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When an intense and short laser pulse propagates in a dielectric material, significant production of conduction
electrons through multiphoton absorption (MPA) may occur. In addition to the laser intensity, the MPA process
depends mainly on the laser frequency spectrum which may evolve significantly during the course of laser
propagation in the material. Simple models for MPA accounting for possible time-dependent evolution of the
laser frequency spectrum (as harmonic generation, chirping or broadening) are addressed. The first model is
based on Bloch-Volkov states whereas the second approach relies on the density matrix formalism which has
been adapted for the present study. Both models are well adapted for their introduction in a propagation code and
are shown to correctly account for the MPA process whatever the characteristics of the laser frequency spectrum.
The reliability of these approaches has been studied in two cases of practical interest. First, in the case where
a second harmonic is present within the fundamental pulse, calculations show that the ionization rate may be
significantly enhanced. Second, in the case of a chirped pulse, models are shown to correctly account for possible
change in the multiphoton order during the course of interaction.

DOI: 10.1103/PhysRevE.85.056403 PACS number(s): 52.50.Jm, 52.25.Tx, 79.20.Ws

I. INTRODUCTION

Dielectric materials with a large band gap (such as silica,
LBO, BBO, KDP, KTP, sapphire, etc.) are widely used in
current lasers as optical materials, allowing one to transform
the pulse characteristics. In the case of short (femtosecond) and
intense laser pulses, material and pulse shape may be strongly
perturbed due to the following processes: promotion of
valence electrons to the conduction band through multiphoton
absorption (MPA), laser heating of conduction electrons, and
possibly electron avalanche through impact ionization [1,2].
These interactions may lead to the formation of a plasma state
at a density close to the solid one, i.e., the so-called warm dense
matter (WDM). For high intensities, this strong laser-matter
coupling can lead to a significant modification of the time-
evolution laser intensity and damage of the optical material
may take place [1,3,4]. Material modifications following
laser-matter interaction may be desired to achieve the so-called
nano-structuration of materials whose applications can be
light-guiding devices or grating manufacturing [5]. Whether
to prevent undesired material modifications or to control
nano-structuration, there is a need to accurately describe the
above-mentioned physical phenomena and correctly model the
laser pulse propagation. In particular, since the interaction is
initiated by the ionization stage, a time-dependent description
of this process is required [6–8].

Modeling the laser pulse propagation is achieved by solving
the Maxwell’s equations [9–11] where the interaction with
matter is included through the energy transfer from the laser
beam to the dielectric material. Multiphoton ionization (MPI,
i.e., transition from the valence band to the conduction band
through the simultaneous absorption of several photons) and
subsequent heating via inverse Bremstrahlung thus should be
modeled. Many theories have been developed to evaluate the
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ionization rate of atoms or solids by strong laser fields, which
are essentially based on the electric dipole approximation. The
pioneering work of Keldysh [12,13] showed that multiphoton
ionization and tunnel ionization are two limit cases of a
more general phenomenon of nonlinear photoionization. He
defined the now largely used Keldysh parameter which governs
this process. Later, Perelomov, Popov, and Terent’ev [14,15]
adapted this theory to more complex ions (PPT theory), and
Ammosov, Delone, and Krainov (ADK) included the effect of
the ion Coulomb field [16].

Those theories are adapted to describe the MPI process
induced by a monochromatic pulse propagating in amorphous
dielectric materials (such as fused silica or sapphire, for
instance) which are known not to modify the frequency
spectrum. Indeed, the formula for MPI is based on the Keldysh
parameter which includes the laser frequency that should be
explicitly known. In the case of pulse propagation through di-
electric materials aiming at reshaping the frequency spectrum,
the above-mentioned models cannot be used since a single
laser frequency cannot be defined explicitly. For instance, with
an optical parametric chirped-pulse amplification (OPCPA)
system and KDP crystals, the frequency spectrum may be
spread or frequency conversion may occur during the course
of propagation. It follows that the multiphoton order may
evolve with time [6]. The way to accurately evaluate the
MPI induced by a laser pulse exhibiting a relatively large
time-dependent frequency spectrum is to derive a model based
on the knowledge of the laser electric field which implic-
itly contains all information regarding the time-dependent
frequency spectrum. This space and time-dependent electric
field can be provided by a numerical code solving the 3D
Maxwell’s equations (hereafter called CME). It is worth noting
that CME consumes large amounts of CPU time and, thus,
requires a simple model to describe the above-mentioned laser
interaction with matter.

The approaches based on numerical resolution of the
time-dependent Schrödinger equation (TDSE) are generally
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cumbersome and are not suitable within the present framework
to describe MPI. Recent papers [17–19] have considered
models of atom ionization by ultrashort laser pulses based on
the knowledge of the laser electric field. They dealt with the
electron energy distribution and considered very strong laser
pulses. These methods are complex and, thus, not well adapted
for their introduction in a CME. In order to describe the MPI
in a consistent and tractable way in codes aiming to describe
pulse propagation in dielectric materials, there is a need to
develop a simple model which accounts for the evolution of
the frequency spectrum with respect to time.

The present paper addresses the development of such simple
MPI models for dielectric materials, which are based on the
knowledge of the time-dependent laser electric field. They are
designed for future studies of pulse propagation which may
not be carried out currently with the state-of-the-art methods.
It is noteworthy that those simple models also represent an
alternative to current theoretical developments dealing with
MPI, even without invoking pulse propagation considerations.
Hereafter are proposed two approaches, based on different
assumptions, both relying on the electric dipole approximation
and a single-active electron within the length gauge. Further-
more, linearly polarized laser pulses are considered in the
present study. The first approach, called BVkP, is based on
an evaluation of the transition amplitude with Bloch-Volkov
(BV) wave functions [20] used to describe the multiphoton
absorption. Under this framework, the evaluation of matrix
elements can be performed by utilizing the �k · P̂ theory [21,22]
which provides accurate results in the center of the Brillouin
zone (BZ). The second approach, called the optical Bloch (OB)
method, is based on the resolution of the Liouville equation
governing the evolution of the density matrix [23–25]. It has
been adapted to the present case of interest, leading to a
tractable and efficient MPI model. The BVkP approach is
relevant for perturbative conditions, whereas the OB model
should be able to make accurate predictions for very high
intensities with a possible significant depletion of the valence
band. However, the OB model depends, more than the BVkP,
on free physical parameters (related to the electronic structure).
It follows that, depending on the laser pulse characteristics and
on the knowledge of the electronic structure of the material,
one or another method could be more adapted to efficiently
describe the time-dependent MPI process. In addition to the
possibility of considering a larger range of physical conditions
of interest, the development of two models allows us to
check the reliability of our approach. Indeed, since both
models are developed within the same framework, the same
trends for predictions are expected. As will be shown, the
previous approaches account for the fact that an ionized
electron can go back to the valence band through the action
of the electromagnetic field. However, this coherence may
be broken in a condensed matter where the excited electrons
may undergo collisions with phonons, ions, or other electrons.
This phenomenon may significantly affect the evolution of the
free electron density which is used in the CME to derive the
electron current. It has been taken into consideration through
an ad hoc method based on a relaxation process. The previous
theoretical developments are the subject of Sec. II. Since we
are mainly interested in the derivation of a photon-ionization
rate responsible for the initiation of significant laser-matter

coupling, the impact ionization mechanism is not considered
in the present work.

In Sec. III the proposed models have been numerically
developed and applied to various physical cases. First, in
the monochromatic case, the reliability of the proposed
approaches is checked: The ionization rates are studied as
a function of time, photon energy, and laser intensity. For
each study, both modeling predictions are compared and
discussed. In particular, this study demonstrates that both the
BVkP and OB models are able to account for multiphoton
absorption. In order to check the reliability of the proposed
approaches in conditions relevant for frequency conversion, a
case where the electric field contains two different frequencies
is considered. In this situation, each model accounts for
two different multiphoton orders, thus demonstrating that the
multiphoton order may evolve in time. Finally, the present
approaches are applied in conditions of major interest where
MPI is induced by a chirped pulse, i.e., for a laser frequency
depending on time. In that case, both models are shown to
account for possible change in the multiphoton order during
the course of interaction.

Conclusions are addressed in Sec. IV. Atomic units are used
throughout the modeling Sec. II unless otherwise stated.

II. MODELING

A. The BVkP model

This section is devoted to the establishment of an ionization
model based on an approximated evaluation of the electron
wave function in both the crystal potential and the electric field
of the laser pulse. From a general point of view, within the
electric dipole approximation, the transition amplitude from
the initial valence band to the final conduction band is given
by

Tcv(t) = −i

∫ t

0
dt〈�c(t)|�r · �E(t)|ϕv(t)〉, (1)

where �c(t) is the perturbed one-electron wave function
related to the conduction band and ϕv(t) is the nonperturbed
valence wave function. These states are solutions of the
following Schrödinger equations:

H�c(t) = i
∂�c(t)

∂t
(2)

and

H0ϕv(t) = Evϕv(t), (3)

where

H = H0 + Hint with H0 = − ∇2

2m
+ V (�r) and

Hint = �r · �E(t), (4)

V (�r) being the crystalline potential and �E(t) the laser electric
field. It can be shown that a reliable approximation of �c(t) is
given by a Bloch-Volkov wave function [20] that reads,

�c(t) � χBV
c (t) = ϕc(t) exp

{
i �A(t) · �r − i

∫ t

0
dt ′

[A(t ′)]2

2m

}
,

(5)

056403-2



TIME-DEPENDENT IONIZATION MODELS DESIGNED FOR . . . PHYSICAL REVIEW E 85, 056403 (2012)

where �A(t) is the vector potential given by �A(t) =
− ∫ t

0 dt ′ �E(t ′). The Volkov phase accounts for the dressing of
electrons by photons [26] and renders it possible to account for
the simultaneous absorption of several photons. This approach
has been successfully used to model the multiphoton ionization
of atoms [26–31]. However, within this framework, it was
shown that the phase exp(i

∫ t

0 dt ′A2(t ′)/2) introduces spurious
behaviors [30]. Further, contrary to the term exp(i �A · �r), it is
noteworthy that that the phase exp[i

∫ t

0 dt ′A2(t ′)/2] does not
induce any transition [32]; it only slightly shifts the energy
spectrum in cases of long or intense laser pulse where the
ponderomotive energy is significant. Therefore, this term is
hereafter omitted.

There is no simple and realistic expression for the unper-
turbed wave functions ϕv(t) and ϕc(t). It follows that the matrix
element 〈χBV

c (t)|�r · �E(t)|ϕv(t)〉 cannot be simply evaluated at
first glance. The cornerstone of the present approach is to
introduce matrix elements which can be evaluated within the
�k · �P theory [21,22]. To do so, the Volkov phase is developed
in series as

exp{i �A(t) · �r} =
∞∑

n=0

[i �A(t) · �r]n

n!
. (6)

This development makes sense for a small vector potential
amplitude, i.e., within a framework relevant for perturbative
conditions. The transition amplitude (1) thus reads,

Tcv(t) = −i

∫ t

0
dt exp{i(Ec − Ev)t}

×
∞∑

n=0

1

n!
〈φc|(i �A(t) · �r)n(�r · �E(t))|φv〉, (7)

where ϕj (�r,t) = φj (�r) exp(−iEj t) with j = v or c. Now, we
have to evaluate the matrix element

Mn(t) = 〈φc|(i �A(t) · �r)n(�r · �E(t))|φv〉. (8)

Since it implies a dipolelike term to the power n+ 1, this
matrix element accounts for the absorption of n+ 1 photons. In
particular, the case n = 0 (M0, absorption of only one photon)
corresponds to the standard first-order pertubation theory
(Born approximation) where the wave functions corresponds
to nonperturbed states. The �k · P̂ theory allows one to establish
the following relation [21,22]:

P = 〈φc|P̂Z|φv〉 =
√

m2
0Eg

2m∗
vc

with

1

m∗
vc

= 1

m∗
v

+ 1

m∗
c

, (9)

where �P = −i �∇ is the momentum operator. Note that under
the �k · P̂ framework, expression (9) is valid only in the center
of the Brillouin zone (BZ), which makes sense in the present
study since we are dealing with direct gap dielectrics. Due to
the properties of the position and momentum operator [33], it
turns out that

M0(t) = E(t)P

im0(Ec − Ev)
. (10)

Furthermore, the matrix element Mn can be expressed as
a function of M0. In order to establish this relation, we
approximate the wave functions by simple expressions but
which include the major physical trends (see Appendix A).
Under these approximations, the following relation stands:

Mn(t) = [iA(t)]n(−1)n(n + 1)!

(−α + ik)n
M0(t), (11)

where k is the electron momentum of free states and α is related
to the valence state, accounting for the spatial localization of
this bound wave function. The transition amplitude thus reads,

Tcv(t) = −i

∫ t

0
dt exp{i(Ec − Ev)t}

×
∞∑

n=0

1

n!

[iA(t)]n(−1)n(n + 1)!

(−α + ik)n
E(t)P

im0(Ec − Ev)
.

(12)

Since transitions mainly occur in the center of the BZ in direct
gap dielectrics, it follows that setting k = 0 in Eq. (12) is a
reliable approximation. One thus obtains,

Tcv(t) = − P

m0(Ec − Ev)

∫ t

0
dt exp{i(Ec − Ev)t}E(t)

×
∞∑

n=0

(n + 1)in
[
A(t)

α

]n

. (13)

In the case where x = |A(t)/α| verifies x < 1 for any time
during the interaction, the following relation stands:

∞∑
n=0

(n + 1)(ix)n = 1

(1 − ix)2
. (14)

Note that in the case of intense or long pulses, the previous
relation no longer stands. This situation corresponds to
nonperturbative conditions where transition amplitudes with
various multiphoton orders may become comparable [34].
Finally, within this approach, the transition amplitude from
the VB to the CB reads,

Tcv(t) = − P

m0(Ec − Ev)

∫ t

0
dt exp{i(Ec − Ev)t}

× E(t)

(1 − iA(t)/α)2
. (15)

The ionization rate WMPI, i.e., the number of valence electrons
promoted in the conduction band per unit of time and volume,
is then given by

WMPI(t) = N0
∂|Tcv(t)|2

∂t
= 2N0 Re

{
T ∗

cv(t)
∂Tcv(t)

∂t

}
, (16)

where N0 is the density of valence electrons, set to 2.2 ×
1022 cm−3 in the present study. From a general point of view,
numerous conduction states may exist in dielectric material
[35]. Depending on the photon energy, a valence electron
then can be promoted to different energy levels corresponding
to different conduction states. In order to account for this
fact, various final states, called ci , should be taken into
consideration. The according ionization rate is obtained by
substituting

∑
i |Tciv(t)|2 for |Tcv(t)|2 in Eq. (16). This is done
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numerically in a way to avoid the ionization rate being greater
than 1 and to have an ionization rate depending as little as
possible from the number of states describing a conduction
band.

B. The optical Bloch model

Another way to model the ionization process is the optical
Bloch (OB) model. The basis of this approach is presented in
Refs. [24,25] along with its adaptation to the MPI description,
allowing one numerical calculations as fast as possible, is
provided. This method is adapted to any number of levels
and is easy to associate with Maxwell equations to model the
propagation of a laser pulse [36,37]. As in the previous model,
we consider the wave function of a valence or conduction
electron under the action of the electromagnetic field. It
is the solution of a Schrödinger equation (2) where the
Hamiltonian is the sum of the unperturbed Hamiltonian, H0,
and of the interaction Hamiltonian (4), Hint. For this interaction
Hamiltonian, only the electric dipole momentum is considered.
However, instead of looking for the transition amplitude, the
OB model aims at describing the time evolution of the density
matrix which, for a state vector |ψ〉, is defined by

ρ = |ψ〉〈ψ |. (17)

If |ψ〉 is given by its projection on N eigenstates of the
unperturbed Hamiltonian, ρ is an N × N semidefinite positive
and Hermitian matrix. In each point of the computational
domain there is more than one atom to consider. Therefore, the
density matrix is associated to an ensemble of atoms around
this point. It is defined by

ρ =
∑

S

pS |ψS〉〈ψS |, (18)

where S belongs to a statistical ensemble of states and pS is
the probability for these states to be characterized by the state
vector |ψS〉. The temporal evolution of ρ is governed by the
Liouville-von Neumann equation [23],

i
∂

∂t
ρ(t) = [H,ρ] = Hρ − ρH. (19)

The diagonal elements of ρ provide the occupation rates of the
various levels, while the extradiagonal elements describe the
coherence between levels. The sum of the diagonal elements
associated to the conduction band then provides the density
of conduction electrons. Its time derivative thus renders it
possible to evaluate the instantaneous ionization rate. The
Liouville-von Neumann equation can be rewritten as

i
∂

∂t
ρjk(t) = (Ej − Ek) + E(t) ·

N∑
l=1

ρjl(t)μlk − E(t)

·
N∑

l=1

ρlk(t)μj l, (20)

where Ej is the energy associated to the level j and μj l =
〈ψj |�r|ψl〉 is the matrix element of the operator �r which
accounts for the coupling of state ψj to state ψl due to the
action of the laser electric field. In the present approach, it
is assumed that μii = 0, i.e., wave functions are assumed
to have a well-defined parity [38]. Since we are interested

only in the ionization rate, we may consider, first, the level in
the valence band and the other in the conduction band with
connections (μjl 
= 0) only between the valence state and the
ionization states. Within this configuration, the OB approach
cannot account for MPI with an even number of absorbed
photons (see Appendix B). To avoid this drawback, we have
introduced two states in the valence band. These two states
are connected together and connected with all the states in
the conduction band. With this configuration we are able to
describe photoionization with any number of photons as soon
as the laser intensity is high enough. Moreover, this model is
able to take into account as many states in the conduction band
as necessary. The choice of the nonzero elements μjl provides
many degrees of freedom for the model. In order to get an
ionization rate as independent as possible on the number NC

of states in the conduction band, we chose those elements to be
equal and inversely proportional to

√
NC . Doing so introduces

a normalization. Only the element connecting the two states
in the valence band can differ.

In practice, the time evolution of the density matrix is
obtained with the following relation deduced from Eq. (20):

ρ(t + δt) = exp

[
i

∫ t+δt

t

H (τ )dτ

]
ρ(t)

× exp

[
− i

∫ t+δt

t

H (τ )dτ

]
. (21)

In the numerical resolution, this solution is approached for the
time step between t and t + δt by the following expression:

ρ(t + δt) =
[

Id + i

2
H

(
t + δt

2

)][
Id − i

2
H

(
t + δt

2

)]−1

× ρ(t)

[
Id − i

2
H

(
t + δt

2

)]

×
[

Id + i

2
H

(
t + δt

2

)]−1

, (22)

where Id is the identity matrix. This approximation avoids the
computation of the exponential matrix and guarantees at any
time the right properties for the density matrix ρ(t): Its trace
is always equal to 1 and it is a positive semidefinite Hermitian
matrix. Moreover, this numerical scheme is of the order 2 in
time. We can also notice that, thanks to the choice we have
made for the nonzero element of the matrix μ, the inversion
of the matrix [Id + i

2H (t + δt
2 )] can be done analytically: It

is equivalent to solving a 2 × 2 system whatever the value of
NC (see Appendix C). This scheme is, thus, relatively easy to
implement.

C. Introduction of a relaxation state for laser heating
of conduction electrons

Within the framework of the previous approaches, an
excited electron can interact only with the laser electric field
and its parent ion. However, in condensed matter, excited
electrons generally undergo collisions with other particles such
as phonons, ions (other than the parent), or other electrons
making the plasma. Those collisions render it possible for
a conduction electron to be heated by the laser pulse, as
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described, for instance, by the Drude model. When such a
collision occurs, the coherence between the excited electron
and its parent ion vanishes. We can define a free state as
an electronic state whose associated electrons can be heated
by inverse Bremstrahlung and which is decorrelated from
the parent ion. We call the free electron density the density
of electrons associated with this free state. In the CME,
this free electron density is the one required to evaluate the
electron current [10,11]. Furthermore, in order to model impact
ionization, an approach as proposed by Rethfeld [2] may be
implemented in the CME. Within this framework, the present
free state may act as a starter to transitions toward states with
higher energies.

As it will be shown in the next section, since collisions
are not included in the modeling, the present models for
ionization are reversible in the sense where they predict
significant variations of the density of conduction electrons
with respect to time, accounting for the fact that a conduction
electron may go back to the valence band through the action
of the electromagnetic field. This process is particularly
important when we are far from resonance (photon energy
close to energy difference between the bridged states). In
order to introduce irreversibility, accounting for collisions and
decoherence, and leading to an ionization rate consistent with
the CME and condensed matter properties, we had the choice
between two solutions. We could suppress the hypothesis
of no electromagnetic connection between the states in the
conduction band and introduce relaxation processes between
all the states. The other solution would be to introduce a new
state in the conduction band on which all the other states
from this band can relax but is not connected to any other
state (all the corresponding elements of the μ matrix are
zeros). This state represents the free electrons which will
be accelerated by the electromagnetic field and thus can no
longer recombine reversibly and coherently with the parent
ions. We have retained the second solution because it is the
only one we could use for both models and because, in this
approach, we are interested only in the ionization rate.

Thus, this new relaxation state is simply added in the Bloch
model where the density matrix is modified at each time step in
order to take the action of the relaxation terms into account. For
the BVkP model, we compute at each time step, and for each
initial state in the conduction band, the number of electrons
which relax on the new state and add these contributions to the
previous number of electrons in this relaxation state.

The value of the relaxation time may be on the order of
the picosecond timescale. Indeed, femtosecond time-resolved
interferometry experiments have shown that conduction elec-
trons may relax in KDP crystals on a timescale ranging from
roughly 300 fs to tens of ps [39]. Further, the same order of
magnitude for other wide-band-gap dielectric materials, such
as NaCl, MgO, or Al2O3, was measured [40–42]. We thus use
3 ps according to these relaxation time measurements. This
value is used throughout the paper unless otherwise stated. It
is worth noting that slight deviations from this value do not
change the results presented in Sec. III significantly. Also,
note that the value of the relaxation time should be adapted
depending on the material of interest.

Since the rate for the valence-conduction transition is
known with the BVkP approach, the evaluation of the electron

population associated with the free state is simply obtained
by solving the standard rate equation where the characteristic
relaxation time τr is included. Regarding the OB model, the
evaluation of the free electron density is simply obtained by
adding the state of interest. However, note that the latter state
is not coupled through the electromagnetic field to the other
ones. Furthermore, for both approaches, the depletion of the
initial valence state is introduced.

III. RESULTS AND DISCUSSION

A. Ionization induced by one laser pulse

As a preliminary remark, simple estimates of impact ion-
ization contribution to the final density of conduction electron
can be obtained from the results of Rethfeld [2]. Within our
conditions (laser pulse duration of 100 fs and intensity lower
than 5 × 1013 W/cm2), Fig. 6 of Ref. [2] shows that percentiles
of the fraction of impact-ionized electrons is less than 5%, thus
negligible compared to multiphoton ionization. It follows that
the proposed models for ionization are sufficient to correctly
predict the ionization. Impact ionization should be included in
CME for intensities in excess of 1014 W/cm2.

Before considering the evolution of the free electron density
with respect to the laser pulse parameters, let us study the
temporal evolution of the ionization rate predicted by the BVkP
and the OB approaches. In order to compare both models,
their free parameters have been set as follows. Regarding the
BVkP approach, the parameter α has been set to 1.55 a.u.
This value allows one to reproduce correctly the predictions
of the Keldysh formula [12] for laser parameters of interest
for this work. Note that this value of α is consistent with the
common spatial extension of a bound state. Moreover, slight
variations of this value do not change the conclusions of the
present study. The parameters of the OB model have been
set in order to mimic the BVkP ionization rate during the
early stage of the process. Also, μvv = 1.68 × 10−29 Cm and
μvc = 1.34 × 10−29 Cm have been used, whatever the energy
of the conduction state. It is noteworthy that those values of
the modeling parameters are used throughout the present paper.
Under these conditions, Fig. 1 shows the temporal evolution
of the laser-induced electronic density as directly predicted by
both models (no relaxation into the free state occurs here). For
this calculation, the laser pulse characteristics are as follows:
I = 5 × 1013 W/cm2, τ = 100 fs, λ = 413 nm (close to the
second harmonic of the Ti:sapphire laser), and a temporal sine
envelope has been used as E(t) = E0sin(ωt)sin(πt/τ ). With
the latter wavelength, three photons are required to bridge
the band gap (set to 9 eV). As expected, both models exhibit
the same trends. Further, it appears that the electronic density
oscillates as a function of time, accounting for the fact that the
electron oscillates back and forth around the parent ion due to
the driving laser electric field. Indeed, we have checked that
the observed frequency is the same as the laser one. During this
process, however, it turns out that the electron can be ionized
and recombine leading to a nonzero ionization probability at
the end of the pulse.

As discussed in Sec. II C, since we are dealing with a con-
densed matter, during the interaction, an ionized electron may
undergo a collision on a particle present in the vicinity of the
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FIG. 1. (Color online) Evolution of the electronic density in
the conduction band as a function of time, as directly predicted
from the ionization rate. The black (solid) and the red (dashed)
curves correspond to predictions of the BVkP and OB model,
respectively. For both models, calculations have been performed
with 81 energy levels. The laser pulse parameters are as follows:
I0 = 5 × 1013 W/cm2, τ = 100 fs, and λ = 413 nm. The latter
parameter corresponds to the situation where three photons are
required to bridge the band gap.

parent ion as another ion, electron, or phonon. In that case, the
coherence between the initial valence state and the conduction
state is broken, leading to an irreversible detachment of the
electron from the parent ion and subsequently producing free
electrons. With the same parameters as those of Fig. 1, the
evolution of the free electron density is shown in Fig. 2. As for
the ionization rates, both models predict the same trend, i.e.,
a free electron density increasing monotonically with respect
to time. In order to evaluate the influence of the value of
the relaxation time, additional calculations with a relaxation
time of 1 and 5 ps have been performed. As expected, these
results show that the longer the relaxation time, the smaller
the electronic density associated with the free state. Note that
the final density, close to 2 × 1018 cm−3 for this study or
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FIG. 2. (Color online) Evolution of the free electron density as
a function of time. The relaxation constant is set to 1, 3, and 5 ps.
The values of the parameters are the same as described in the caption
to Fig. 1.

close to 1020 cm−3 for a two-photon absorption (see Fig. 4),
corresponds to orders of magnitude commonly observed
under such conditions for various dielectric materials [39–42].
Electronic density on the order of 1020 cm−3 in α-quartz,
induced by two-photon absorption with laser pulse parameters
comparable to those presently used (see Fig. 4), have also been
predicted by use of first-principles calculations [43,44]. These
comparisons thus provide a confirmation of the validity of the
proposed approaches.

We now have to check the ability of the present approaches
to account for the simultaneous absorption of several photons.
To do so, one can study the evolution of the electronic density
as a function of the photon energy. Figure 3(a) shows this
evolution as predicted by the BVkP approach in the cases
where only one conduction state is present and with 40
conduction states (in this case, the energy difference between
two adjacent states has been set to �E = 0.045 eV). In the
first case, the spectrum consists of narrow peaks (resonance)
corresponding roughly to the relation of energy conservation
nh̄ω = Eg , where n is the number of absorbed photons to
bridge the band gap. The figure shows that the BVkP model is
able to capture a process where up to five photons are involved.
For more photons, the associated probability is lower than
the tail of the one-photon absorption process (because of the
finite duration of the laser pulse, the resonance shape is large,
whereas it corresponds to a Dirac δ function for an infinite
pulse). In the case where the conduction band is filled with 40
states, more transitions are allowed, leading to a broadening
of the peaks.

Figure 3(b) shows the same study as the previous one but
carried out with the OB model. When there are only two levels
(one for the VB and another one for the CB), there is no
peak for an even number of absorbed photons. As described
in a previous section, the introduction of an additional valence
state renders it possible to account for the absorption of an odd
number of photons. This fact is demonstrated by the numerical
results when three levels are taken into account. In the case
where the CB is filled with 40 levels, a broadening of the
resonances can also be observed. In order to compare both
models, the results of Figs. 3(a) and 3(b) have been reported
in Fig. 3(c) for the case of 40 levels. It appears that the results
of both models exhibit the same behavior, with, in particular,
a comparable evolution of the ionization rate with respect to
the number of involved photons. Note that in the cases of
four- and five-photon absorption, the models predict opposite
behaviors when the photon energy slightly varies. This fact
remains unexplained.

The evolution of the free electron density as a function of the
photon energy is displayed in Fig. 4, where the same modeling
configurations as those of the previous figure have been used.
Since free electrons are nothing but relaxed ionized electrons,
the spectra under consideration exhibit the same features as
those of Fig. 3: Absorption of several photons is well captured
by these models. Further, this figure exhibits more clearly that
the OB model with only two levels cannot account for the
two-photon absorption. Note that the curves are smoother than
in the previous graph. More precisely, the cardinal sinelike
oscillations due to the finite duration of the pulse disappear
[33]. This behavior is due to the fact that various conduction
states (with various energies) contribute to the filling of the
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FIG. 3. (Color online) Evolution of the electronic density in the
conduction band as a function of the photon energy at t = τ . The
curves correspond to predictions of (a) the BVkP model with 2 energy
levels and 41 energy levels and of (b) the MB model with 2 energy
levels, 3 energy levels, and 41 energy levels. (c) Comparison between
both models with 41 levels in the CB. The laser pulse parameters are
as follows: I0 = 5 × 1013 W/cm2 and τ = 100 fs.

free electronic state. Since there is no coherence between the
various contributions, destructive interferences occur and so
the total evolution is smooth. Also note that the absorption
corresponding to the largest multiphoton order do not appear
so clearly as in the previous graph: Resonance can be observed
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FIG. 4. (Color online) Evolution of the free electron density as a
function of the photon energy at t = τ . The values of the parameters
are the same as described in the caption to Fig. 3.

only up to three photons. Absorption up to five photons is
obviously taken into account as for the transition from the
VB to the CB, but orders larger than 4 are hidden by lower
orders, the first in particular, whose tail can be observed down
to 3 eV. Actually, in the case of relaxed electrons, significant
contributions may come from early ionization, for which the
laser intensity has not reached its maximum value, resulting
in lower probabilities for high-order multiphoton processes
compared to the one-photon absorption, which is less sensible
to intensity variations, i.e., the ratio of highly nonlinear to
linear dependence with respect to the intensity.

In order to further support the fact that our models are
able to capture the physics of multiphoton absorption, and to
shed light on the behavior with respect to the laser intensity,
the evolution of the electronic density at t = τ is plotted as a
function of this laser parameter in Fig. 5. The same modeling
configurations as those of the previous figures are used and
the calculations have been performed with τ = 100 fs and λ =
413 nm. In the perturbative regime where the rate of ionization
by n photons is proportional to the laser intensity at the n-th
power, the slope of the electron density as a function of the
laser intensity plotted within a log-log scale is expected to be
n = 3 in the present case. From Fig. 5, the perturbative region
corresponding to the absorption of three photons corresponds
roughly to the range [2 × 1011 W/cm2; 5 × 1012 W/cm2].
For intensities lower than 2 × 1011 W/cm2, the smaller slope
indicates that the ionization is dominated by the tail of
the one-photon absorption. A larger intensity is required to
excite the nonlinear three-photon absorption process. Roughly
above 5 × 1012 W/cm2, the electronic density no longer
increases, indicating that the nonperturbative regime stands
where the ionization probability does not depend much on the
multiphoton order [34]. Except in the OB with only two levels,
the various models provide a slope that is between 2.88 and
3.07, which is consistent with the expected value n = 3. The
OB with two levels provides a slope of 2.52, slightly lower than
the expected value, revealing again the flaw of this approach
to describe accurately all multiphoton orders.

The convergence of our approaches with respect to the num-
ber of levels in the CB and to the time step has been checked.
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FIG. 5. (Color online) Evolution of the electronic density in the
conduction band as a function of the laser intensity at t = τ . The
various curves correspond to predictions of the BVkP model with
2 energy levels and 41 energy levels and of the MB model with
2 energy levels, 3 energy levels, and 41 energy levels. The laser
pulse parameters are as follows: λ = 413 nm and τ = 100 fs. Due to
the log-log scale, the slope of the straight line directly provides the
multiphoton order (which must be equal to 3 with a reliable model).

The results are displayed in Fig. 6, where combinations of 11
levels, 41 levels, and 20 000 and 50 000 time steps have been
used. Calculations show that the numerical convergence for
the time integration is reached when at least 20 000 time steps
are used for a 100-fs laser pulse. When the energy difference
between two adjacent states is lower than the energy bandwidth
of the laser pulse (in the case of 41 levels), whatever the photon
energy (but always leading to the same number of absorbed
photons), a transition from the VB to the CB is allowed. This
leads to a plateau whose width accounts for the CB structure. If
the CB is not discretized enough (11 levels), despite the natural
pulse bandwidth, a transition between two adjacent states may
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FIG. 6. (Color online) Evolution of the free electron density in the
conduction band as a function of the photon energy at t = τ for both
models. The various curves show the convergence of the numerical
results with respect to the number of energy levels and the number of
time steps.

be forbidden. This leads to a noisylike spectrum instead of a
plateau, as shown by Fig. 6.

B. Application to the case where a second
harmonic pulse is present

The models under consideration have been developed
within the goal of describing the multiphoton absorption
during the course of propagation of a laser pulse through
an active optical component, i.e., whatever the instantaneous
frequency spectrum of the laser pulse. Under these conditions,
multiphoton absorption can be induced by various frequencies.
For instance, in the case of propagation through a frequency
converter crystal, an ionization path may involve absorption
of photons of energy h̄ω and 2h̄ω, whatever the value of the
fundamental frequency ω.

The influence of superposing a second, shorter, wavelength
is presented in Fig. 7, which shows the evolution of the free
electron density as a function of time. Indeed, as predicted by
both approaches, the evolution of the free electron density is
significantly enhanced just by adding a second harmonic pulse
whose intensity is only 4% of the fundamental wavelength.
Note that both models provide almost the same variations.

In order to check the ability of the present approaches to
account for possible complex ionization paths, the evolution
of the free electron density with respect to the fundamental
photon energy (1ω) is plotted in Fig. 8. As for Fig. 7, a second
harmonic (2ω) of the fundamental frequency is superimposed
with an intensity of 4% of the fundamental. In the case where
one photon at 1ω is sufficient to bridge the band gap, the 2ω

pulse does not modify the free electron density significantly.
Indeed, the 2ω pulse cannot change the photoionization order
with a fundamental photon energy larger than the band gap. Its
contribution is to promote valence electrons to highly excited
conduction states directly. In the case where two photons at 1ω

are required (4.5 eV), only one photon at 2ω allows bridging of
the band gap, resulting in a significant enhancement of the free
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FIG. 7. (Color online) Evolution of the free electron density as a
function of time. The legend and the values of the parameters are the
same as in Fig. 2. The difference is that a second harmonic laser pulse
is superposed to the fundamental pulse in order to simulate conditions
that may occur in the course of laser propagation. The characteristics
of this additional laser pulse are as follows: I2 = 0.04I1, τ = 100 fs,
and λ2 = λ1/2 = 206.5 nm.
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FIG. 8. (Color online) Evolution of the free electron density as
a function of the photon energy at t = τ . As in Fig. 7, the results
correspond to the case where a 2ω pulse is present. The values of the
parameters are the same as described in the caption to Fig. 7.

electron density despite the low 2ω intensity. For this photon
energy, 1ω and 2ω pulses lead to two independent ionization
paths at the edge, corresponding to the plateau region around
5 eV. However, it can be observed that when the photon energy
decreases below 4.5 eV, the free electron density predicted with
1ω + 2ω does not decrease as sharply as the 1ω case. This
is the signature of complex ionization paths where both the

fundamental photon energy and its second harmonic contribute
together to the ionization: One-photon absorption at 2ω is not
enough to bridge the gap, but the simultaneous absorption
of a 2ω photon and a 1ω photon allows the transition. The
influence of the second harmonic appears more significantly
for a fundamental photon energy of 3 eV. In that case, instead
of three photons at 1ω, only two photons at 2ω are required,
leading to a an increase in the free electron density of one
order of magnitude, again despite the low intensity of the
second harmonic.

This prediction indicates that, during its course of propaga-
tion in a frequency converter crystal, an intense laser pulse
may significantly be absorbed due to the enhancement of
the ionization rate (when the number of photons required to
bridge the band gap is decreasing) and the subsequent heating
of the conduction electrons (essentially by the fundamental
pulse according to the Drude model, which indicates that the
lower the laser frequency, the more efficient the heating).

C. Application to the case of a chirped pulse

Another physical case of interest is the one of a chirped
pulse (CP) with a frequency depending on time. This physical
situation corresponds exactly to the one for which the present
approaches have been designed. As an example, we consider
a super-Gaussian pulse of the order 20 of a duration of
534 fs (at 1/e, from 133 to 667 fs) and a peak intensity of
8 × 1013 W/cm2. The wavelength varies from 300 to 600 nm

0 2×10
-13

4×10
-13

6×10
-13

8×10
-13

0

1×10
21

2×10
21

3×10
21

4×10
21

5×10
21

6×10
21

E
le

ct
ro

ni
c 

de
ns

it
y 

(c
m

-3
)

(a)

0 2e-13 4e-13
0

1e+21

2e+21

3e+21

4e+21

5e+21

6e+21
(b)

0 200 400 600 800
Time (fs)

0

1×10
20

2×10
20

3×10
20

4×10
20

5×10
20

6×10
20

F
re

e 
el

ec
tr

on
 d

en
si

ty
 (

cm
-3

)

positive chirp
negative chirp

(c)

0 200 400 600 800
Time (fs)

0

1e+20

2e+20

3e+20

4e+20

5e+20

6e+20
(d)

FIG. 9. (Color online) Evolution of [(a) and (b)] the electronic density and of [(c) and (d)] the free electronic density as a function of time
for chirped pulses. The left [(a) and (c)] and right [(b) and (d)] graphs correspond to the BVkP and OB predictions, respectively. For these
calculations, a super-Gaussian pulse of order 20 and of duration 534 fs (at 1/e, from 133 to 667 fs) and a peak intensity of 8 × 1013 W/cm2

was used. The wavelength varies from 300 to 600 nm within the pulse. A linear evolution of the photon energy as a function of time has been
chosen: An increase in photon energy corresponds to the black curves (positive chirp), whereas a decrease in the photon energy corresponds to
the red curves (negative chirp).
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within the pulse. A linear evolution of the photon energy as
a function of time within this wavelength interval has been
chosen. Two cases are considered: For the first pulse, CP1, the
wavelength increases (negatvie chirp), whereas it decreases
for the second pulse CP2 (positive chirp).

Predictions of the BVkP and OB approaches under such
conditions are reported in Fig. 9. The calculations have been
performed by using 100 levels in the CB. For both models, the
evolution of the electronic density and of the free electronic
density as a function of time are provided in top and bottom
graphs, respectively. The left and right graphs correspond to the
BVkP and OB predictions, respectively. Let us, first, analyze
the BVkP predictions. Considering Fig. 9(a), whatever the
chirp, it appears that the curve mainly consists of two parts.
Regarding CP1-induced ionization, it increases steadily up
to roughly 425 fs, where it no longer evolves. Regarding
CP2-induced ionization [the black curve of Fig. 9(a)], it also
increases steadily during roughly the first half of the pulse;
however, with an average slope smaller than the one of the
CP1 case. At t � 375 fs, the average slope suddenly increases
to a value close to the one of the CP1 case in the first
part of the pulse. These sudden variations suggest that the
multiphoton order changes during the course of the interaction.
Indeed, we have checked that the number of photons varies
from 3 to 4 with a CP1 (or from 4 to 3 with CP2) around
400 fs. In Fig. 9(a), the OB model provides very similar
trends. It thus appears that the present approaches are well
designed to catch the influence of a time-dependent laser
frequency on the ionization process. The evolution of the free
electronic density, as predicted by both models [Figs. 9(c) and
9(d)], reflects the previously discuted behavior: It consists of
two parts with steadily increasing density but with different
slopes, accounting for different numbers of absorbed photons
depending on time. We have performed other calculations (not
presented here) with different laser parameters that allow one
to vary the number of absorbed photons by two units. The
evolution of the electronic density with respect to time then
mainly consists of three parts with sudden changes in the slope,
corresponding to a change in the number of absorbed photons.
These calculations thus confirm the proposed interpretation of
results of Fig. 9.

IV. CONCLUSION AND OUTLOOKS

In order to account for the possible frequency spectrum
evolution of the laser pulse during its course of propagation,
an ionization model with an arbitrary shape of the laser
electric field is necessary. A powerful method that satisfyies
this condition is ab initio numerical resolution of the time-
dependent Schrödinger equation (TDSE). However, with the
current computer facilities, it is unrealistic to couple it to a
code solving the 3D Maxwell’s equations numerically. We thus
proposed two simpler approaches, both relying on the dipole
approximation and considering a single-active electron within
the length gauge. One method is based on the Volkov states
that allow us to describe the electron dynamics in both the
laser electric and crystalline potentials. The second approach
solves the TDSE within the density matrix framework, with
specific developments accounting for multiphoton absorption
and allowing efficient numerical calculations. Whereas the

first model is easy to implement and allows fast calculations,
the second approach offers a ladder for further improvements,
such as a simple description of the free electron heating by
adding coupling between conduction states.

In order to check the reliability of both models and compare
their predictions, the dependence of the ionization rate on
the laser intensity and frequency was studied, confirming that
multiphoton absorption is correctly described. Further, from
a general point of view, both approaches provide equivalent
predictions. In the case where the laser pulse contains the
fundamental frequency and the second harmonic, as in the
case of frequency conversion, even a relatively low intensity
of a second harmonic may lead to a significant increase in the
ionization rate. For pulse propagation through a frequency con-
verter crystal, a code solving the full 3D Maxwell’s equations
is, therefore, expected to lead to dramatic consequences on the
energy deposition in the material. Finally, for chirped pulses,
the present models have been shown to correctly account for
possible changes in the multiphoton order during the course of
interaction. This influence may lead to significant variations
of the density of conduction electrons, and consequences on
laser-induced material modifications are expected.
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APPENDIX A: CONSIDERATIONS REGARDING
THE BVkP APPROACH

Let us introduce a dipole matrix element in a one-
dimensional space X1. It reads,

X1 =
∫ ∞

0
dxφcxφv. (A1)

In order to evaluate the matrix element of the position
operator to the power n, we assume that the wave function
for conduction electrons can be approximated by a plane wave
as φc ∝ exp(ikx). In that case, one has

Xn =
∫ ∞

0
dxφcx

nφv =
(

−i
∂

∂k

)n−1

X1. (A2)

If we now assume that a valence electron can be well described
by a hydrogenic state, i.e., φv ∝ exp(−αx), then we can show
the following relation:

Xn = (−1)n−1n!

(−α + ik)n−1
X1. (A3)

Under the previous assumptions, it follows that

Mn(t) = [iA(t)]n(−1)n(n + 1)!

(−α + ik)n
M0(t). (A4)

Note that the previous considerations assume at least the
following:

(a) The cristalline periodic potential is sufficiently weak to
model a conduction electron by a plane wave, i.e., the periodic
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part of the Bloch wave function, usually called u�k(�r), is a
constant close to unity.

(b) The electronic density in the conduction band is
assumed to be not too high, allowing one to model a conduction
electron by a free plane wave, i.e., without the influence of
electron-electron collisions.

(c) The valence hydrogenic state is derived from a Coulomb
potential. This assumption is valid as long as the electronic
density is not too high. For a relatively high density, a screened
Coulomb potential should be used, leading to a different
expression for the valence state.

(d) In the case of dielectric materials with generally more
complex atoms than hydrogen, a potential that differs from
a pure Coulomb one should be used, also leading to a
different expression of the valence wave function. However,
this improvement is not expected to modify the predicted
trends of the present paper.

(e) A tight binding approach, accounting for periodic
conditions, may provide a better evaluation of the previous
integral; however, the scaling with n should not be significantly
changed.

APPENDIX B: CONSIDERATIONS REGARDING
THE OPTICAL BLOCH APPROACH

With the BVkP approach we can get multiphoton ionization
at any order even with only two levels. This is no longer true
for the optical Bloch approach. In this Appendix, we give some
explanations for this fact.

If we set E(t) = E0e(t), assuming the form of Eq. (20) and
the choice of the matrix μ [38], the element of the density
matrix can be expanded in powers of E0 as

ρ11 =
∞∑

k=0

E2k
0 ρ

(2k)
11 (t), (B1)

ρ22 = 1 − ρ11, (B2)

and

ρ12 =
∞∑

k=0

E2k+1
0

(
ρ̂

(2k+1)
12 + iρ̃

(2k+1)
12

)
. (B3)

To solve optical Bloch equations is, thus, equivalent to solve
successively the equations

1

ω2
12

∂2

∂t2
ρ̂

(2k+1)
12 (t) + ρ̂

(2k+1)
12 (t) = −2 [e(t) · μ] ρ

(2k)
11 (t),

(B4)

ρ̃
(2k+1)
12 = ∂

∂t
ρ

(2k+1)
12 (t), (B5)

and
∂

∂t
ρ

(2k+2)
11 (t) = 2 [e(t) · μ] ρ̃

(2k+1)
12 (B6)

with

ρ
(0)
11 = 1. (B7)

Thus, if e(t) is a periodic function with frequency f , ρ̂ (2k+1)
12 is

a sum of periodic functions whose frequencies are odd
multiples of f , while ρ

(2k)
11 is a sum of periodic functions

whose frequencies are even multiples of f . Since in our case
ρ22 corresponds to the ionization rate, resonances will occur
only by integrating equations for ρ̂

(2k+1)
12 (t) and, thus, for

odd multiples of the laser frequency f . This explains why,
with the two levels, optical Bloch equations cannot describe
multiphoton ionization with an even number of photons.

APPENDIX C: INVERSION OF THE MATRIX
[Id + i

2 H(t + δ t
2 )] FOR THE OPTICAL BLOCH APPROACH

For the optical Bloch approach we need to invert the
matrix M = [Id + i

2H (t + δt
2 )]. We have two levels in the

valence band and n levels in the conduction band. Since
we have hypothesized that there is no interaction between
the conduction band levels, the matrix M can be written as
follows:

M =
(

A B

C D

)
, (C1)

where A, B, C, and D are 2 × 2, 2 × n, n × 2, and n × n

matrices, respectively. D is a diagonal matrix with no zero on
the diagonal. Moreover, for δt = 0 the matrix M is the identity
matrix and, thus, for small-enough δt , M is invertible and the
following formal computations will be valid. For any couple
of vectors U and V with respectively two and n components,
we have to find two similar vectors X and Y such that(

A B

C D

) (
X

Y

)
=

(
U

V

)
.

We notice, first, that Y verifies Y = D−1(V − CX). This leads,
then, to (A − BD−1CX)X = U − BD−1V .

The matrix T = (A − BD−1CX) is an invertible 2 × 2 ma-
trix. We get, therefore, X = T −1(U − BD−1V ) and, finally,

M−1 =
(

T −1 −T −1BD−1

−D−1CT −1 D−1CT −1BD−1 + D−1

)
. (C2)

This result is still valid if we add an additional level to
account for the irreversibility of photoionization. Therefore,
the only nontrivial operation required to invert the matrix M

is the inversion of a 2 × 2 matrix T .
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