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in collisionless plasmas
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In this report, we present a dynamical systems approach to study the exact nonlinear wave-particle interaction
in relativistic regime. We give particular attention to the effect of wave obliquity on the dynamics of the orbits
by studying the specific cases of parallel (θ = 0) and perpendicular (θ = −π/2) propagations in comparison to
the general case of oblique propagation θ =]−π/2,0[. We found that the fixed points of the system correspond
to Landau resonance and that the dynamics can evolve from trapping to surfatron acceleration for propagation
angles obeying a Hopf bifurcations condition. Cyclotron-resonant particles are also studied by the construction
of a pseudo-potential structure in the Lorentz factor γ . We derived a condition for which Arnold diffusion results
in relativistic stochastic acceleration. Hence, two general conclusions are drawn: (1) The propagation angle θ

can significantly alter the dynamics of the orbits at both Landau and cyclotron-resonances. (2) Considering the
short-time scales upon which the particles are accelerated, these two mechanisms for Landau and cyclotron
resonant orbits could become potential candidates for problems of particle energization in collisionless space and
cosmic plasmas.
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I. INTRODUCTION

The wave-particle interaction has long been considered a
dominant energy-momentum exchange mechanism in space
and astrophysical plasmas. Beyond the dense and internal
boundaries of stars and planetary magnetospheres, space
and astrophysical plasmas are predominantly collisionless
and populated by distributions functions inconsistent with
collisional equilibrium conditions. These plasmas are also
believed to be turbulent systems described by a conventional
energy cascade from large scales to small scales where dis-
sipation takes place. While fluid theories provide satisfactory
descriptions of macroscopic quantities at large scales, they are
not equipped to explain the plasma physics at smaller kinetic
scales, and one needs to include nonlinear kinetic processes
(wave-particle interactions and wave-wave interactions) for
a correct description of these turbulent and collisionless
plasmas [1].

Studies of wave-particle interactions in space and astro-
physical turbulent plasmas have commonly fallen under the
scope of quasilinear theory [2,3]. Quasilinear theory departs
from linear theory in conserving energy and momentum
through the account of the wave-particle interaction, resulting
in a diffusion process for an ensemble averaged distribution
function solution to a Fokker-Planck equation. However,
quasilinear theory is constrained by a number of severe
limitations, making it inapplicable for plasmas containing
large-amplitude quasimonochromatic electromagnetic and/or
electrostatic waves. Indeed, the first assumption for quasi-
linear theory consists in constraining particle orbits to their
unperturbed components. A second assumption consists in
assuming a wave spectrum sufficiently dense so that interfer-
ence between modes is destroyed by phase-mixing. Hence,
quasilinear theory is valid only when the bandwidth is broad
enough to enable resonances to be maintained as particles are
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scattered, and nonlinear trapping effects by individual waves
are too weak to be taken into consideration.

Due to the inherent difficulties of strong turbulence theories,
test-particle methods have become a favored tool for the
study of wave-particle interaction beyond the constraints of
quasilinear theory. Numerous methods have been developed in
the context of the radiation belts alone, ranging from guiding-
center approximation [4], to resonance-averaged Hamiltonian
[5], gyroresonance averaged equations [6], and computer
simulations, taking into account approximate and exact dipolar
fields (see Ref. [7] and references therein). However, the
general case of oblique propagation has often been avoided
in favor of the more tractable case of parallel of propagation
[8]. A strong case can be made for the neglect of oblique
propagation and nonlinear effects for small amplitude waves
since the appearance of a small parallel electric field cannot
trap orbits [9]. However, if the electric-field component of the
wave becomes sufficiently large, such that nonlinear effects
can be triggered, then a rich class of orbits can result, and the
parallel approximation becomes invalid. It is in this sense that
we are solving the equation of motion exactly.

Recent observations of the radiation belts suggest that
obliquely propagating waves with Poynting flux two orders
of magnitude larger than previously observed whistlers waves
are commonly generated in the radiation belts and appear
correlated with relativistic electron microbursts [10]. These
large-amplitude waves can propagate at large propagation
angles (θ � 70o) and possess amplitudes capable of energizing
electrons on time scales of the order of the milliseconds [11].
If these large-amplitude waves are shown to be a common
observational signature in the radiation belts, the conventional
models used to describe the wave-particle interaction using a
quasilinear formalism will have to be revisited. It is not only
inaccurate to assume that a particle will execute a random walk
in pitch angle during the course of one bounce period, but as
demonstrated below, a particle can be irreversibly accelerated
to relativistic energies in less than one bounce period.
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In this report, we investigate the exact nonlinear wave-
particle interaction in the relativistic regime. The inclusion of
relativistic effects is a sine qua non condition for any attempt
at solving the outstanding problems which have emerged in
radiation belts dynamics as well as galactic cosmic rays. Our
goal is to provide a general framework for the wave-particle
interaction by using a dynamical systems approach. Such
approach, although lacking the level of self-consistency found
in numerical simulations, can facilitate the understanding of
complex systems such as cosmic and space plasmas and,
therefore, provide for an intuitive as well as quantitative leap
between theoretical models and simulations.

The report is written as follows. In Sec. II we derive the
dynamical system as well as its fixed points and invariants.
In Sec. III we treat the special cases of parallel and purely
perpendicular propagation. In Sec. IV we study the general
case of oblique propagation for the cyclotron-resonance case as
well as the Landau resonance. Section V contains a discussion
of the general framework for the understanding of the wave-
particle interaction and the effect of oblique propagation in
collisionless plasmas such as the radiation belts. In Sec. VI we
conclude and discuss studies currently underway to address
limitations of the dynamical system approach.

II. DYNAMICAL SYSTEM

A. Equation of motion for the general case

Our study begins with the equation of motion of a particle in
an electromagnetic field, as described by the Lorentz equation.
The equations of motion can be written as

dp
dt

= e

[
E(x,t) + p

mγc
× B(x,t)

]
, (1)

for a particle of charge e, momentum p = mγ v, and rest mass
m. The Lorentz factor, γ , is defined in terms of the relativistic
momentum as follows:

γ =
√

1 + p2

m2c2
. (2)

The electromagnetic field configuration consists of a back-
ground magnetic field B0 to which is superposed an electro-
magnetic wave given by (δE,δB):

E(x,t) = δE(x,t) (3)

B(x,t) = B0 + δB(x,t) (4)

The electromagnetic wave vector k is chosen to point in the ẑ

direction, obliquely to the background magnetic field lying in
the y-z plane:

k · B0 = kB0 cos(θ ) (5)
δE = δEx x̂ + δEy ŷ

δB = δBx x̂ + δBy ŷ,
(6)

with the wave magnetic field components written as

δBx = δB sin(kz − ωt)

δBy = δB cos(kz − ωt)
(7)

and Faraday’s law, expressed in terms of the Fourier
components, providing for the components of the electric
field

ck × δE(k,ω) = ωδB(k,ω). (8)

We can, therefore, express the dynamical system in terms of
the phase velocity vφ = ω/k, and the variables p� = mγv�;
	1 = eδB/mcγ ; 	0 = eB0/mcγ , resulting in the following
coupled ordinary differential equations:

ṗx = py	0 cos(θ ) + (p� − pz)	1 cos(kz − ωt)

+pz	0 sin(θ )

ṗy = −px	0 cos(θ ) + (pz − p�)	1 sin(kz − ωt)

ṗz = −px	0 sin(θ ) + px	1 cos(kz − ωt)

−py	1 sin(kz − ωt)

ż = pzv�/p�. (9)

In the classical case, the dynamical system is composed of
four equations, the three components of the velocity plus
the position coordinate along k. However, in the relativistic
case the expression for the Lorentz factor must be obeyed and
constitutes a constraint on the particle’s trajectory. We can keep
track of this constraint by adding an equation in the expression
of a dynamical gyrofrequency:

	̇0 = d

dt

(
eB0

mcγ

)
= −	0

pc2

m2c4 + p2c2
ṗ

= −	0	1p�

m2γ 2c2
[px cos(kz − ωt) − py sin(kz − ωt)]. (10)

If we define the constant δ1 = 	1/	0, it is straightforward
to see that 	̇1 = δ1	̇0, and similarly, since p� = p�(γ ), the
time evolution of this quantity can be written as:

ṗ� = −mv�γ
	̇0

	0
. (11)

In order to simplify the dynamical system, we can eliminate
the explicit time dependence of the equations by making the
following mathematical transformation:

p′
x = px, p′

y = py, p′
z = γw(pz − pφ),

z′ = γw(z − vφt)

(12)

for the Lorentz factor:

γw = 1√
1 − v2

�

c2

. (13)
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We can, therefore, write the equations of motion as follow:

ṗ′
x = 	0p

′
y cos(θ ) − 	1p

′
z cos(kz′/γw)/γw

+	0(p′
z/γw + pφ) sin(θ )

ṗ′
y = −	0p

′
x cos(θ ) + 	1p

′
z sin(kz′/γw)/γw

ṗ′
z/γw = −	0p

′
x sin(θ ) + 	1p

′
x cos(kz′/γw)

−	1p
′
y sin(kz′/γw) − ṗ�

ż′ = p′
zv�/p�. (14)

If we absorb the Lorentz factor γw into p′
z and k, that is we

write p′
z → p′

z/γw and k → k/γw, and write ṗ� in terms of
(p′

x,p
′
y,p

′
z,z

′,	0), we can express the dynamical system as:

ṗ′
x = 	0p

′
y cos(θ ) − 	1p

′
z cos(kz′) + 	0(p′

z + pφ) sin(θ )

ṗ′
y = −	0p

′
x cos(θ ) + 	1p

′
z sin(kz′)

ṗ′
z = −	0p

′
x sin(θ ) + 	1(

n2 − 1

n2
)[p′

x cos(kz′) − p′
y sin(kz′)]

ż′ = p′
zv�/p�, (15)

where the refractive index is represented as n2 = c2/v2
�.

The magnitude of the momentum is now written as p′ =√
p

′2
x + p

′2
y + (p

′
z/γw)2; hence, the Lorentz contraction factor

also transforms from γ (p) → γ (p′). The dynamical system
for the classical case can be recovered by setting γ = 1
and 1/n2 → 0. Indeed, the equations are equivalent to the
classical case under the following transformations: p → u

and 	 → 	/γ . Hence, the main difference lies in the time
dependence of the Larmor frequencies and the extra term that
goes as 1/n2 in the ṗ′

z equation.

B. Representation in terms of (P , α, �, z′)

It is convenient to express the relativistic momentum in
spherical coordinates, that is in terms of a magnitude p′ and
phase angles (α,�). This can be achieved by introducing the
following scalar and vector variables:

p‖ = p‖b̂0

p⊥ = p̂0 × (p × p̂0) = p − p‖b̂0,
(16)

where b̂0 = B0/B0. Using these definitions, we can rewrite the
momentum p′ = (p′

x,p
′
y,p

′
z) in terms of the pitch angle α and

the dynamical gyrophase �, both defined as

tan(α) = p′
⊥

p′
‖

tan(�) = p′
⊥1

p′
⊥2

= p′
x

p′
y cos(θ ) + p′

z sin(θ )
. (17)

Hence, all three-momentum components in the wave frame
are written as

p′
x = p′ sin(α) cos(�)

p′
y = p′ sin(α) sin(�) cos(θ ) − p′ cos(α) sin(θ )

p′
z = p′ sin(α) sin(�) sin(θ ) + p′ cos(α) cos(θ ). (18)

Using the definition Eqs. (17) and the representation of the
momentum in Eq. (18), we can proceed to write the dynamical
system Eq. (15) in terms of the normalized variables:

P = kp′

mω
, δ1 = 	1

	0
, δ2 = mωc

eB0
, δ3 = 1

δ2γ
,

(19)

n2 = c2

v2
�

, Z = kz′, τ = ωt

and the function F (α,�,Z), as follows:

dP

dτ
= sin(α) cos(�) sin(θ )/δ2 − δ1δ3P

n2
[ sin(α) sin(�) sin(θ )+cos(α) cos(θ )]F (α,�,Z)

dα

dτ
= 1

Pδ2
cos(α) cos(�) sin(θ ) − δ1δ3

[
cos2

(
θ

2

)
cos(� + Z) − sin2

(
θ

2

)
cos(� − Z)

]

+ δ1δ3

n2
[ cos(θ ) sin(α) − cos(α) sin(�) sin(θ )]F (α,�,Z)

d�

dτ
= −δ3 + sin(θ )

[
δ1δ3 cos(Z) − sin(�)

δ2P sin(α)

]
+ δ1δ3

tan(α)

[
cos2

(
θ

2

)
sin(� + Z) + sin2

(
θ

2

)
sin(Z − �)

]

− δ1δ3

n2

cos(�) sin(θ )

sin(α)
F (α,�,Z)

dZ

dτ
= δ2δ3P [ sin(α) sin(�) sin(θ ) + cos(α) cos(θ )]

dδ3

dτ
= −δ1δ2δ

3
3P

n2
F (α,�,Z)

F (α,�,Z) = sin(α) sin2

(
θ

2

)
cos(� − Z) + sin(α) cos2

(
θ

2

)
cos(� + Z) + cos(α) sin(θ ) sin(Z). (20)

It is easy to observe that we can recover the classical regime by setting δ̇3 = γ̇ /γ δ2 = 0 or F (α,�,Z) = 0. We now proceed to
study some of the properties of the dynamical system.
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C. Fixed points

A common first step in the study of dynamical systems
is to find and investigate the properties of fixed (stationary)
points. The fixed points of the dynamical system Eq. (20) are
defined as the values in (P,α,�,Z,γ ), for which (Ṗ = α̇ =
�̇ = Ż = γ̇ = 0). It can be demonstrated (see Appendix A)
that the dynamical system, for −π/2 < θ < 0, possesses the
following values for the fixed points:

P = −γ tan(θ ); α = ±θ ± π

2
;

� = ±π

2
; Z = 0,π ; (21)

γ = 1√
1 − v2

�

c2 (1 + tan2(θ ))
.

It is already evident from Eq. (21) that in the case of
parallel propagation (θ = 0), the only fixed point is that for
the trivial case P = 0. The fixed point for the relativistic
regime appears, therefore, similar to the classical one for
parallel and oblique propagation [12]. The fixed point for the
relativistic regime will translate into properties found in the
nonrelativistic regime, but also results in different types of
structures in their vicinity. For nonzero propagation angles,
fixed points identify volumes of phase-space composed of
physically trapped orbits. The trapped orbits could give rise to
kinetic distortions in the distribution functions, such as beams
and temperature anisotropies, as was revealed in the classical
nonrelativistic case [13]. However, because the relativistic
equations possess a constraint in the form of the Lorentz factor
γ , different effects are shown to arise.

D. Invariants

The dynamical system Eq. (20) also possesses a number
of invariants valid for the general case of oblique propa-
gation. Knowledge of these invariants is used to construct
pseudo-potential structures. In turn, these structures provide
information on trapped and quasitrapped orbits.

1. First invariant: I1

Using Eqs. (19) to normalize Eq. (10), the equation
describing the evolution of the gyrofrequency can be written
as follows:

δ̇3 = −δ3
1

1 + n2

�2

�̇

�
, (22)

for � = kp/mω. Hence, this equation has an exact solution,
providing the following constant of the motion:

I1 = δ3

√
�2 + n2. (23)

We can write this invariant in terms of the variables P,α,�,Z,

and δ3 as follows:

I1 =
√

δ2
3P

2 + 2δ3Pz/δ2 + δ2
3n

2. (24)

The conservation of this quantity will indicate the degree to
which the constraint for the Lorentz factor Eq. (2) is respected
in a numerical scheme.

2. Second invariant: I2

A second general invariant can be found and expressed in
terms of the normalized variables as follows:

I2 = δ2(n2 − 1)γ cos(θ ) − δ2P cos(α) + δ1 sin(θ ) cos(Z).

(25)

This invariant underlies a fundamental property of oblique
propagation. One can indeed rewrite the invariant in the form
E = mγc2 ∼ P‖, which means that one needs a change in
the parallel momentum to change the energy. This is a well-
known statement resulting from the Maxwell-Lorentz invariant
quantity E · B = 0, since a parallel component of the electric
field cannot be eliminated by any Lorentz translation, while the
physics in a frame with E‖ = 0, such as in the case of parallel
propagation, is no different, therefore, than the physics in a
frame where E⊥ = E‖ = 0, for which energy is a constant of
the motion.

III. SPECIAL CASES

A. Parallel propagation: θ = 0

The wave-particle interaction problem has overwhelmingly
been treated for the special case of parallel propagation. Even
though we do not present any new result in this section, we
find it useful to briefly discuss the parallel case as a means of
comparison to the general oblique case. Setting θ = 0 in Eq.
(20), we recover the following dynamical system:

dP

dτ
= −δ1δ3P

n2
cos(α)F (α,�,Z)

dα

dτ
= −δ1δ3 cos(� + Z) + δ1δ3

n2
sin(α)F (α,�,Z)

d�

dτ
= −δ3 + δ1δ3

tan(α)
sin(� + Z)

dZ

dτ
= δ2δ3P cos(α)

dδ3

dτ
= −δ1δ2δ

3
3P

n2
F (α,�,Z)

F (α,�,Z) = sin(α) cos(� + Z). (26)

In addition to the two invariants I1 and I2, Eqs. (26) also
possesses the following constant of motion [27] for n2 �= 1:

[δ2P cos(α) − 1]2 = 2δ1δ2
n2 − 1

n2
P sin(α) sin(� + Z).

(27)

Moreover, the existence of physically trapped orbits for θ =
0 requires that cos(α) = cos(� + Z) = 0; hence, α = � +
Z = π/2. However, this conditions results in �̇ �= 0. Aside
from the trivial case of P = 0, no fixed point exists and the
parallel propagation has the particular distinction, with respect
to oblique propagation, to not possess solutions for which a
particle could be trapped in Z.

The parallel case has been studied in both the classical
and relativistic regime. The classical treatment covered by
Matsumoto [14] and Hamza et al. [12], have shown that one can
find exact solutions in terms of elliptical integrals. Lutomirski
and Sudan [15] have studied the relativistic case showing that
similar solutions were also possible. Roberts and Buchsbaum
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[16] have also treated the relativistic case with a special focus
on the case n2 = 1, for which a cyclotron-resonant particle
was shown to gain energy indefinitely, while for n2 �= 1, the
particle simply becomes phase trapped at cyclotron-resonance
with no net gain in energy on average. Using the invariant in
Eq. (27) as well as I1 and I2, those results can be expressed in
terms of a pseudopotential equation in the parallel component
of the momentum that we write as y = δ2P cos(α) = δ2P‖:

ẏ2

2
= −V (y; δ1,δ2,n

2,I2)

= δ2
1

2

[
n2 − 1

n2

]2[
n2 − 1

σ (y)2
− 2

y

σ (y)
− (y2 + n2δ2)

]

− 1

8
σ (y)2(y − 1)4, (28)

for the function σ (y) = (n2 − 1)/(I2 + y). Solutions to
Eq. (28) for V (y; δ1,δ2,n

2,I2) < 0 are bound states of the
system for as far as parallel momentum is concerned. However,
this only holds for n2 �= 1. In the case of n2 = 1, we can
easily recover the unlimited acceleration found by Roberts
and Buchsbaum [16] from the invariants of the motion. Setting
θ = 0 and n2 = 1 for I2, one finds that P‖ is constant. That
is, if a particle is at cyclotron-resonance, it will remain so
forever (or until the wave damps) and gain energy indefinitely.
It is demonstrated in the remainder of the report that unlimited
acceleration is also possible for oblique propagation and that
it underlies a specific property of the fixed points.

B. Perpendicular propagation: θ = −π/2

We now investigate the purely perpendicular case, as its
treatment will be useful to characterize the dynamics for
propagation angles that increase toward |π/2|. The dynamical
system is written in the following form:

dP

dτ
= − sin(α) cos(�)

δ2

+ δ1δ3P

n2
sin(α) sin(�)F (α,�,Z)

dα

dτ
= − 1

δ2P
cos(α) cos(�) + δ1δ3 sin(�) sin(Z)

+ δ1δ3

n2
cos(α) sin(�)F (α,�,Z)

d�

dτ
= −δ3 − δ1δ3 cos(Z) + sin(�)

δ2P sin(α)

+ δ1δ3

tan(α)
cos(� + Z) + δ1δ3 cos(�)

n2 sin(α)

× cos(� + Z)F (α,�,Z)

dZ

dτ
= −δ2δ3P sin(α) sin(�)

dδ3

dτ
= −δ1δ2δ

3
3P

n2
F (α,�,Z)

F (α,�,Z) = sin(α) cos(�) cos(Z) − cos(α) sin(Z). (29)

Similar to the parallel case, the dynamical system Eq. (29)
possesses its own set of invariants, written as

I4 = δ1 cos(Z) + δ2P cos(α)

I5 = δ2P cos(�) sin(α) + δ1 sin(Z) + Z + τ. (30)

With the fixed point analysis for this particular case showing
that no fixed points exist, i.e., a particle cannot be physically
trapped, we make the assumption that the solution for Z takes
the form of a linear relationship in time: Z = Z0 + βτ , with
Z0 as the initial condition and β as a constant. Replacing
the solution for Z in the invariant I5 results in the following
expression:

I5 = δ2P cos(�) sin(α) + δ1 sin(Z0 + βτ ) + Z0 + βτ + τ.

(31)

It is, therefore, evident that for İ5 = 0 to be true, the term (β +
1)τ must be either zero, or compensated by the momentum in
x̂, Px = P sin(α) cos(�), to grow to minus infinity as τ goes
to infinity. In the absence of accessible Landau and cyclotron
resonances, the latter solution does not appear acceptable. We
can qualitatively demonstrate this assumption by noting that
for τ 	 δ1, the following approximation must be respected:

γ

tan(�) 
 1−β

δ2β
τ . Hence, either (a) γ → ∞ or (b) � → 0. In

the first case, if γ → ∞, then P → ∞ as well. Hence, for I4

to be constant, stationary solutions giving Py = P cos(α) ∼
constant are required. Such solutions would necessitate Ṗy ∼
0. Such constraint means that either Pz = 0 or Z = 0. But
both solutions are unacceptable since they would imply the
existence of a fixed point, which has been demonstrated to
not exist for the special case of perpendicular propagation. In
the second case, the requirement that � → 0 means that since
δ3P 
 v � c is bounded, Ż → 0, which is in contradiction
with the evidence that Z must be linear in time because of
a zero parallel electric field. We are, therefore, left with the
assumption that β ∼ −1, an assumption that can indeed be
verified by numerical integration.

Without any loss of generality, we set Z0 = 0, resulting in
the solution Z = −τ . Using I4, we find the following solutions
for P‖:

δ2P‖ = I4 − δ1 cos(τ ). (32)

Similarly, the solution for Px can be directly found from I5:

δ2Px = I5 + δ1 sin(τ ). (33)

Using those two solutions, we can find the exact differential
for δ3:

dδ3

δ3
3

= − δ1

n2
[I5 cos(τ ) + I4 sin(τ )]dτ. (34)

Hence, the following solutions for δ3:

1

δ2
3

− 1

δ2
3(0)

= 2δ1

n2
[I5 sin(τ ) + I4 − I4 cos(τ )]. (35)

We can finally find the exact solution for the last variable in
terms of τ from the dynamical system equation in Z, that is:

δ2Pz =
√

1

δ2
3(0)

+ 2δ1

n2
[I5 sin(τ ) + I4 − I4 cos(τ )]. (36)
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We have, therefore, derived exact solutions for the perpen-
dicular case, based on the existence of two invariants and
the nonexistence of fixed points. Two limiting cases can
be deduced from these solutions. If the wave is sustained
for long periods, such that the time of interaction with the
particles τint ∼ 1/εω for ε � 1, the perpendicular propagation
results in phase trapped orbits with no net gain of energy on
average. In the opposite case, where the interaction would be
short-lived such that τint ∼ ε/ω, we can calculate the average
increment in energy during the time of interaction. If we
write Eq. (35) in terms of E = mγc2, and assume large
amplitude, low-frequency waves such that δ1/δ2 ∼ 1, then

E/E0 =
√

1 + 2δ2
1/δ

2
2n

2γ 2
0 ∼ 1 + v2

�/c2 and a particle gains

energy of the order of �E/E ∼ v2
�/c2 for every interaction.

Given a prescription in the probability of interaction P (v�,�t)
with an electromagnetic wave of phase-speed v�, one could
build a map to describe the nonlinear interaction of a particle
in a relativistic turbulent plasma composed of highly oblique
electromagnetic waves. This qualitative analysis for purely
perpendicular wave applies for particles that do not belong to
Landau or cyclotron resonance.

IV. CYCLOTRON AND LANDAU RESONANCES

A. Stochastic acceleration at cyclotron resonance:
ω − k‖v‖ = ±s�0/γ

The most commonly studied problems of wave-particle
interactions have been addressed in the context of cyclotron-
resonance. However, we demonstrate below that the case
of cyclotron-resonance contains further intricacies when the
general case of oblique propagation and nonlinear interaction
is treated in the relativistic limit. In order to do so, we construct
a pseudopotential function for a particle crossing resonances.

The resonance condition is written in terms of the normal-
ized variables as:

γ sin2(θ ) − P cos(α) cos(θ ) = ±s/δ2. (37)

Using the resonance condition to replace the expression of
P cos(α) in I2, we find the following expression:

I2 cos(θ ) ∓ s = δ2γ [n2 cos2(θ ) − 1]

+ δ1 cos(Z) sin(θ ) cos(θ ). (38)

If γ and Z do not have singularities in their derivatives when
the resonance condition is respected, the following relationship
must be satisfied:

dγ

dτ
= δ1 sin(θ ) cos(θ )

δ2[n2 cos2(θ ) − 1]
sin(Z)

dZ

dτ
. (39)

We can find an expression between Ż and γ from the invariant
I1. In order to do so, we write the invariant quantity in the
following form:

dZ

dτ
− n2 − 1

2
= −P 2 + n2

2γ 2

= − n2

2γ 2

[(
P

n
+ 1

)2

− 2
P

n

]


 − n2

2γ 2
; if

P

n
� 1. (40)

Hence, using Eq. (40) in addition to Eq. (38) we can replace
Ż and sin(Z) and find a pseudopotential equation in γ of the
form

γ̇ 2

2
+ V (γ ; δ1,δ2,θ ) = 0, (41)

for a pseudopotential written as:

V (γ ; δ1,δ2,θ ) = −1

2

[
n2 − 1

2
− n2

2γ 2

]2

×
[(

δ1

δ2

sin(θ ) cos(θ )

n2 cos2(θ ) − 1

)2

−
(

I2 cos(θ ) ∓ s

δ2n2 cos2(θ ) − δ2
− γ

)2]

= −1

8

[
β1 − β1 + 1

γ 2

]2[
β2

2 − (β3 − γ )2

]
,

(42)

for the set of constants β1,β2,β3 defined as follows:

β1 = n2 − 1 (43)

β2 = δ1

δ2

sin(θ ) cos(θ )

n2 cos2(θ ) − 1
(44)

β3 = I2 cos(θ ) ∓ s

δ2n2 cos2(θ ) − δ2
. (45)

If we set the initial conditions Z0 = 0 and γ0 = 1, we can write
β3 = β2 + 1. Taking the second derivative of Eq. (41), we find
the following expression:

γ̈ = 1

4
β2

1γ − 1

4
β2β

2
1 + 1

2

β3β1(β1 + 1)

γ 2

+ 1

2

(β1 + 1)2 + (
β2

3 − β2
2

)
(β1 + 1)

γ 3

+ 3

4

β3(β1 + 1)2

γ 4
− 1

2

(
β2

2 − β2
3

)
(β1 + 1)2

γ 5
. (46)

This equation can be used to treat the cyclotron-resonance
for different limits. We hereafter focus on the relativistic low
energy case for which γ = γ0 + δγ , with δγ � γ0. Using
Newton’s approximation to express γ −n 
 γ −n

0 (1 − nδγ /γ0)
and setting γ0 = 1, we find the following forced oscillator
equation:

¨δγ + �2δγ = �(β1,β2), (47)

for the frequency squared:

�2 = − 1
4β2

1 − β3β1(β1 + 1)

+ 3
2

[
(β1 + 1)2 + (

β2
3 − β2

2

)
(β1 + 1)

]
+ 3β3(β1 + 1)2 − 5

2

[(
β2

2 − β2
3

)
(β1 + 1)2

]
, (48)

and the constant forcing term

� = − 1
4β2

1 (β3 − 1) + 1
4β3(β1 + 1)(β1 + 3)

+ 1
2

[
(β1 + 12) + (

β2
3 − β2

2

)
(β1 + 1)

]
− 1

2

(
β2

2 − β2
3

)
(β1 + 1)2. (49)

Figure 1 represents the dependence of � as a function of
θ for fixed values of δ1. It is clear that for the range of
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FIG. 1. (Color online) Squared frequency �2 as a function of
the propagation angle θ for a relativistic particle in cyclotron
resonance. Each curve represents a different value in the wave-
amplitude parameter spanning 0.01 � δ1 � 1. The four bold (red)
lines correspond, from top to bottom, to δ1 = (0.05,0.09,0.1,0.3).

chosen parameters (v�/c ∼ .70,δ2 = 1), the oscillations in δγ

can evolve from harmonic solutions to hyperbolic solutions
as the amplitude of the wave increases. As a result of a
large-wave amplitude, that is δ1 growing, a wide range of
propagation angles will result in hyperbolic perturbations
for a relativistic particle in cyclotron resonance. Figure 2
represents the transition from �2 > 0 to �2 < 0. As the wave
amplitude increases, the particle transits from trapped-orbits
to quasitrapped orbits in phase-space. If the amplitude is
further increased, the orbit becomes stochastic. Quasitrapped
and stochastic orbits result from the wandering of the particle
from one cyclotron harmonic to another. Hence, the particle
gains energy stochastically. This result is an extension of the

FIG. 2. (Color online) (a) Pitch angle α vs. dynamical gyrophase
� for �2 > 0. The particle is phase-trapped. (b) Pitch angle α vs.
dynamical gyrophase � for �2 < 0. The particle is quasitrapped in
phase-space. (c) Lorentz factor γ vs. Z for δ1 = (0.05,0.09,0.1,0.3).
When �2 < 0, the orbit is unstable in γ and depart from the
forced harmonic oscillation observed for �2 > 0. (d) Resonance
condition quantified by s(P,γ,α; θ,δ2) for the case of �2 < 0. The
particle travels through multiple resonances as it gains energy through
repeated kicks.
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n

FIG. 3. (Color online) Arnold tongue in the parameter space
(θ,n = c/v�), for δ1 = 0.3, δ2 = 1.

overlapping resonances studied by Smith and Kaufman [17]
for classical regimes. Using a restrictive choice of parameters,
they found that wave amplitudes of the order of δ1 = δB/B0 �
15 were necessary to have overlapping resonances. However,
our analysis shows that there is a window in parameter
space belonging to the relativistic regime that allows for
the overlapping of resonances for amplitudes two orders
of magnitude smaller. Similar to the classical case, large
amplitudes translate into a broadening of the phase-trapping
cell. Trapping cells are also largest for propagations at θ = 45◦.
Plotted in Figs. 3 and 4 are Arnold tongues, that is regions of
parameter space (n2,θ,δ1,δ2) leading to stochastic orbits. It is
evident from the Arnold tongues that even though the effect
described by our analysis is purely relativistic, a wide range of
parameters can result in stochastic orbits.

It should be noted that even though the equations presented
in this section also apply to the case of Landau resonance, the
parameter space, in which unstable orbits and overlapping can
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δ 2

FIG. 4. (Color online) Arnold tongue in the parameter space
(n,δ2), for δ1 = 0.5, θ = 45◦.
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operate, belongs to velocities that must go beyond the speed of
light. Therefore, the aforementioned result applies specifically
to the case of cyclotron-resonances.

B. Hopf bifurcation at Landau resonance: ω = k‖v‖

A fundamental property of a given dynamical system can be
deduced by investigating whether the phase-space density and
volume is conserved or not. That is, whether or not Liouville’s
theorem applies [18]. The validity of Liouville’s theorem
provides the possibility to construct distribution functions and
follow their evolution in time. Nonconservation of phase-space
density, either locally or globally, stems from the existence
of either attractors or nonbounded orbits. Making use of
the invariant I2, we compute the divergence of the flow in
phase-space as follows:

1

V

dV

dt
= �∇ · d�ξ

dt
= ∂Ṗx

∂Px

+ ∂Ṗy

∂Py

+ ∂Ṗz

∂Pz

+ ∂Ż

∂Z
= − γ̇

γ
, (50)

for the volume in phase-space V and the phase-space vector
coordinate �ξ = (Px,Py,Pz,Z). Hence, Eq. (50) hints at the
existence of an attractor if the volume in phase-space shrinks
as γ → ∞. In the case where the particle’s energy oscillates
back and forth such as for a volume of physically trapped
orbits, we can consider Liouville’s theorem to apply. But it
can be shown that such an attractor does exist. A recently
published Letter has shown that the attractor arises from a
change in parameters that results in the bifurcation of the orbits
around the fixed points [19]. Indeed, the stability analysis in
Appendix B demonstrates that to every fixed points, combined
values in (θ,n2), satisfying the condition n2 − 1 = tan2(θ ),
correspond to a bifurcation in stability [28]. That is, an orbit,
close to the fixed point will experience a transition from a
(marginally) stable orbit to an unstable orbit. We observe that
when the condition in parameter space is respected, and for
a large enough amplitude of the wave magnetic field, the
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FIG. 5. (Color online) Case θ < θc = arctan
√

n2 − 1. Particle
orbit for parameters δ1 = 0.1, δ2 = 0.0696, n2 = 4, θ = θc − 1◦ and
initial conditions v′

x0 = 0, v′
y0 = −v� tan(θ ) − 1.6v�, v′

z0 = −v�,
Z0 = 0. The particle is physically and phase trapped. It bounces
back and forth in the potential well with no net gain in energy.
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FIG. 6. (Color online) Case θ = θc. Parameters δ1 = 0.1, δ2 =
0.0696, n2 = 4. The orbit is locked in pitch-angle α and dynamical
gyrophase �, trapped along Z, and accelerated uniformly.

real part of one of the eigenvalues becomes positive. This
type of bifurcation for pairs of complex conjugate eigenvalues
crossing through the imaginary axis, is the well-known Hopf
bifurcations [20].

Represented in Figs. 5–9 are typical families of orbits
for parameters below, equal to, and above the propagation
angle at the Hopf bifurcations (θc = arctan

√
n2 − 1) for a

given refractive index n, respectively. The wave parameters are
chosen for a large-amplitude (δ1 = 0.1), low-frequency wave
(δ2 = 0.0696), but similar results also apply to frequencies of
the order of the gyrofrequency as long as the wave-amplitude
is sufficiently large to allow physical trapping. We can observe
that when θ < θc, the particle becomes physically and phase
trapped in the phase space region centered at the fixed point.
The particle eventually closes unto itself with no net gain
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FIG. 7. (Color online) Case θ = θc. Three particle orbits seeded
with different initial conditions show that the attractor is periodic.
Parameters δ1 = 0.1, δ2 = 0.0696, n2 = 4. The orbit is locked in
pitch-angle α and dynamical gyrophase �, trapped along Z, and
accelerated uniformly.
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FIG. 8. (Color online) Case θ > θc. Particle orbits for parameters
δ1 = 0.1, δ2 = 0.0696, n2 = 9. The attractor is lost and can give rise
to quasitrapped orbits in the dynamical phase angles.

on average in energy. For θ = θc, the particles belonging
to the basin of attraction centered around the fixed point
become locked in pitch-angle α and dynamical gyrophase
� and trapped along Z. This locking effect results in the
divergence of the momentum to infinity under a uniform
acceleration. This mechanism is similar to the surfatron
process commonly studied in the physics of lasers and in the
problem of wave-particle acceleration in astrophysical shocks
[21–23]. Such an effect is purely relativistic and requires the
presence of the Lorentz-invariant parallel electric field. The
violation of Liouville’s theorem belongs to volumes composed
of these surfing and trapped orbits. However, since the surfing
acceleration is so efficient, a wave would be expected to
damp away before considerations for self-consistency and
collisions are deemed necessary. The case of θ > θc manifests
itself through the loss of stability of the fixed point and
the evolution of the attractor into two-dimensional tori. The
particle is initially trapped in the α, �, and Z plane but
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FIG. 9. (Color online) Case θ > θc. Particle orbits for parameters
δ1 = 0.1, δ2 = 0.0696, n2 = 9. Despite the loss of the attractor,
particles can still be accelerated to relativistic energy levels.

eventually becomes untrapped in Z while its orbit never
closes. Such a regime in parameter space can as well result
in the acceleration of particles. Figure 6 shows that despite
the incapacity to physically trap the orbits, the particle can
be accelerated to relativistic levels. It is, therefore, clear from
the above examples that the fixed points manifest themselves
differently as a function of the wave obliquity and that the
propagation angle is a critical parameter for relativistic orbits
in the presence of large-amplitude waves.

V. DISCUSSION

A. General framework

A general framework for understanding the wave-particle
interaction for a monochromatic wave can be drawn from
the previous theoretical analysis of the dynamical system
presented in this paper. When the propagation is parallel, that
is θ = 0, the electric field can be eliminated by making a
transformation to the wave-frame, resulting in the particle’s
dynamics being resolved entirely. The particle can be phase-
trapped but never physically trapped. When the propagation
angle increases, the obliquity becomes manifest through the
appearance of a Lorentz-invariant parallel electric field. This
electric field physically traps orbits and can result in the
creation of a beam parallel to the background magnetic field
as well as anisotropies in temperature. Indeed, the oblique
propagation can provide an explanation for kinetic distortions
of distribution functions for relativistic energies, in a similar
manner that it does for the classical case. As the propagation
angle increases, the stable fixed point (θ < θc), responsible for
trapped orbits and kinetic distortions of distribution functions,
goes as P = tan(θ ) and, therefore, shifts trapped cells to
higher parallel velocities. If the stable fixed point is too distant
from the tail of the distribution, no particles will be trapped.
This transition from physically trapped to untrapped orbits is
singularized by the treatment of the purely perpendicular case.
For θ = −π/2, as well as for particles that do not belong to
the basin of the stable fixed point for θ �= −π/2, the dynamics
of the orbit can be simplified to a back-and-forth slushing on
the wave with no net gain in energy on average.

On the other hand, if the propagation angle reaches the
critical value θ = θc, at which the stability of the fixed point is
destroyed by the Hopf bifurcation, the particle belonging to the
basin of attraction will be accelerated uniformly to relativistic
energies. For θ > θc, a particle initially belonging to the basin
of attraction now becomes chaotic and physical trapping is
lost.

In between the regions of phase-space composed of physi-
cally trapped and surfing orbits, resides one further source of
particle energization. The acceleration in this case originates in
the cyclotron-resonance and results in stochastic trajectories.
The inclusion of obliquity as well as the preservation of
nonlinearities and relativistic effects reveal that for a given
propagation angle, there is a window in parameter space for
which a particle can be accelerated in a diffusive manner
primarily along the perpendicular direction. This stochastic
process is similar to that of the overlapping resonances
for the classical case for obliquely propagating electrostatic
waves [17]. The results described in the section above consist
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indeed of an overlapping of resonances but does operate
for wave-amplitudes about two orders of magnitude lower
than those previously assumed. The explanation for this
discrepancy with the classical regime is that as the particle
gains energy, the dynamical gyrofrequency 	0 = eB0/mγ c

decreases sufficiently to allow the particle to wander from one
resonance to another.

The acceleration mechanisms described above both have
the important and interesting particularity to operate on
short kinetic time scales. The difference is that one operates
stochastically and energizes particles primarily along the
perpendicular direction, while the second results in a locking in
pitch angle and gyrophase and accelerates particles coherently
and primarily along the parallel direction.

B. Applications to planetary radiation belts

The most recent waveforms measured in the radiation belts
have revealed an unexpected discovery. Large-amplitudes,
monochromatic, obliquely propagating, and bursty waveforms
were not only repeatedly measured in the radiation belts
[10,24–26] but appeared correlated with electron energization
[10] as well as relativistic microbursts events [26]. The
correlation between chorus waves and electron energization
in the radiation belts is not recent, but it is suspected that if
such waveforms were more commonly present in the radiation
belts that they could be the dominant trigger responsible for
the energization of electrons on short time-scales. A study by
Yoon [11] has shown that if one solves the plasma equations
self-consistently, that such waveforms were indeed capable
to accelerate electrons on kinetic time scales consistently
with the observations. Even though our study lacks the
levels of self-consistency provided by the numerical method
developed by Yoon [11], we arrive to similar conclusions
if we choose parameters consistent with the radiation belts
measured waveforms. If we integrate the dynamical system
for a few wave periods, and with low frequency δ2 = 0.1,
large amplitude δ1 ∼ 0.06 and for propagation angles obeying
the Hopf bifurcations, we find that keV electrons commonly
found in the radiation belts could be accelerated on the order
of the milliseconds to MeV energies.

However, despite encouraging results, we would like to
leave a few words of caution. We cannot rule that such a
mechanism is at play in the radiation belts and the reasons
are as follows. (1) There is no clear understanding of the
origin of the observed large-amplitude oblique waveforms in
the radiation belts. Before we can pinpoint their origin, it
is impossible to attempt any self-consistent approach to the
current problem. (2) The observations of these waveforms
are plagued by uncertainties large enough to seriously un-
dermine any attempt to determine precisely one or multiple
acceleration processes. In the very case of the surfatron at
Landau resonance, one would need good resolution for the
electric and magnetic field components of the waves to obtain
propagation angles and wave vectors. (3) Finally, the wave
forms are observed with an electrostatic component and the
analysis above needs to be conducted with the addition of this
compressive electric component. Even though it can be shown
that the addition of the electrostatic field with the same phase
as the electromagnetic components of the fields would result

in the same condition for the surfatron process, a difference
in phase would shift the Hopf bifurcation and have nontrivial
effects that needs to be scrutinized.

In such context, we cannot claim that such a mechanism
is at play in the radiation belts, but we do suggest that
since electrons with keV energies can be accelerated to MeV
energies on kinetic timescales, that such mechanism could
possibly arise in the radiation belts and other space and cosmic
plasmas who are suspected to be permeated by equivalent
large-amplitude waveforms [29].

VI. CONCLUSION

We have developed a dynamical system to model the inter-
action of an ion with an obliquely propagating electromagnetic
wave in the relativistic limit. We have given a particular focus
on the effect of the obliquity on the particle dynamics. It
was demonstrated that physical trapping of Landau resonant
particles could be identified by the fixed points analysis.
Perhaps the main conclusion of our study is that the wave-
particle interaction of a single wave demonstrates a rich
diversity of mechanisms (acceleration, surfing, stochasticity,
trapping) for which the propagation angle is an important and
critical parameter. Indeed, the most telling observation is that
the physics at one propagation angle θ can be significantly
altered for an angle θ ± ε.

Even though the prime difference between oblique propa-
gations with parallel and perpendicular propagations resides
in the inclusion of a region of phase-space for which particles
are physically trapped, we have shown that the relativistic
treatment also translates in coupled values in (θ,v�) for which
particles are accelerated to relativistic energies on kinetic time
scales 	0τ � 1. Such a mechanism, even though requiring
specific wave properties, can be efficient since it operates
on short-time scales, and the volume encompassed by the
attractor is large enough to affect a nonnegligible portion of a
distribution function.

Furthermore, it was shown that relativistic effects enhance
the cyclotron-resonant stochastic acceleration. As a result of
the overlapping in resonances, particles can wander through
multiple resonances resulting in a stochastic increase in
energy. This relativistic effect is of interest, since it provides
acceleration for wave amplitudes lower than those required
for classical regimes of overlapping cyclotron resonance.
Such a mechanism could pertain and be more spread than
initially assumed in collisionless plasmas where particles can
be confined for long-time scales.

It should finally be pointed out that the model we used
is not self-consistent, and will therefore require corrections
in order to take into account the complexity of space and
astrophysical plasmas. Among these necessary corrections, the
departure from a monochromatic spectrum to one composed
of a bandwidth appears today as the most fundamental of
them all. Even though some of the large-amplitude waves
recently measured in the radiation belt show a significant
degree of monochromaticity, the cosmic and space plasmas
are mostly turbulent, and the inclusion of additional waves to
confirm or infirm the nature of the processes responsible for
the acceleration of particles is an inevitable step. However,
the dynamical system approach offers numerous advantages
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and the endeavors for greater self-consistency can be achieved
accordingly. Indeed, the dynamical system for the general case,
once families of solutions have been found, can be used as a
background nonlinear solution to the wave-particle interaction,
upon which corrections, such as addition of waves, changing
polarization, dispersion effects, inhomogeneous background
magnetic field, etc., can all be treated as perturbations to
the family of solutions of the “nonlinear homogeneous”
system. Such method could be investigated theoretically and
numerically, in a similar methodological fashion and with
comparable tools that Hamiltonian systems were constructed
to investigate the impact of nonlinear perturbations.
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APPENDIX A: FIXED POINTS ANALYSIS

Fixed points of an n-dimensional dynamical system denote
stationary solutions for all n variables. Fixed points are defined
for values of the variables for which the dynamical system
equations equal zero. In this particular case, fixed points
represent orbits of physically trapped particles. In order to
find the fixed points, we proceed as follows. It is clear at first
that in order to have γ̇ = 0, one needs to have F (α,�,Z) = 0.
Keeping this in mind, we first transform the dynamical system
as represented by Eqs. (20) into polynomial form by using the
following change of variables:

x = eiα; y = ei�; z = eiZ; (A1)

and writing the different trigonometric functions in terms of
(x,y,z). For the time evolution of P , the equation in terms of
the (x,y,z) variables result in

(eiα − e−iα)(ei� + e−i�) sin(θ ) = 0 (A2)(
x − 1

x

)(
y + 1

y

)
= 0 (A3)

(x2 − 1)(y2 + 1) = 0, (A4)

since x,y,z �= 0. We apply the same procedure for the
remaining three equations of motion and we find that for α̇ = 0,
the polynomial equation gives

sin(θ )(x2 + 1)(y2 + 1)/δ2

− δ1δ3Px[cos(θ )(z2 + 1)(y2 + 1) + (z2 − 1)(y2 − 1)] = 0,

(A5)

the polynomial equation for �̇ is

−4P (x2 − 1)yz

+ sin(θ )[2δ1P (x2 − 1)(z2 + 1)y − 4x(y2 − 1)z/δ2δ3]

+ δ1P (x2 + 1)[(y2 + 1)(z2 − 1)

+ cos(θ )(y2 − 1)(z2 + 1)] = 0, (A6)

and the polynomial equation for Ż resumes as

2 cos(θ )y(x2 + 1) − sin(θ )(x2 − 1)(y2 − 1) = 0. (A7)

Equation (A4) has the following solutions:

x = ±1; y = ±i. (A8)

We look at each solution starting with the case x = ±1.
Replacing x in Eq. (A7) cancels the second term and results
in the following constraint:

4 cos(θ )y = 0. (A9)

Since the solutions of this equation are

cos(θ ) = 0, y = 0, (A10)

neither of them is acceptable. We are interested in the case
of oblique propagation with θ �= π

2 , and by definition y �= 0.
Hence, the case x = ±1 does not result in a fixed point for the
oblique propagation.

We now look at the second solution, which satisfies
Eq. (A4), y = ±i. We replace y in Eq. (A7) and find

±i cos(θ )(x2 + 1) + sin(θ )(x2 − 1) = 0 (A11)

x2[±i cos(θ ) + sin(θ )] = −[±i cos(θ ) − sin(θ )] (A12)

x2[±(eiθ + e−iθ ) − (eiθ − e−iθ )]

= −[±(eiθ + e−iθ ) + (eiθ − e−iθ )], (A13)

which results in

x2 = −e±2iθ ; x = ±ie±iθ . (A14)

To find the value of z, we replace the value of y in Eq. (A5),
which results in the cancellation of the first two terms and
gives the following result:

−2δ1Px(z2 − 1) = 0. (A15)

Since by definition x �= 0, and we are not interested with the
trivial case P = 0, the solution for this equation is

z = ±1. (A16)

The last step consists in finding the value of P for the fixed
point, which can be done by replacing y = ±i and z = ±1 in
Eq. (A7).

−4P (±i)(±1)(x2 − 1) + 4P sin(θ )δ1(±i)(x2 − 1)

+8 sin(θ )(±1)x/δ2δ3 − 4δ1P cos(θ )(x2 + 1) = 0,
(A17)

TABLE I. Fixed points in the (px,py,pz,Z,γ ) representation

px0 py0 pz0 Z0 γ0

0 −p� tan(θ ) p� 0 1√
1− v2

�

c2 [1+tan2(θ)]

0 −p� tan(θ ) p� π 1√
1− v2

�

c2 [1+tan2(θ)]

0 +p� tan(θ ) p� 0 1√
1− v2

�

c2 [1+tan2(θ)]

0 +p� tan(θ ) p� π 1√
1− v2

�

c2 [1+tan2(θ)]
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which can be written as

−P = ±2i
x

x2 − 1

sin(θ )

δ2δ3
. (A18)

Replacing x with the use of Eq. (A14), we find

δ2δ3P = − tan(θ ). (A19)

Since P is always positive, the solution requires −π
2 < θ < 0.

Transforming back x,y,z to the dynamical system variables
α,�,Z, we find that the fixed points are given by:

P = −γ tan(θ ); α = ±θ ± π

2
;

� = ±π

2
; Z = 0,π. (A20)

Using the values in Eqs. (A20) for F (α,�,Z) sets it equal
to zero. Hence, Eqs. (A20) are the fixed point equations for
the dynamical system Eq. (20). We can also express the fixed
points in terms of (px,py,pz,z

′,γ ) as demonstrated in Table I.

APPENDIX B: STABILITY ANALYSIS

The next fundamental step in dynamical system theory is
to investigate the equilibrium of the fixed points. In order to
do so, we apply a basic Lyapunov linear analysis that can
be found in any textbook on dynamical systems. The method
is summarized as follows. For a dynamical system ẋ = F (x)
possessing a fixed point x0 for which F (x0) = 0, one can make
a Taylor expansion around the fixed point and keep the first-
order terms. That is, writing the dynamical for the perturbation
δx and the Jacobian J = ∂F

∂xi
|x0 as d

dt
δx = Jδx. We are left with

the task of solving an eigenvalue problem since we can write
the solution to the linearized equation as δx = ξie

λi t for the
eigenvalues λi and eigenvectors ξi , assuming the eigenvalues

are not degenerate. If one eigenvalue λi > 0, the system is
linearly unstable at x0, if not the system is linearly stable at
x0. From the expression for γ0 in the previous Appendix, it is
clear that a fixed point does not exist for all parameter values
of θ and v�. Since γ � 1, the argument in the denominator
square root must obey the condition n2 � 1 + tan2(θ ). Hence,
we write the Jacobian for the dynamical system as follows:⎛
⎜⎜⎜⎜⎝

0 cos(θ)
δ2γ0

∓δ1+sin(θ)
δ2γ0

0

− cos(θ)
δ2γ0

0 0 0(− sin(θ)
δ1

± n2−1
n2

)
δ1

δ2γ0
0 0 ∓ δ1 tan(θ)

δ2

n2−1
n2

0 0 1
γ0

0

⎞
⎟⎟⎟⎟⎠ ,

where the ± symbols denote the two values of the fixed points
in Z = kz′. Solving the eigenvalue problem (J − λI)ξ = 0 we
find a biquadratic polynomial function in λ that can be written
as χ (λ) = λ4 + η1λ

2 + η2 = 0, with the constant coefficients
η1 and η2 given by the following expressions:

η1 = δ1

δ2γ0

n2 − 1

n2
tan(θ ) + cos2(θ )

δ2
2γ

2
0

− δ1

δ2
2γ

2
0

[
−n2 − 1

n2
± 2 sin(θ ) − sin2(θ )

δ1
∓ sin(θ )

n2

]

η2 = δ1

δ2
2γ

2
0

n2 − 1

n2
sin(θ ) cos(θ ). (B1)

A close look at the coefficients of Eqs. (7) shows that all four
eigenvalues will cross the zero real axis when the condition

n2 − 1 = tan2(θ ) (B2)

is respected. That is, for parameter values corresponding to
γ −1

0 = 0 and resulting in λ4 = 0.
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