser intensity parameter in the
form α = (IL/I0)λ2

0, where I0 = 1.37 × 1018 W μm2/cm2

and the wavelength (λ0) and the intensity (IL) of the laser
field are measured in units μm and W/cm2, respectively.
The laser frequency is measured in the units of the plasma
frequency, τ = ω0/ωp > 1. In our numerical calculations, this
parameter varies in a wide interval, 1.2 � τ � 4. Throughout

in this section the growth rates are measured in units of plasma
frequency ωp and are calculated as a function of kub/ωp

for several laser intensities and frequencies. Note that the
chosen parameters both for electron beam and RF are typical
for FIS for inertial confinement fusion [7]. Assuming, for
instance, radiation field with λ0 = 0.5 μm, the parameter
α = 0.2 corresponds to the intensity IL � 1018 W/cm2 of
the RF.

First, we consider the transverse geometry with E0 ⊥ k. In
this case, the basic properties of the dispersion relations for the
beam-plasma system have been studied in Sec. IV. In general,
we have found that the simplified treatments of Secs. IV and
V agree qualitatively well with the exact numerical solutions.
However, it is clear that these simplified treatments are not
capable to resolve all details and the branches of the spectrum
of the unstable modes in the ω-k plane.

Within E0 ⊥ k geometry we now consider the case of the
longitudinal unstable modes (γ = γ‖) when the dispersion
relations are determined by Eq. (40). As mentioned in
Sec. IV A this is a regime when the purely two-stream and the
parametric modes are only weakly coupled and their spectra
are well separated in the ω-k plane. Therefore, the different
modes (beam-plasma or parametric) are only weakly sensitive
either to the electron beam parameters or the intensity of the
RF. From Eq. (40) it is seen [see also the simplified version
of this relation, Eq. (51)] that in a cold-fluid approximation
there are 10 solutions of this equation, but only some of them
correspond to the unstable modes with γ > 0. In addition,
these unstable modes are excited with different real frequen-
cies. To demonstrate this feature in Fig. 1, the growth rates
are shown for the laser frequency ω0 = 1.2ωp. In this case,
we have found numerically that there are only three solutions
which correspond to the unstable modes, and, as an example,
two solutions are shown in the left and right panels of Fig. 1.
The different curves correspond to the laser dimensionless
intensities α = 0.01 (dashed lines), α = 0.1 (dotted lines),
and α = 0.2 (dash-dotted lines). The solid lines with α = 0
represent the growth rate of the standard two-stream instability,
Eq. (44). Two panels of Fig. 1 correspond to the modes
with different real frequencies ωr . We denote tentatively the
solutions with different ωr as branches I, II, III, and so on. In the
left panel of Fig. 1 up to the value k2c/ωp = (τ 2 − 1)1/2 � 0.6
(k = k2 corresponds to the vanishing frequency mismatch,
δ = 0, introduced in Sec. IV A), the real frequency is ωr = 0
(branch I), while at k2 � k � k1 it is given by ωr = ωg(k)
(branch II). In Fig. 1 the growth rates sharply tend to zero at k =
k1. [For the approximate definition of the quantity k1, see the
paragraph above Eq. (56)]. The spectrum ωg(k) corresponds
to the real frequency of the nonresonant longitudinal modes
derived approximately in Sec. IV A for the negative frequency
mismatch (δ < 0). In the approximate form it is given by
Eq. (56), where, however, the minus sign has to be replaced
by the plus sign. In the approximate treatment of Sec. IV A,
Eqs. (55) and (56) correspond to branches I and II, respectively.
Thus, the boundary between branches I and II is determined
by δ = 0 (or k = k2). In branch I the growth rate at k � k2

increases almost linearly with k, γ (k) � kvE[2(τ 2 − 1)]−1/2,
in agreement with Eq. (55). Finally, in Fig. 1 (right panel),
the real frequencies of the modes at 0 � k � kc and kc � k �
max[kc; k1] coincide with the real frequency of the standard
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FIG. 1. (Color online) The growth rate γ‖ (in units of plasma frequency ωp) of the longitudinal unstable modes in terms of kub/ωp obtained
by numerical solution of the dispersion equation (40) in E0 ⊥ k configuration for γb = 5, nb = 0.1ne, ω0 = 1.2ωp , α = 0 (solid line), α = 0.01
(dashed line), α = 0.1 (dotted line), and α = 0.2 (dash-dotted line). The left and the right panels correspond to branches I, II and III, IV,
respectively, introduced in the text.

two-stream instability, ωr = ωTS
‖ (k) [branch III; see Eq. (44)]

and ωr = ω0 + ω⊥(k) (branch IV), respectively. Here ω⊥(k)
is given by Eq. (43). Let us note that the boundary k = k2

between I and II does not depend on the intensity of the
RF while the upper boundary k = k1 of branches II and IV
(at k1 > kc) is shifted toward shorter wavelengths roughly as
k1 � k2[1 + O(α1/3)] with increasing laser intensity. It is clear
that at a smaller intensity of the RF when k1 < kc, branch IV
disappears. As a general rule, we observe that at kc � k � k1

the growth rates in branch IV are part of branch II, except in the
case of the low-intensity RF with k1 < kc (cf. the dashed curves
in Fig. 1 with α = 0.01). In this low-intensity limit, branch IV
disappears while branch III is nearly the same as the standard
branch for the two-stream instability (solid curves in Fig. 1).
Thus, at ω0 � ωp and at small intensities of the RF (k1 < kc),
the parametric two-stream instability occurs in branch III with
the growth rate �γ TS(k), which is only weakly affected by
the RF. At higher intensities of the RF (with k1 > kc) a new

unstable branch IV is formed. Branches I, II, and IV are formed
due to the parametric excitations and are almost insensitive to
the electron beam.

Next, in Fig. 2, the longitudinal growth rates are shown
for the higher laser frequencies ω0 = 2ωp (left panel) and
ω0 = 4ωp (right panel). As expected, the different branches
shown in Fig. 1 are mixed with increasing ω0 and, in addition,
more and more new branches for the unstable modes are
formed. As an example, in Fig. 2, only two solutions of the
dispersion equation (40) are shown which involve the basic
features of branches I, II, III, and IV introduced above. Note
that in these particular examples with higher laser frequencies,
k2 � ω0/c exceeds the upper boundary kc of the two-stream
instability, and, therefore, k1 > kc for an arbitrary intensity
of the RF. As has been pointed out above, the approximate
growth rates given by Eqs. (55) and (56) are not capable
in these regimes to resolve all specific branches shown in
Fig. 2. The most important feature shown in Fig. 2 is that
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FIG. 2. (Color online) Same as in Fig. 1 but for the higher laser frequencies ω0 = 2ωp (left panel) and ω0 = 4ωp (right panel). Note the
different scales in the left and the right panels.
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FIG. 3. (Color online) The growth rate γ⊥ (in units of plasma frequency ωp) of the transversal unstable modes in terms of kub/ωp obtained
by numerical solution of the dispersion equation (41) in the E0 ⊥ k configuration for γb = 5, nb = 0.1ne, ω0 = 2ωp (left panel), ω0 = 4ωp

(right panel), and for α = 0 (solid line), α = 0.01 (dashed line), α = 0.1 (dotted line), and α = 0.2 (dash-dotted line). Note the different scales
in the left and the right panels.

the domain of the instability in the k space is broadened
and accompanied by an increase of the maximal growth rate
with increasing ω0. It is also noteworthy that the formation
of the resonant growth rate in the spectrum of the unstable
modes at ω0 � 2ωp derived approximately in Sec. IV A; see
Eqs. (52)–(54). Let us recall that the resonant unstable mode
is not excited at ω0 < 2ωp (see Sec. IV A) and, hence, this
mode is not visible on Fig. 1. As predicted by Eqs. (52)–(54),
the resonant coupling at ω0 = 2ωp (Fig. 2, left panel) is only
weakly pronounced with the maximal growth rate γr, max/ωp �
α/6 and kr, max � (ωp/c)(α/3)1/2 while at higher frequency
ω0 = 4ωp (Fig. 2, right panel) it is strongly increased and is
shifted toward the short wavelengths, γr, max/ωp ∼ (ατ/4)1/2

with kr, max ∼ ω0/c. In Fig. 2 (right panel), the resonant growth
rate is determined by the curve with the maximum located
around kub/ωp ∼ 3.

The growth rates for the transversal unstable modes are
demonstrated in Fig. 3 for the E0 ⊥ k geometry and for
ω0 = 2ωp (left panel) and ω0 = 4ωp (right panel). These
growth rates are obtained by the numerical solution of the
dispersion equation (41) for the transversal modes. The results
for the smaller laser frequencies (with ω0 < 2ωp) are not
shown in Fig. 3. This is because only the nonresonant modes
with the growth rates approximately given by Eqs. (62) and
(63) are possible in this case, as discussed in Sec. IV B. We
have found numerically that in this frequency regime the
growth rate only weakly deviates from the growth rate γ TS(k)
[see Eq. (44)] of the standard two-stream instability which
is supported by the approximate Eq. (63). Thus, in Fig. 3,
the nearly resonant and the resonant cases are shown with
ω0 = 2ωp and ω0 = 4ωp, respectively. In the first case, the
high-frequency (ω � ω0 − ωp, see Sec. IV B) resonant mode
is not yet formed but it may interfere with the two-stream mode,
essentially changing the growth rate; see Fig. 3 (left panel).
This effect increases with the laser intensity. In the second
case, the resonant mode is well separated from the two-stream
mode and forms (see Fig. 3, right panel) an isolated maximum

at kmax determined approximately by Eq. (58) (or, roughly,
kmax � (ωp/c)[τ (τ − 1)]1/2). The maximal growth rate of the
resonant mode is well described by Eq. (59). It is seen that the
position of the maximum is almost independent from the laser
intensity while the maximum growth rate increases as ∼α1/2

with the parameter α. The dependence of the growth rate γ⊥(k)
of the resonant mode on the frequency ω0 of the laser field for
fixed plasma density and RF intensity is also noteworthy. The
maximal growth rate γr, max increases with ω0 and is shifted
toward larger k, achieving the maximal value at ω0 � 3.4ωp.
For larger frequencies, the maximal growth rate is scaled as
γr, max ∼ [IL(ωp/ω0)]1/2 and falls with ω0.

Finally, in Figs. 4 and 5, the growth rate γ‖ of the
longitudinal unstable modes excited in the case E0 ‖ k are
shown. These results have been obtained by numerical solution
of the dispersion equation (71) with Eq. (72) for ω0 = 1.2ωp,
ω0 = 2ωp (Fig. 4), and ω0 = 4ωp (Fig. 5). As mentioned
in Sec. V, the coupling between the parametric and the
two-stream modes may be very effective in this configuration,
which is supported by the analytical results obtained in Sec. V.
The growth rate (84) of the resonant unstable mode in regime
(c) is much smaller than γ ±

r, max and is not shown here. In both
panels of Fig. 4 the frequency of the RF is rather small and,
hence, only the right-side resonant mode with γ +

r, max is excited
at κ+ub � ω0 + ωp [see Eq. (81)]. The left-side resonant mode
with γ −

r, max is formed at κ−ub � ω0 − ωp and in Fig. 4 it is
merged with the two-stream mode and is not distinguishable.
To gain more insight in Fig. 5 we demonstrate the growth
rates for the larger laser frequency ω0 = 4ωp, assuming that
nb = 0.1ne (left panel) and nb = 0.3ne (right panel). Now,
with increasing laser frequency ω0, the left-side resonant mode
is clearly visible in Fig. 5 and the corresponding growth
rate γ −

r, max is smaller than γ +
r, max, as predicted by Eq. (81).

The domains where the growth rates of the left-side and the
right-side resonant modes are nonzero can be approximated
as �k± � 4γ ±

r, max/ub; see Eq. (82). Furthermore, both γ ±
r, max

and �k± increase with electron density, as shown in Fig. 5
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FIG. 4. (Color online) The growth rate γ‖ (in units of plasma frequency ωp) of the longitudinal unstable modes in terms of kub/ωp obtained
by numerical solution of the dispersion equation (71) with Eq. (72) in E0 ‖ k configuration for γb = 5, nb = 0.1ne, ω0 = 1.2ωp (left panel),
ω0 = 2ωp (right panel), and for α = 0 (solid line), α = 0.01 (dashed line), α = 0.1 (dotted line), and α = 0.2 (dash-dotted line).

(right panel). Note that the growth rates γ TS
max and γ ±

r, max

increase approximately as ∼n
1/3
b and ∼n

1/4
b with the beam

density nb, respectively. In the parameter regimes shown in
Figs. 4 and 5 the electron beam is somewhat dense and the
condition γ ±

r, max > γ TS
max requires relativistic intensities for the

RF (with vE > c) which cannot be fulfilled in the present
approximation.

In the numerical examples shown in Figs. 1–5 the para-
metric instabilities are comparable or even stronger than the
standard two-stream instability. The stronger effect is expected
rather in the case of the transversal polarization E0 ⊥ k of the
laser field both for the longitudinal and transversal modes.
In addition, the k domain of the parametric instability is
comparable or even larger than the range kc of the standard
two-stream instability. Although an effective coupling between
laser-plasma and beam-plasma modes is expected in the case of
the parallel polarization of the laser field, E0 ‖ k, the resulting
growth rates and their k domains are, in general, essentially
smaller than those obtained for the transversal polarization.

This is not surprising because the effects of the laser radiation
and the REB on the dispersion properties of plasma are treated
here perturbatively when the coupling between both effects is
rather weak.

VII. SUMMARY AND CONCLUDING REMARKS

In this paper, we have presented a theoretical study of the
growth rates of the unstable modes excited simultaneously
by a laser field and a relativistic beam of charged particles
moving in an isotropic plasma. The laser field is treated
in the long-wavelength limit (dipole approximation) and the
plasma particles are considered nonrelativistic. In addition, an
ultrarelativistic beam of the charged particles is considered and
the influence of the laser field on the beam is neglected. The
dynamics of the beam-plasma system in the presence of the
RF is studied by the linearized relativistic and nonrelativistic
Vlasov kinetic equations for the distribution functions of the
beam and the plasma, respectively, as well as by the linearized
Maxwell equations for the electromagnetic fields. The full
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FIG. 5. (Color online) Same as in Fig. 4 but for ω0 = 4ωp , nb = 0.1ne (left panel), and nb = 0.3ne (right panel).
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electromagnetic response of the system is derived in terms of
the conductivity tensor of the system involving all harmonics
of the RF. After a general introduction to the theoretical model
in Sec. II, the dispersion relations of the modes are considered
in Secs. III and IV. It is shown that, in general, the longitudinal
and transversal modes are parametrically coupled due to the
presence of the RF. As a result, the dispersion equation of
the modes represents a secular equation for each harmonic of
the electromagnetic field. Assuming, however, nonrelativistic
laser intensities in Secs. IV and V, we have considered only
the lowest (zero, first, and second) harmonics of the fields
truncating the secular dispersion equation on the second order
of the amplitude of the RF. The dispersion equations derived
in these sections led to a detailed presentation, in Sec. VI, of
a collection of data through figures on the growth rates. For
numerical calculations we have chosen γb = 5, which pertains
to the FIS relativistic electron beam in the typical 1- to 2-MeV
energy range of practical interest.

Explicit calculations have been done within the cold-fluid
approximation, both for the beam and the plasma, neglecting
the low-frequency dynamics of the plasma ions. Furthermore,
the beam drift velocity is parallel to the wave vector k of the
excitations. Two particular cases of the transverse (E0 ⊥ k)
and the longitudinal (E0 ‖ k) polarizations of the RF have
been studied in detail in Secs. IV and V, respectively. For
the longitudinal and the transversal unstable modes we have
identified some domains in the ω-k plane corresponding to
the resonant and the nonresonant instabilities occurring due
to the parametric coupling of the different modes. Analytical
expressions for the relevant growth rates have been derived
which are well supported by our numerical calculations in
Sec. VI. These analytical results go beyond those obtained
previously in Refs. [43–45] (see also Refs. [37,38]) and in
Refs. [14–16] for the purely parametric and the beam-plasma
unstable modes, respectively. In the course of this study, we
have also derived, in Appendix C, a dynamical equation for
the complex amplitude of the excited modes in E0 ‖ k config-
uration without any restriction on the number of harmonics.
When the initial conditions are specified, this equation may be
useful in analyzing the beam-plasma parametric instabilities
beyond a weak RF limit considered here.

It was shown that, in the case of the transverse E0 ⊥ k
polarization of the RF, the longitudinal and the transversal
modes are coupled due to the RF and can be unstable. The
purely beam-plasma and the parametric unstable modes are
only weakly coupled in this case. With increasing the laser
frequency ω0 the new branches of the parametrically unstable
modes are excited. Furthermore, as demonstrated in Figs. 1–3,
the growth rates of these modes (as well as the corresponding
domain in the k space) essentially increase with ω0 and the
laser intensity and exceed the growth rate γ TS of the standard
two-stream instability. In the case of the parallel polarization
(with E0 ‖ k), the longitudinal and the transversal modes are
decoupled and the instability occurs mainly for the former
modes. The purely beam-plasma and the parametric unstable
modes are now strongly coupled and the whole instability
domain in the k space is split (at ω0 > 2ωp) into three major
subdomains. In the long-wavelength subdomain with 0 < k <

kc the instability is similar to the two-stream one while at
kub � ω0 ± ωp the instability essentially depends on both the

beam and the RF parameters (see Figs. 4 and 5). Finally, it
was shown that the growth rates are larger in the case of the
transversal polarization E0 ⊥ k of the laser field.

Going beyond the present approach, which is based on
several approximations and assumptions, we can envisage
a number of improvements. These include (i) the effects
of the low-frequency dynamics of the plasma ions which
are completely neglected here, provided that the obtained
frequencies are much higher than the ionic frequencies, and
(ii) thermal effects both for the beam and the plasma. In
principle, in the case of a standard beam-plasma instability the
growth rate can be reduced by these effects [28]. However,
in the case of a relativistic beam, the thermal momentum
spreads of the beam particles in the directions parallel or
transverse to the beam velocity has only little influence on
the instability [19]. Therefore, these effects are important in
the case of the nonrelativistic beams as, for instance, in the
experiments with heavy ion beams interacting with a laser
irradiated plasma [30–32], and (iii) in studying the influence
of the finite sizes of the beam in the longitudinal and the
transversal directions on the instability. An expected effect is
the self-consistent generation of the counterstreaming current
in a plasma [13] which is neglected in the present study.
However, this is not a principal restriction on our treatment
and the return current can be included by adding into Eqs. (29)
and (30) the similar terms but with the flow velocity ue [14–16].
The latter is determined from the condition of the beam current
neutralization, neue � −nbub. (iv) Another important issue
not considered here is the effect of the RF on the dynamics
of the beam particles. This implies either relativistic beams
(with γb � 1) or nonrelativistic beams of heavy particles
(heavy ions, protons, antiprotons, etc.), (v) considering the
contributions of the higher harmonics with � � 2. From the
structures of Eqs. (38), (39), and (68)–(70), it follows that, in
this case, the combined frequencies �ω0 ± ωp come into play,
determining some new branches for the unstable modes. In
principle, the study of the generation of the higher harmonics
of these modes could be facilitated, employing a dynamical
equation for the complex amplitude similar to Eq. (C6) and,
(vi) last, studying some other orientations of the polarization
vector E0 of the RF and the beam drift velocity ub with respect
to k. However, in general, the simultaneous investigation
of these issues is a formidable task and requires several
separate investigations. We intend to address these issues in
our forthcoming investigations.
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APPENDIX A: BEAM-PLASMA MODES IN
A COLD-FLUID APPROXIMATION

In this Appendix, in a cold-fluid model, we briefly consider
the asymptotic behavior of the frequencies and the growth
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rates of the standard (in the absence of the RF, vE = 0) beam-
plasma longitudinal modes at large and small k. A similar
qualitative analysis have been conducted in Ref. [28]. We
look for the solutions of the dispersion equation D‖(k,ω) = 0
of the longitudinal modes in the form ω = ωr + iγ , where
ωr is the (real) frequency and γ is the growth rate of the
modes, respectively. Here the dispersion function D‖(k,ω) is
determined by Eq. (31) with Eqs. (30) and (42).

As mentioned in Sec. IV A, at short wavelengths, k � kc,
there are four real solutions [i.e., γ (k) = 0] of the dispersion
equation which at k � kc asymptotically behave as

ω±
r1(k) = ±ωp

[
1 + ξω2

p

2γ 3
b (kub)2

± ξω3
p

γ 3
b (kub)3

+ · · ·
]
, (A1)

ωr2(k) = kub

[
1 −

√
ξωp

γ
3/2
b kub

−
√

ξω3
p

2γ
3/2
b (kub)3

+ · · ·
]
, (A2)

ωr3(k) = kub

[
1 +

√
ξωp

γ
3/2
b kub

+
√

ξω3
p

2γ
3/2
b (kub)3

+ · · ·
]
. (A3)

The modes with the frequencies ωr3(k) and ω−
r1(k) remain

stable also at 0 � k < kc while the other mode with ω+
r1(k)

at k = kc merges with the mode ωr2(k). The latter becomes
unstable at k < kc. The frequency and the growth rate of this
mode in this long-wavelength limit (k < kc) asymptotically
behave as

ωr2(k) = kub

1 + ξ
/
γ 3

b

[
1 + 4ξ

(
1 − ξ

/
γ 3

b

)
γ 3

b

(
1 + ξ

/
γ 3

b

)3

(kub)2

ω2
p

+ · · ·
]
,

(A4)

γ (k) = kub

(
ξ
/
γ 3

b

)1/2

1 + ξ
/
γ 3

b

×
[

1 + 1 − 6ξ
/
γ 3

b + ξ 2
/
γ 6

b(
1 + ξ

/
γ 3

b

)3

(kub)2

ω2
p

+ · · ·
]
. (A5)

Similarly, one finds the asymptotic behavior of the stable
modes ω−

r1(k) and ωr3(k) at k < kc,(
ω−

r1(k)

ωr3(k)

)
= ∓ωp

√
1 + ξ/γ 3

b

[
1 ∓ ξ

/
γ 3

b(
1 + ξ

/
γ 3

b

)3/2

kub

ωp

+ 3ξ
/
γ 3

b

2
(
1 + ξ

/
γ 3

b

)3

(kub)2

ω2
p

+ · · ·
]
. (A6)

It is seen that the leading terms in Eqs. (A4) and (A5)
coincide with ωTS

‖ (k) and γ TS(k), respectively, see Eq. (44).

APPENDIX B: EVALUATION OF THE SUM

In this Appendix, within the fluid approximation we briefly
derive an analytic expression for the function 
�(ζ ) introduced
in Sec. V [see Eq. (69)]. Inserting Eq. (42) into Eq. (69), we
arrive at


�(ζ ) = (−1)�
ωp

2ω0

∞∑
s=−∞

(
1

s + a+
− 1

s + a−

)
Js(ζ )Js+�(ζ ),

(B1)

where a± = (ω ± ωp)/ω0. The summation in Eq. (B1) can
be easily done using the Newberger’s summation formula
[46] which is valid for noninteger μ, 0 � γ � 1 and
Re(α + β) > −1,

∞∑
n=−∞

(−1)n
Jα−γ n(ζ )Jβ+γ n(ζ )

n + μ
= π

sin(πμ)
Jα+γμ(ζ )Jβ−γμ(ζ ).

(B2)

In general, μ, α, and β are complex quantities. Using the
summation formula (B2) from Eq. (B1) at � � 0 and � � 0,
we obtain


�(ζ ) = (−1)�
πωp

2ω0

[
1

sin(πa+)
Ja+ (ζ )J�−a+(ζ )

− 1

sin(πa−)
Ja− (ζ )J�−a−(ζ )

]
, (B3)


�(ζ ) = πωp

2ω0

[
1

sin(πa+)
Ja+−�(ζ )J−a+ (ζ )

− 1

sin(πa−)
Ja−−�(ζ )J−a− (ζ )

]
, (B4)

respectively.
Consider also the limit of the function 
�(ζ ) at small

parameter ζ which corresponds to the limit of a weak RF. At
ζ � 1, using the asymptotic behavior of the Bessel function
at small argument [42] from Eqs. (B3) and (B4), we obtain


�(ζ ) = (−1)
�+|�|

2

(
ζ

2

)|�| |�|∑
s=0

(−1)s

s!(|�| − s)!

δε‖(−η�s)

1 + δε‖(−η�s)

+ O(ζ |�|+2), (B5)

where η� = |�|/�.

APPENDIX C: DYNAMICAL EQUATION
FOR THE COMPLEX AMPLITUDES

In Sec. V, we have derived the dispersion equation for the
plasma modes generated simultaneously by the laser radiation
and the REB. For some applications the derivation of a
differential equation for the complex amplitude of the excited
wave is desirable. We consider here the case of a cold plasma
when the partial dielectric function is given by Eq. (42). For
deriving the dynamical equation for the amplitude, we insert
Eqs. (42) and (69) into Eq. (68) and, using the summation
formula (67), we represent the latter in the form

E‖(0) = −
∞∑

�=−∞
E‖(�)δεb‖(−�)

×
∞∑

s=−∞

(ω − sω0)2

(ω − sω0)2 − ω2
p

Js−�(ζ )Js(ζ ). (C1)
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Now, in both sides of Eq. (C1), we make an inverse Fourier
transformation. Then, denoting the time-dependent complex
amplitude as E(t) and using the summation formula [42],

∞∑
�=−∞

e±i�ω0t J�(ζ ) = e±iζ sin(ω0t), (C2)

we obtain the equation

E(t)eiζ sin(ω0t) = −
∫ ∞

−∞
dωE‖(ω)δεb‖(ω)

×
∞∑

s=−∞

(ω − sω0)2

(ω − sω0)2 − ω2
p

e−i(ω−sω0)t Js(ζ ).

(C3)

Next, on both sides of Eq. (C3), we apply the differential
operator ∂2/∂t2 + ω2

p,(
∂2

∂t2
+ ω2

p

)
[E(t)eiζ sin(ω0t)]

= − ∂2

∂t2
eiζ sin(ω0t)

∫ ∞

−∞
δεb‖(ω)E‖(ω)e−iωtdω

= ω2
b

γ 3
b

∂2

∂t2
eiζ sin(ω0t)

∫ ∞

−∞
E(τ )Gb(τ − t)dτ. (C4)

In the last part of Eq. (C4) we have used the longitudinal
dielectric function of the beam, Eq. (30). Here Gb(t) is the
Green function of the electron beam

Gb(t) = 1

2π

∫ ∞

−∞

eiωtdω

(ω − kub + i0)2
, (C5)

where we have introduced the positive infinitesimal +i0 which
guarantees the causality of the response. An explicit expression
for the function Gb(t) can be easily obtained, employing, in
Eq. (C5), the contour integration technique. The result reads as
Gb(t) = �(−t)teikubt , where �(t) is the Heaviside unit-step
function. Substituting this result into Eq. (C4), we finally arrive
at (

∂2

∂t2
+ ω2

p

)
[E(t)eiζ sin(ω0t)]

= ω2
b

γ 3
b

∂2

∂t2
eiζ sin(ω0t)

∫ t

−∞
E(τ )eikub(τ−t)(τ − t)dτ. (C6)

The obtained equation (C6) must be accompanied by the initial
conditions. When these conditions are specified, Eq. (C6)
represents the evolution of the complex amplitude of the waves
excited simultaneously by the RF and the REB in a cold
plasma. Note that, in contrast to the dispersion equation (71),
Eq. (C6) is also valid for the intensity parameter ζ � ka ∼ 1.

[1] D. A. Hammer and N. Rostoker, Phys. Fluids 13, 1831
(1970).

[2] T. Piran, Rev. Mod. Phys. 76, 1143 (2004).
[3] M. V. Goldman, Rev. Mod. Phys. 56, 709 (1984).
[4] L. Arons and E. T. Scharlemann, Astrophys. J. 231, 854

(1979).
[5] M. E. Dieckmann, Phys. Rev. Lett. 94, 155001 (2005).
[6] M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks,

J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason,
Phys. Plasmas 1, 1626 (1994).

[7] C. Deutsch, H. Furukawa, K. Mima, M. Murakami, and
K. Nishihara, Phys. Rev. Lett. 77, 2483 (1996).

[8] C. Ren, M. Tzoufras, F. S. Tsung, W. B. Mori, S. Amorini, R. A.
Fonseca, L. O. Silva, J. C. Adam, and A. Heron, Phys. Rev. Lett.
93, 185004 (2004).

[9] D. Batani, S. D. Baton, M. Manclossi, J. J. Santos, F. Amiranoff,
M. Koenig, E. Martinolli, A. Antonicci, C. Rousseaux, M. R. Le
Gloahec, T. Hall, V. Malka, T. E. Cowan, J. King, R. R. Freeman,
M. Key, and R. Stephens, Phys. Rev. Lett. 94, 055004 (2005).

[10] M. Tatarakis, F. N. Beg, E. L. Clark, A. E. Dangor, R. D.
Edwards, R. G. Evans, T. J. Goldsack, K. W. D. Ledingham,
P. A. Norreys, M. A. Sinclair, M.-S. Wei, M. Zepf, and
K. Krushelnick, Phys. Rev. Lett. 90, 175001 (2003).

[11] R. A. Fonseca, L. O. Silva, J. W. Tonge, W. B. Mori, and J. M.
Dawson, Phys. Plasmas 10, 1979 (2003).

[12] L. O. Silva, R. A. Fonseca, J. W. Tonge, W. B. Mori, and J. M.
Dawson, Phys. Plasmas 9, 2458 (2002).

[13] M. Honda, J. Meyer-ter-Vehn, and A. Pukhov, Phys. Rev. Lett.
85, 2128 (2000).

[14] A. Bret, M.-C. Firpo, and C. Deutsch, Phys. Rev. E 70, 046401
(2004).

[15] A. Bret, M.-C. Firpo, and C. Deutsch, Phys. Rev. E 72, 016403
(2005).

[16] A. Bret and C. Deutsch, Phys. Plasmas 13, 042106
(2006).

[17] A. Bret, M.-C. Firpo, and C. Deutsch, Phys. Rev. Lett. 94,
115002 (2005).

[18] A. Bret, L. Gremillet, D. Bénisti, and E. Lefebvre, Phys. Rev.
Lett. 100, 205008 (2008).

[19] A. Bret, M.-C. Firpo, and C. Deutsch, Laser Part. Beams 24, 27
(2006).

[20] F. Califano, F. Pegoraro, S. V. Bulanov, and A. Mangeney, Phys.
Rev. E 57, 7048 (1998).

[21] M. Honda, Phys. Rev. E 69, 016401 (2004).
[22] D. Bohm and E. P. Gross, Phys. Rev. 75, 1851 (1949); 75, 1864

(1949).
[23] O. Buneman, Phys. Rev. Lett. 1, 8 (1958).
[24] B. Fried, Phys. Fluids 2, 337 (1959).
[25] E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959).
[26] S. A. Bludman, K. M. Watson, and M. N. Rosenbluth, Phys.

Fluids 3, 747 (1960).
[27] Ya. B. Faı̆nberg, V. D. Shapiro, and V. I. Shevchenko, Zh.

Eksp. Teor. Fiz. 57, 966 (1970); Sov. Phys. JETP 30, 528
(1970).

[28] A. B. Mikhailovskii, Theory of Plasma Instabilities, Vol. 1
(Consultant Bureau, New York, 1974).

[29] A. B. Mikhailovskii, Electromagnetic Instabilities in an
Inhomogeneous Plasma (IOP, Bristol, 1992).
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