
PHYSICAL REVIEW E 85, 056413 (2012)

Dust ion-acoustic solitary waves in a dusty plasma with nonextensive electrons
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The dust-modified ion-acoustic waves of Shukla and Silin are revisited within the theoretical framework of the
Tsallis statistical mechanics. Nonextensivity may originate from correlation or long-range plasma interactions.
Interestingly, we find that owing to electron nonextensivity, dust ion-acoustic (DIA) solitary waves may exhibit
either compression or rarefaction. Our analysis is then extended to include self-consistent dust charge fluctuation.
In this connection, the correct nonextensive electron charging current is rederived. The Korteweg–de Vries
equation, as well as the Korteweg–de Vries–Burgers equation, is obtained, making use of the reductive
perturbation method. The DIA waves are then analyzed for parameters corresponding to space dusty plasma
situations.
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I. INTRODUCTION

Complex or dusty plasmas—a mixture of ions, electrons,
and highly charged microparticles and nanoparticles—are
currently being considered as a major interdisciplinary re-
search field [1–3]. Linear as well as nonlinear collective
processes in dusty plasmas have received special attention
in the past decade mainly due to the realization of their
occurrence in both the laboratory and space environments
[4–8]. Examples include cometary comae and tails, planetary
rings, the interstellar medium, the lower ionosphere, plasma
processing devices, limiter regions of fusion plasmas, etc. The
dust particles are many orders of magnitude heavier than ions,
they are a source of ionization and recombination for electrons,
and their charge is not fixed, but depends on local plasma
parameters. Wave propagation in such complex systems is
therefore expected to be substantially different from the
ordinary two component plasmas, and the presence of charged
dust can have a strong influence on the characteristics of the
usual plasma wave modes, even at frequencies where the dust
grains do not participate in the wave motion. It has been found
that the presence of static charged dust grains modifies the
existing plasma wave spectra [9]. On the other hand, it has been
shown that the dust dynamics introduces new eigenmodes,
such as the dust-acoustic mode [10] (weak-coupling regime),
the dust-lattice mode [11] (strong-coupling regime), dust
Bernstein-Greene-Kruskal modes [12], etc. Among the host
of modified dusty modes discussed in the literature, the dust
ion-acoustic wave [13] (DIAW) has received wide attention as
well as experimental confirmation in several low-temperature
dusty plasma devices [14].

During the past two decades, it has been proven that
systems which present long-range interactions, long-time
memory, fractality of the corresponding space time and phase
space, or intrinsic inhomogeneity are intractable within the
conventional Boltzmann-Gibbs (BG) statistics [15]. The main
reason for this failure is that BG statistics is an additive
or extensive formalism. In dealing with the statistical prop-
erties of systems with long-range correlations, Tsallis [16]
consistently extended BG thermodynamics by generalizing

the concept of entropy to nonextensive regimes. To this
end, Tsallis modeled nonextensivity by assuming a compo-
sition law in the sense that the entropy of the composition
(A + B) of two independent systems A and B is equal to
S(A+B)

q = S(A)
q + S(B)

q + (1 − q)S(A)
q S(B)

q , where the parameter
q that underpins the generalized entropy is linked to the
underlying dynamics of the system and provides a measure
of the degree of its correlation. A growing body of evidence
suggests that the q entropy may provide a convenient frame
for the analysis of many astrophysical scenarios, such as
stellar polytropes, the solar neutrino problem, the peculiar
velocity distribution of galaxy clusters, etc. [17–28]. It has
been shown that the experimental results, for electrostatic
plane-wave propagation in a collisionless thermal plasma,
point to a class of Tsallis’s velocity distribution described
by a nonextensive q parameter smaller than unity [29]. Liu
and Goree [30] detected experimentally anomalous diffusion
and non-Gaussian statistics fitting a Tsallis distribution, in a
two-dimensional driven-dissipative system. A dusty plasma
suspension with a Yukawa interaction has been heated to yield
a structure with liquid ordering. Tsallis thermostatistics should
therefore be applied to plasma systems which may be rightly
viewed as systems endowed with long-range interactions and
(most importantly) where nonequilibrium stationary states
may exist. This kind of state is generally described by the
ad hoc Cairns and κ distributions, which suffer from a lack of
formal derivation. However, one should emphasize that (in the
light of present understanding) it is still unclear which class
of systems requires Tsallis statistics. Nevertheless, Wilk and
Wlodarczyk [31] showed that the nonextensivity parameter q

may be given (in the q > 1 case) entirely by the fluctuations of
the parameters of the usual exponential distribution. Moreover,
Almeida [32] claimed that the canonical distribution function
of a system is Tsallis distribution if the relation

1 − q = dT

dE
(1)

is satisfied, where E is the energy of the environment of
the system (or the “heat bath”) and T is the equilibrium
temperature in energy units. Alternatively, one could use
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numerical tools to determine (in some specific situations)
whether the electrons and/or ions do roughly behave like q

nonextensive.
To complement and provide new insights into previously

published results, we propose here to extend the analysis of
Shukla and Silin [13], done under the assumption that the
electrons are Maxwell-Boltzmann distributed, to situations
where the electrons may exhibit nonextensive effects.

II. THEORETICAL MODEL

Let us consider an unmagnetized dusty plasma composed
of nonextensive electrons, inertial warm ions, and immobile
negatively charged dust grains of density ne, ni , and nd ,
respectively. We assume for simplicity that all the grains have
the same charge, equal to qd = −eZd , with Zd positive for
negatively charged dust and negative for positively charged
dust. To model the effects of electron nonextensivity, we refer
to the following q-distribution function [33]:

fe(v) = Cq

{
1 − (q − 1)

[
mev

2

2Te

− eφ

Te

]}1/(q−1)

. (2)

The constant of normalization is

Cq =

⎧⎪⎨
⎪⎩

ne0
�( 1

1−q
)

�( 1
1−q

− 1
2 )

√
me(1−q)

2πTe
, for −1 < q < 1

ne0
( 1+q

2

)�( 1
q−1 + 1

2 )

�( 1
q−1 )

√
me(q−1)

2πTe
, for q > 1.

(3)

Here, the parameter q stands for the strength of electrons
nonextensivity and the quantity � for the standard γ function.
It may be useful to note that for q < −1, the q distribution (2)
is unnormalizable. In the extensive limiting case (q = 1), dis-
tribution (2) reduces to the well-known Maxwell-Boltzmann
velocity distribution. Integrating fe(vx) over the velocity space
and noting that for q > 1, the distribution function (2) exhibits
a thermal cutoff on the maximum value allowed for the velocity
of the particles, given by

vmax =
√

2Te

me(q − 1)
− 2eφ

me

, (4)

we get

ne(φ) =
{∫ +∞

−∞ fe(v)dv, for −1 < q < 1∫ +vmax

−vmax
fe(v)dv, for q > 1

= ne0

{
1 + (q − 1)

eφ

Te

} 1
q−1 + 1

2

. (5)

The basic equations for one-dimensional dust ion-acoustic
waves can be expressed in terms of normalized variables as

∂Ni

∂t
+ ∂(NiVi)

∂x
= 0, (6)

∂Vi

∂t
+ Vi

∂Vi

∂x
= −∂�

∂x
, (7)

∂2�

∂x2
= (1 − δZd )Ne − Ni + δZd, (8)

where δ = nd0/ni0. The subscript 0 stands for equilibrium
values. The electrostatic potential �, the ion fluid velocity Vi ,
the electron number density Ne, and the ion number density

Ni are normalized by Te/e, Ci = (Te/mi)1/2, ne0, and ni0,
respectively. The time t and the space variable x are in units of
the ion plasma period ω−1

pi = (mi/4πni0e
2)1/2 and the Debye

length λi = (Te/4πni0e
2)1/2, respectively. qj=e,i = ∓e are the

charges, mj are the masses, and Tj the temperatures. Charge
neutrality at equilibrium requires δZd = 1 − ne0/ni0, where
δZd represents the fraction of the negative charge in the plasma
which resides on the dust grains. To study the time-independent
arbitrary amplitude DIA solitary waves, we assume that all the
dependent variables in Eqs. (6)–(8) depend only on a single
variable ξ = x − Mt (where again ξ is normalized by λi and
M = solitary wave speed/Ci). Now, under the appropriate
boundary conditions, viz., � −→ 0, Vi −→ 0, and Ni −→ 1
at ξ −→ ±∞, Eqs. (6) and (7) can be integrated to give

Ni = 1

(1 − 2�/M2)1/2
. (9)

Substituting for Ni from (9) into Poisson’s equation (8), and
multiplying both sides of the resulting equation by d�/dξ ,
integrating once, and imposing the appropriate boundary
conditions for localized solutions, namely, � −→ 0 and
d�/dξ −→ 0, at ξ −→ ±∞, we obtain the quadrature

1

2

(
d�

dξ

)2

+ V (�) = 0, (10)

where the Sagdeev potential [34] for our purposes reads as

V (�) = 2(1 − δZd )

3q − 1
{1 − [1 + (q − 1)�]

3q−1
2(q−1) }

+M2

{
1 −

(
1 − 2�

M2

)1/2 }
− δZd�. (11)

Equation (11) can be regarded as an “energy integral” of
an oscillating particle of unit mass, with a velocity d�/dξ

and position � in a potential V (�). It is clear from (11)
that V (�) = 0 and dV (�)/d� = 0 at � = 0. Solitary wave
solutions of (10) exist if (i) (d2V/d�2)�=0 < 0, so that the
fixed point at the origin is unstable; (ii) there exists a nonzero
�m at which V (�m) = 0; and (iii) V (�) < 0 when � lies
between 0 and �m. The second condition simply means that
a quasiparticle of zero total energy will be reflected at the
position � = �m. The third condition means that V has to be
a potential trough in which the quasiparticle can be trapped
and experience oscillations. Condition (i) for the existence of
localized structures requires the Mach number to satisfy

M2 >
2

(1 − δZd )(q + 1)
. (12)

It follows that for q > 1 (−1 < q < 1), the lower limit
Mmin = [ 2

(1−δZd )(q+1) ]
1/2 is smaller (greater) than its Boltz-

mannian counterpart (q = 1), Mmin = 1
(1−δZd )1/2 . For the sake

of comparison, we have plotted the variation of Mmin with the
nonextensive parameter q for different values of δZd = 0.1
(solid line), 0.4 (dashed line), and 0.7 (dash-dotted line); see
Fig. 1. It can be seen that as q increases, the lower limit Mmin

decreases and becomes less than unity beyond q = 1+δZd

1−δZd
.

Furthermore, the lower limit Mmin is shifted toward higher
values as the fraction of the plasma negative charge residing
on the dust grains, δZd , increases. It turns out that a strong
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FIG. 1. Variation of the lower limit Mmin with the nonextensive
parameter q for different values of μZd = 0.1 (solid line), 0.4 (dashed
line), and 0.7 (dash-dotted line).

electron depletion process (on account of the attachment of
the background plasma electrons on the surface of the dust
grains) may not favor the propagation of the DIA waves. Note
that the upper limit of M , Mmax, can be found by the condition
V (�c) � 0, where �c = M2

max/2 is the maximum value of �

for which the cold ion density Ni is real. Thus, we have

2(1 − δZd )

3q − 1

{
1 −

[
1 + (q − 1)

M2
max

2

] 3q−1
2(q−1)

}

+M2
max

(
1 − δZd

2

)
� 0. (13)

Next, keeping δZd at a constant value equal to 0.5, the
nature of these solitary waves is investigated by analyzing
the Sagdeev potential (11) [note that the method which
consists in expanding V (�) to third order in a Taylor series
in � is not an accurate one]. Interestingly, we found that
owing to electron nonextensivity, our plasma model may
admit compressive (Fig. 2) as well as rarefactive (Fig. 3)
nonextensive DIA solitary waves. Note that larger values of
q favor the development of compressive DIA solitary waves,
whereas smaller values of q are required for the existence of
rarefactive ones.

III. VARIABLE DUST CHARGE CASE

Let us now extend our analysis to the case where dust
grains exhibit self-consistent charge variation. We will go
parallel to that done in Ref. [35] and adopt their notation. For a
nonisothermal electron distribution function, such as that given
by Eq. (2), one should first rederive the electron current by
using the orbit limited theory. The latter requires an effective
collisional cross section σe(ve,qd ) = πr2

d (1 + 2eqd/meCv2
e )

for the electrons impacting onto a dust grain surface over the
electron distribution, where C � rd is the effective dust grain
capacitance and rd the grain radius. For the electron current
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FIG. 2. Pseudopotential associated to compressive DIA solitary
waves for different values of q = 8 (solid line), 6 (dashed line), and
4 (dash-dotted line), with δ = 0.5 and M = 1.

we thus have

Ie = −e

∫∫∫
feσeved

3ve

=
{

−4πe
∫ ∞
vmin

v3
e σefe dve, for −1 < q < 1

−4πe
∫ vmax

vmin
v3

e σefe dve, for q > 1,
(14)

where vmin = (−2eqd/merd )1/2 is the minimum value of the
electron velocity for which the electrons are collected by a dust
particle. After performing the velocity integration in Eq. (9),
we obtain for the electron current

Ie =−πr2
d ene0

√
8Te

πme

Bq

[
1 + (q − 1)

(
eqd

Terd

+ eφ

Te

)] 1
q−1 +2

,

(15)
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FIG. 3. Pseudopotential associated to rarefactive DIA solitary
waves for different values of q = 0.4 (solid line), 0.5 (dashed line),
and 0.6 (dash-dotted line), with δ = 0.5 and M = 1.85.
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where

Bq =

⎧⎪⎨
⎪⎩

(1−q)3/2

q(2q−1)

�( 1
1−q

)

�( 1
1−q

− 3
2 )

, for −1 < q < 1

(3q−1)
2

(q−1)3/2

q(2q−1)

�( 1
q−1 + 3

2 )

�( 1
q−1 )

, for q > 1.
(16)

Equation (15) reproduces the well-known thermal electron
charging current [4] when q → 1. The nonlinear dynamics of
DIA waves is then governed by

∂Ni

∂t
+ ∂

∂x
(NiUi), (17)

∂Ui

∂t
+ Ui

∂Ui

∂x
= −∂�

∂x
, (18)

∂2�

∂x2
= μ[1 + (q − 1)�]

1
q−1 + 3

2 − Ni + (1 − μ)Zd, (19)

where μ = ne0/ni0. Ni is the ion number density normalized
by its equilibrium value ni0, Ui is the ion fluid velocity
normalized by Ci = (Te/mi)1/2, � is the electrostatic wave
potential normalized by Te/e, and Zd is the number of
electrons residing onto the dust grain surface normalized by
its equilibrium value Zd0. The time and space variables are
in units of the ion plasma period ω−1

pi = (mi/4πni0e
2)1/2 and

the Debye radius λD = (Te/4πni0e
2)1/2, respectively. We note

that Zd varies with space and time. Thus, the normalized dust
grain charging equation is given by

η
∂Zd

∂t
= μβBq[1 + (q − 1)(� − αZd )]

1
q−1 +2

−βiNiUi

(
1 + 2αZd

U 2
i

)
, (20)

where

Bq =

⎧⎪⎨
⎪⎩

(1−q)3/2

q(2q−1)

�( 1
1−q

)

�( 1
1−q

− 3
2 )

, for −1 < q < 1

(3q−1)
2

(q−1)3/2

q(2q−1)

�( 1
q−1 + 3

2 )

�( 1
q−1 )

, for q > 1.
(21)

Here, η = √
αme(1 − μ)/2mi , β = (rd/a)3/2, βi =

β
√

πme/8mi , α = Zd0e
2/kBTerd , and a = n

−1/3
d0 . We

note that at equilibrium, we have μβBq[1 − (q − 1)α] =
βiU0(1 + 2α/U 2

0 ), where U0 is the ion streaming speed
normalized by Ci .

A. DIA Solitary Waves

To investigate the small but finite amplitude DIA soli-
tary wave, we introduce the stretched coordinates [36]
ξ = ε1/2(x − V0t) and τ = ε3/2t , where ε is an expansion
parameter characterizing the strength of the nonlinearity and
V0 is the phase velocity of the DIA soliton. Ni , Ui , and Zd are
then expanded in power series of ε as

Ni = 1 + εN
(1)
i + ε2N

(2)
i + · · · , (22)

Ui = U0 + εU
(1)
i + ε2U

(2)
i + · · · , (23)

� = ε�(1) + ε2�(2) + · · · , (24)

Zd = 1 + εZ
(1)
d + ε2Z

(2)
d + · · · . (25)

Introducing (22)–(25) into (17)–(20) and equating the terms
in lowest power of ε, we obtain

ω0N
(1)
i = U

(1)
i , (26)

ω0U
(1)
i = �(1), (27)

(3q − 1)μ

2
�(1) − N

(1)
i + (1 − μ)Z(1)

d = 0, (28)

βe�
(1) − αuβZ

(1)
d − βiu1U

(1)
i − U0βiu2N

(1)
i = 0, (29)

where ω0 = V0 − U0, u1 = 1 − 2α/U 2
0 , u2 = 1 + 2α/U 2

0 ,

uβ = βe + 2βi/U0, and βe = 2μβBq(q − 1/2)(1 − αq).
Now, substituting N

(1)
i , U

(1)
i , and Z

(1)
d from Eqs. (26)–(29),

we obtain the dispersion relation

aω2
0 − bω0 − c = 0, (30)

where

a = (3q − 1)μ

2
+ βe(1 − μ)

αuβ

, (31)

b = u1βi(1 − μ)

αuβ

, (32)

c = 1 + u2βiU0(1 − μ)

αuβ

. (33)

Equating the terms containing the next higher order in ε, we
get from (17)–(20)

1

ω2
0

∂�(1)

∂τ
− ω0

∂N
(2)
i

∂ξ
+ ∂U

(2)
i

∂ξ
+ 2

ω3
0

�(1) ∂�(1)

∂ξ
= 0, (34)

1

ω0

∂�(1)

∂τ
− ω0

∂U
(2)
i

∂ξ
+ 1

ω2
0

�(1) ∂�(1)

∂ξ
= −∂�(2)

∂ξ
, (35)

∂2�(1)

∂ξ 2
= (3q − 1)μ

2
�(2) + (3q − 1)(q + 1)μ

8
[�(1)]2

−N
(2)
i + (1 − μ)Z(2)

d , (36)

βe�
(2) − αuβZ

(2)
d − βiu1U

(2)
i −U0βiu2N

(2)
i + β1[�(1)]2 =0,

(37)

where

β1 = βe

2(1 − αq)
[1 + αβ0(αβ0 − 2)] − 2βi

ω3
0

[
1 + ωα

U 3
0

]
, (38)

β0 = 1 − (3q−1)
2 ω2

0μ

ω2
0(1 − μ)

, (39)

and ωα = αω0ω1(1 − ω0β0/ω1), ω1 = 1 − U0/ω0. Now, com-
bining (34)–(37), we obtain the following Korteweg–de Vries
(KdV) equation:

∂�(1)

∂τ
+ A�(1) ∂�(1)

∂ξ
+ B

∂3�(1)

∂ξ 3
= 0, (40)

where

A = bω0 + 3c − β2ω
4
0

ω0(2c + bω0)
, (41)

B = ω3
0

2c + bω0
, (42)

and

β2 = (3q − 1)(q + 1)

4
μ + 2β1

(1 − μ)

αuβ

. (43)
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FIG. 4. Variation of the amplitude �m of the solitary wave with μ

for different values of the nonextensive electron parameter q = 1.01,
3, and 6, with α = 0.0288, β = 3 × 10−10, and U0 = 1.

The stationary solution of the KdV equation (40) is obtained
by transforming the independent variable ξ to ζ = ξ − W0τ ,
where W0 is a constant speed normalized by Ci and imposing
the appropriate boundary conditions for localized pertur-
bations, viz. �(1) → 0, d�(1)/dζ → 0, d2�(1)/dζ 2 → 0 at
ζ → ±∞. Accordingly, the stationary solitary wave solution
of (40) is

�(1) = �m sec h2

[
ξ − W0τ

�

]
, (44)

where �m = 3W0/A and � = √
4B/W0 represent the ampli-

tude and the width of the solitary waves, respectively. It is
obvious from (44) that there exist compressive (rarefactive)
solitary waves if A > 0 (A < 0). We have numerically ana-
lyzed �m over a wide range of electron nonextensivity and for
parameters corresponding to space dusty plasma situations.
The following parameters α = 0.0288, β = 3 × 10−10, and
U0 = 1 (corresponding to space dusty plasma parameters with
Te = 50 eV, nd0 = 10−7 cm−3, rd = 1 μm, and Zd0 = 103,
see Refs. [4,9,35]) have been chosen. The variation of �m

with μ for different values of the nonextensive electron
parameter is shown in Fig. 4. In the limiting case, q → 1
(Maxwell-Boltzmann–distributed electrons), similar results to
those of Mamun and Shukla [35] are obtained. Figure 4
indicates that as q (q > 1) increases, the pulse amplitude
decreases and remains positive. However, for q < 1, Fig. 5
shows that an increasing nonextensivity yields a different
(opposite) result than for q > 1. Moreover, the influence of the
electron nonextensivity is more noticeable for larger (lower)
values of μ in the case q > 1 (q < 1). Figures 6 and 7 show
the μ dependence of the potential structure width � for a given
nonextensive parameter q. We see that for q > 1 (q < 1) the
structure narrows (enlarges) as the nonextensivity increases.

B. DIA Shock Waves

In the preceding subsection, the parameter η does not play
any role because of the scaling that we have used. Let now
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FIG. 5. Variation of the amplitude �m of the solitary wave with μ

for different values of the nonextensive electron parameter q = 0.4,
0.6, and 0.8, with α = 0.0288, β = 3 × 10−10, and U0 = 1.

consider a situation in which we can scale the parameter η as
η = ε1/2η0. Therefore, with this additional scaling, Eq. (37)
can be rewritten as

−η0V0
∂Z

(1)
d

∂ξ
= βe�

(2) − αuβZ
(2)
d − βiu1U

(2)
i − U0βiu2N

(2)
i

+β1[�(1)]2. (45)

Replacing (37) by (45) and performing all mathematical steps
as we did in the preceding subsection, we obtain the following
KdV–Burger equation:

∂�(1)

∂τ
+ A�(1) ∂�(1)

∂ξ
+ B

∂3�(1)

∂ξ 3
= C

∂2�(1)

∂ξ 2
, (46)
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FIG. 6. Variation of the width � of the solitary wave with μ for
different values of the nonextensive electron parameter q = 1.01, 3,
and 6, with α = 0.0288, β = 3 × 10−10, and U0 = 1.
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FIG. 7. Variation of the width � of the solitary wave with μ for
different values of the nonextensive electron parameter q = 0.35, 0.4,
and 0.8, with α = 0.0288, β = 3 × 10−10, and U0 = 1.

where

C = BV0η0β0(1 − μ)

α
(
βe + 2βi

U0

) . (47)

An exact analytical solution of (46) is not possible. Transform-
ing the independent variables ξ to ζ = ξ − W0, one can find,
under steady-state condition, a third-order ordinary differential
equation for ϕ = �(1)(ζ ). A first integration of the latter gives

B
d2ϕ

dζ 2
− C

dϕ

dζ
+ A

2
ϕ2 − W0ϕ = 0, (48)

where we have imposed the appropriate boundary conditions,
viz. ϕ −→ 0, dϕ/dζ −→ 0, d2ϕ/dζ 2 −→ 0 at ζ −→ ∞.
Multiplying both sides of Eq. (48) by dϕ/dζ , and integrating
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FIG. 8. Variation of Sc with μ for different values of the
nonextensive electron parameter q = 1.01, 3, and 6, with α = 0.0288,
β = 3 × 10−10, U0 = 1, and ε = 10−2.
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FIG. 9. Variation of Sc with μ for different values of the nonex-
tensive electron parameter q = 0.35, 0.4, and 0.8, with α = 0.0288,
β = 3 × 10−10, U0 = 1, and ε = 10−2.

once, we obtain the quadrature

B

2

(
dϕ

dζ

)2

+ V (ϕ) = 0, (49)

where

V (ϕ) = A

6
ϕ3 − W0

2
ϕ2 − C

∫ (
dϕ

dζ

)2

dζ. (50)

Equation (49) can be regarded as an “energy integral” of
an oscillating particle of mass B, with a velocity dϕ/dζ

and position ϕ in a potential V (ϕ). The quasiparticle suffers
a frictional force with the coefficient C leading to the
development of collisionless shocklike [37–41] wave in the
sense that no viscous or damping effects resulting from
collisions between dust and plasma particles are involved
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FIG. 10. Variation of the shock wave width �sh with μ for
different values of the nonextensive electron parameter q = 1.01,
3, and 6, with α = 0.0288, β = 3 × 10−10, U0 = 1, and ε = 10−2.
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FIG. 11. Variation of the shock wave width �sh with μ for
different values of the nonextensive electron parameter q = 0.6, 0.7,
and 0.8, with α = 0.0288, β = 3 × 10−10, U0 = 1, and ε = 10−2.

[42,43]. As demonstrated in Ref. [35] and elsewhere [44],
the solution of (48) describes a shock wave whose velocity
W0 is related to the extreme values by ϕ (ζ = −∞) − ϕ(ζ =
∞) = 2W0/A. The nature of these shock structures depends
on the strength of dissipation as well as on the relative values
between the dispersive and dissipative terms B and C. Let
us then determine the condition for monotonic as well as
for oscillating shock profiles by investigating the asymptotic
behavior of the solutions of Eq. (48) for ζ −→ −∞. We first
substitute ϕ(ζ ) = ϕ0 + ψ , where ψ � ϕ0, into Eq. (48) and
then linearize it with respect to ψ . But then instead of (48) we
obtain

B
d2ψ

dζ 2
− C

dψ

dζ
+ W0ψ = 0. (51)

The solutions of (51) are proportional to exp(pζ ), where p

is given by p = C ±
√

C2 − 4BW0/2B. It turns out that the
shock wave has a monotonic profile for Sc = C/2

√
BW0 > 1,

and an oscillating profile for Sc < 1. We have numerically
analyzed Sc for space dusty plasma parameters. The variation
of Sc with μ for different values of q is shown in Figs. 8 (q > 1)
and 9 (q < 1). It can be seen that Sc � 1 is always valid
for 0 < μ < 1 indicating therefore that only monotonic weak

DIA shock waves are admitted. Let now consider a situation
where we can neglect the dispersive term. In this limiting case,
Eq. (48) can be rewritten as(

ϕ − W0

A

)
dϕ

dζ
= C

A

d2ϕ

dζ 2
. (52)

The latter can be integrated, making use of the condition that
ϕ is bounded as ζ −→ ±∞, to yield

�(1) = �sh

{
1 − tanh

(
ξ − W0τ

�sh

)}
, (53)

where �sh = W0/A and �sh = 2C/W0. Equation (53) repre-
sents a monotonic shocklike solution with the shock speed, the
shock height, and the shock thickness given by W0, �sh, and
�sh, respectively. Figures 10 and 11 show the μ dependence
of the shock width �sh for a given nonextensive parameter q.
We see that for q > 1 (q < 1) the dissipative structure narrows
(enlarges) as the electron nonextensivity strengthens.

IV. CONCLUSION

To conclude, we have revisited the DIA waves of Shukla
and Silin [13] within the theoretical framework of the Tsallis
statistical mechanics, and thereby shown that under certain
conditions the effect of electron nonextensivity can be quite
important. In particular, it may be noted that because of
electron nonextensivity the DIA solitary wave may exhibit
either a compression or a rarefaction. The lower limit of
the Mach number for the existence of DIA solitary waves is
smaller (greater) than its Boltzmannian counterpart (q → 1)
for q > 1 (−1 < q < 1). This lower limit decreases and
becomes less than unity, as the nonextensive parameter q

increases. However, dust grains immersed in a plasma may
exhibit charge fluctuations in response to plasma charging
currents flowing onto them. Our analysis has then been
extended to include self-consistent dust charge fluctuation.
In this connection, the correct nonextensive electron charging
current is rederived. The Korteweg–de Vries equation, as well
as the Korteweg–de Vries–Burgers equation, are obtained
making use of the reductive perturbation method. The DIA
waves are then analyzed for parameters corresponding to space
dusty plasma situations. Considering the wide relevance of
nonlinear oscillations, our results should help to understand
the salient features of coherent nonlinear structures that may
occur in dusty plasmas with nonextensive particles.
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