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Recombination and enhanced metastable repopulation in the argon afterglow
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The power-off phase of pulsed low-pressure plasmas (the so-called afterglow) in noble gases is a rich field for
both fundamental and application oriented research. The physics of these plasmas is complex and involves various
processes: Initially, electrons cool rapidly to temperatures close to the gas temperature by evaporative cooling. At
sufficiently high plasma densities the low kinetic electron energy strongly enhances three-body recombination into
Rydberg states. Finally, subsequent collisional-radiative decay leads to emission of radiation and populates the
metastable states of the atoms. The various steps are investigated experimentally and are compared to analytical
models. This allows us to follow all steps throughout in a single experiment involving diagnostics of electron
density, metastable density, and emission. Excellent agreement with the models is achieved. The mechanisms
included are: (i) for electrons, balance between evaporative cooling and Coulomb collisions with ions leading to
thermalization; (ii) consistent combination of re-ionization and microfield reduction of the ionization energy in
the recombination rate; (iii) adiabatic balance of recombination and collisional and radiative de-excitation; and
(iv) radiative population and diffusional and pooling collisional loss of metastable levels. Although the experiment
is carried out in argon, the underlying physics is generally applicable for the afterglow of high-density low-pressure
discharges in atomic gases.
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I. INTRODUCTION

Decaying plasmas without external energy supply exhibit
some unique properties with rather complex dynamical re-
lation between electron heating and cooling mechanisms
coupled to particle transport, recombination, and re-ionization
processes. At low temperatures and in particular in noble gases
the dominant loss channel for the electron energy is evaporative
(diffusive) cooling.

This highly efficient cooling mechanism was first observed
by Biondi [1] and since then several investigations, both
theoretical and experimental, have been devoted to this effect
[2–6]. Although the general mechanisms behind the process
are clear, a satisfactory quantitative agreement between theory
and experiment was lacking. Recently [7], an ab initio analyt-
ical model was able to fully reproduce the experimental and
simulation results, thus providing a satisfactory quantitative
description of the electron cooling process.

The decrease of the electron temperature through evap-
orative cooling quickly extinguishes all excitation processes.
The low-electron energy in combination with sufficiently high-
electron densities, however, strongly enhance recombination.
Although various recombination mechanisms exist at low
pressure and in atomic gases, three-body recombination (TBR)
is by far the dominant process [8–11]. The rate for this
process, νTBR = −(1/ne)(∂ne/∂t), is commonly cited to scale
as n2

eT
−4.5

e [12]. This is the scaling first obtained by Thomson
[13] using a cut off for the re-ionization by thermal electrons as
the limiting factor for the recombination rate. Later this result
had been confirmed by detailed collisional radiative models
for hydrogen [14,15]. The calculations of Stevefelt et al. [16]
provided some additional correction terms to the rate. Pohl
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et al. [17] showed recently that the rates used in the calculation
of Stevefelt et al. are incorrect for transitions between states
with energy difference smaller than 0.5kTe. These authors
also developed a collisional radiative model where they used
the Stark splitting by plasma microfields as a factor limiting
the recombination. The effect of plasma microfields on the
recombination rate has been investigated by Hahn [18]. In his
approach the effect of the microfields and the re-ionization
by thermal electrons are treated as independent competing
processes.

Three-body recombination populates predominantly the
states close to the ionization continuum, the so-called highly
excited Rydberg states [19]. The standard physical picture of
the atomic population dynamics after recombination distin-
guishes between two groups of bound states [14–17]. For
upper Rydberg states between the ionization limit and a
lower “bottleneck” state, collisional de-excitation dominates.
Below the bottleneck state, radiative de-excitation is dominant
and at the critical state both rates are equal. The radiative
transitions give rise to emission of photons, occurring after
power termination, where the name “afterglow” comes from.
This afterglow was observed already in the 1950s by Johnson
et al. [20] and was subject to numerous subsequent studies.

The collisional-radiative de-excitation of the recombined
Rydberg atoms leads eventually to repopulation of the
metastable states. It is known that these states play a crucial role
in the afterglow of noble gas plasmas [21–25]. As long-lived
species they can store a significant amount of energy. Such
excited species can influence the shape of the electron energy
distribution function [26] or reheat the electrons and modify
the properties of the afterglow [27,28].

In this work an attempt is made to determine in a single
experiment the relevant parameters belonging to the various
processes outlined above. In particular the electron density,
the optical emission, and the metastable density are measured
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using various diagnostics and are combined in a single
consistent picture by analytical models. Furthermore, a model
is proposed which combines re-ionization and microfield
limited recombination with electron evaporative cooling and
heating by Coulomb collisions with ions. Good agreement with
measurements in an argon discharge is obtained. However, the
basic properties determining the system dynamics are indepen-
dent of the particular atomic species. Therefore, the physics
investigated in this paper should apply to any atomic system
as long as evaporative cooling and three-body recombination
of electrons are dominant mechanisms in the afterglow. At
higher pressures electron-molecular ion recombination and
electron energy loss by elastic collisions may eventually
become important, a regime explicitly excluded here.

The outline of the paper is as follows: First the theoretical
models are introduced, then the experiment is described, and
finally the experimental data are compared to the theory. The
paper closes with a section summarizing the conclusions drawn
from the results. Some more specific details of the discussion
are moved to an Appendix.

II. THEORY

This section presents the analytical models, describing
the temporal evolution of different plasma parameters in the
various stages of the afterglow. The models are interconnected
and present a consistent picture of the processes in the
afterglow. The general physical picture of the afterglow is
outlined in Fig. 1.

After the external power is cut, a short transient period
(few microseconds) follows during which the electrons with
energy above the excitation threshold (11.48 eV) lose energy
by inelastic collisions and the excited species present during
the active phase of the discharge decay radiatively. Subse-
quently the electron energy continues to decrease through
evaporative (diffusive) cooling. This phase lasting about 1 ms
(depending on pressure and chamber size) is described in
Ref. [7]. Simultaneously with the electron energy decay,
quenching of the metastables takes place. When the electron

temperature reaches values around room temperature (0.026
eV), the recombination phase begins. Furthermore, quenching
of metastables effectively terminates as the electron temper-
ature has fallen significantly below the energy required for
excitation from the metastable to the resonant state (0.076 eV).
Three-body recombination, dominant at low pressures, popu-
lates the higher Rydberg states. These states relax through
the bottleneck by electron collisions to lower radiative states.
The radiative states then further relax downward by emission
of photons and end up either in a metastable state or in the
ground state. The metastable states finally are lost by diffusion
to the walls and energy pooling. A simplified system of atomic
levels is considered in the models (Fig. 1).

A. General recombination rate

Following the classical approach of Thomson [13,29] one
obtains an expression for the ionization coefficient of an atom
in an excited state characterized by a quantum number p

and density np. Combining this coefficient with the Saha
formula and the principle of detailed balancing the following
recombination coefficient αp (ṅp = αpn2

eni) into the state p is
obtained:

αp = 4

π

h3a2
0

m2
e

(
gp

gegi

) (
Ry

Ip

)2
�p

kTe
. (1)

Here a0 is the Bohr radius, Ry = 13.6 eV the Rydberg energy,
Ip and gp are the ionization energy and the statistical weight
of the atomic state, ge and gi are the statistical weights of the
recombining electron and ion, respectively, �p is the Gaunt
factor, and Te the electron temperature. The other notations
are standard. Setting ge = 2, gi = 4 (j = 3/2) and gp = 8p2

(the atom consists of the ionic core and an electron in an outer
orbital), as well as taking �p = 1, Eq. (1) has the form

αp = C

(
Ry

Ip

)2
p2

Te
. (2)

The constant C = 4h3a2
0/(πm2

ek) has the value of C = 9.05 ×
10−38 m6 K s−1 = 7.80 × 10−42 m6 eV s−1. It has to be noted

FIG. 1. A schematic representation of the interconnection of the different physical processes occurring in the afterglow of noble gas
plasmas. For the sake of simplicity some processes are not included. For example, the diffusional losses of electrons occurring during the entire
afterglow and the energy pooling of metastables, of importance at higher pressures, are omitted. The simplified level scheme assumed in the
analytical models is also given.
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that a formula similar to Eq. (1) and (2) is given also by
Hahn [18,30], but the value of the numerical coefficient is
different probably due to an error in the conversion of units.
This error then spreads into a paper by Killian et al. [19].

Using the Balmer formula for the ionization energy Ip =
Ei/p

2 with Ei the ionization energy of the atom (argon in the
case studied here) Eq. (2) becomes

αp = C

(
Ry

Ei

)2
p6

Te
= C ′ p6

Te
(3)

with C ′ = C(Ry/Ei)2 = 6.74 × 10−38 m6 K s−1 = 5.81 ×
10−42 m6 eV s−1 for argon. This formula shows that the
three-body recombination populates predominantly the higher
lying states since the rate for their population scales with the
principle quantum number like p6 [19]. Strictly speaking,
the Balmer formula applies only to hydrogen and in noble
gases the quantum defect formula for the energy of the
eigenstates [31] might be more appropriate. As will be shown,
the Balmer formula gives already remarkable agreement with
experiments.

The net recombination rate νr for electrons is calculated by
summing the population rate αp of all states up to a maximum
quantum number pm. This maximum quantum number is
determined by ionization by thermal electrons and microfields
in the plasma, to which the Rydberg states are rather sensitive.
This has been discussed, for example, in Refs. [18,32]. For
sufficiently high values of this maximum number the finite
sum can be replaced by an integral:

νr = n2
e

pm∑
p=1

αp = C ′

Te
n2

e

pm∑
p=1

p6

≈ C ′

Te
n2

e

∫ pm

1
p6dp ≈ C ′

7Te
n2

ep
7
m. (4)

If as the maximal quantum number the Thomson value
is taken (pm = √

Ei/kTe), the well-known scaling of the
recombination rate is obtained:

νr = A
n2

e

T
9/2

e

. (5)

The physical meaning of this cut-off criterium is that all
states within one kTe from the continuum are ionized by
thermal electrons and do not contribute to the recombina-
tion. In Eq. (5) the constant A has the value 2.52 × 10−20

m6 K9/2 s−1 = 1.29 × 10−38 m6 eV9/2 s−1 for argon.
As an alternative cut-off mechanism one can take the

plasma microfields, as proposed by Hahn [18]. In this case
the maximum quantum number is given by the well-known
Inglis-Teller formula [33]:

pm =
(

nIT

ne

)2/15

, (6)

where nIT = 1029.19 m−3 is the scaling density resulting from
the Inglis-Teller formula. At this density, the Stark effect would
hypothetically not allow any bound state. The value used here
is the corrected one by Mitrofanov [34] for an error in the
mean Holtsmark field in the original work [33]. The physical
picture behind the formula is that the ionic microfield is leading

to a mean Stark splitting of all states. For p larger than the
maximum quantum number, the Stark splitting of the state p

is already larger than the energy difference to the state p + 1 so
that effectively the transition to the continuum appears already
at a finite quantum number. As a result the ionization potential
in plasmas is effectively lowered. With pm from Eq. (6) the
recombination rate takes the form

νr = C ′ n
14/15
IT

7Te
n16/15

e . (7)

These commonly utilized derivations suffer from the fol-
lowing misconception. The re-ionization by thermal electrons
is not a process competing with the microfield effect, but rather
a complementary one. This means that the limiting quantum
number has to be determined from the following expression:

Ei

p2
m

= Ei

p2
IT

+ ηkTe. (8)

Here pIT is given by Eq. (6). The first term on the right-hand
side (rhs) in Eq. (8) describes the lowering of the ionization
potential and the second term gives the additional limitation of
the maximal quantum number due to re-ionization by thermal
electrons. The position of the bottleneck is accounted for
by the dimensionless parameter η. Its value varies between
different authors which is probably the cause for the different
magnitudes of the recombination rates cited. For example, the
original formulation of Thomson corresponds to η = 1 and the
calculations by Pohl et al. provide η ≈ 4. Combining (8) with
(4) the following recombination rate formula is obtained:

νr = − 1

ne

∂ne

∂t
= C ′E7/2

i

7η7/2

n2
e

T
9/2

e

1

(1 + ψIT)7/2 , (9)

with

ψIT = Ei

ηkTep
2
IT

= Ei

n
4/15
IT

n
4/15
e

ηkTe
. (10)

Equation (9) gives a smooth transition between the standard
T −4.5

e -rate formula (5) and the one given by Eq. (7). Both
formulas are recovered in the limiting cases of, respectively,
ψIT � 1 and ψIT � 1.

B. Influence of the evaporative cooling

In a recent work [7] a general description of the evaporative
cooling was achieved. It was shown that the electron dynamics
in the afterglow can be divided into two phases: before and
after the electron temperature has reached the gas temperature.
Initially, when the electron temperature Te is higher than the
gas temperature Tg electrons lose energy at a rate greater than
the particle loss rate. During this phase diffusive losses with a
temporally varying diffusion coefficient determine the electron
density n (τ ) evolution:

n =
(

β

(1 + β) eβτ − 1

)γ

. (11)

Here τ = t/τε with τε denoting the electron energy decay
time due to evaporative cooling. The electron density n is
normalized to its initial value n(0)

e . The parameter β is the ratio
of the gas temperature Tg to the initial electron temperature
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T (0)
e , both have been measured in Ref. [35]. The parameter

γ is given by the ratio of τε to the steady-state diffusion
time τ

(0)
D .

The electron temperature reaches the gas temperature at a
time t = tβ ≈ τε(T (0)

e /Tg). The electron density at this time is
ne(t = tβ) = nβ = n(0)

e (Tg/T (0)
e )γ .

At later times, after thermalization, Coulomb collisions of
electrons with ions start to dominate. As a result, the electron
temperature changes adiabatically which connects the electron
temperature with the density. Numerical simulations show that
this relation has a surprisingly simple power scaling that holds
in a large interval of electron temperatures [7]:

kTe = δn2/5
e = δnκ

e , κ = 2/5. (12)

The coupled equations of temperature decay by diffusional
transport and heating by Coulomb collisions and particle loss
by diffusion and recombination are complex and not treatable
analytically. However, the above relation might be motivated
by the following considerations. With adiabatic change of the
electron temperature and balance between electron heating by
Coulomb collisions with the ions and cooling by evaporative
the following equation is obtained:

kTe(kTe + kTg) = α0
ne

(kTe)3/2
(kTg − kTe). (13)

Here the ion temperature is assumed to be equal to Tg and the
constant α0 is

α0 =
√

me

2π

e4

384ε2
0

L2νin ln �

ln [Lvth/ (16Da)] + 2
. (14)

In this equation νin is the ion-neutral elastic collision frequency,
ln � ≈ 6 is the Coulomb logarithm, L is a characteristic length
of the plasma chamber, and Da and vth are the ambipolar
diffusion coefficient and the electron thermal velocity at gas
temperature. The ne-Te relation given by Eq. (13) cannot be
inverted exactly to obtain the temperature as a function of the
density. Rearranging Eq. (13) yields

kTe = δ (Te) n2/5
e ≈ α

2/5
0 n2/5

e , (15)

δ = α
2/5
0

(
Tg − Te

Tg + Te

)2/5

. (16)

Expression (12) follows in the limit Te � Tg with δ = α
2/5
0 .

For finite values of Te Eq. (12) can still be considered
to hold with δ(Te) being a slowly varying function of the
temperature or, respectively, the density. Apparently δ(Te =
Tg) = 0. In fact, the electron temperature has to be below the
gas temperature in all cases to realize the adiabatic balance.
Therefore, one can expect δ < α

2/5
0 .

By combining (12) with (9) the following rate formula is
obtained:

νr = C ′E7/2
i

7η7/2

n2
e(

δn
2/5
e

)9/2

1

(1 + ψ̂IT)7/2
= ρ

n
1/5
e

(1 + ψ̂IT)7/2
, (17)

ρ = C ′E7/2
i

7η7/2δ9/2
, (18)

ψ̂IT = Ei

ηδn
4/15
IT

1

n
2/15
e

. (19)

At high densities in the limit ψ̂IT � 1 Eq. (17) shows that
the recombination rate should exhibit a n

1/5
e dependence

with the density. In the other limiting case of low electron
densities ψ̂IT � 1 the recombination rate shows a stronger
n

2/3
e variation. For the experimental conditions considered

here the high-density case (ψ̂IT ≈ 0.1 � 1) applies. Therefore
in the following theoretical treatment the recombination rate
will be considered to scale as n

1/5
e . This leads to a reasonable

agreement with the experiment.

C. Evolution of the electron density

At low pressures the charged particles are lost by recom-
bination and diffusion, no ionization occurs. At high electron
densities and low electron temperatures (after thermalization)
the diffusion can be neglected. In this case

ṅe = −νrne = −ρn6/5
e , (20)

where νr is given by Eq. (17). The solution to this equation
with the initial condition ne

(
t = tβ

) = nβ is

ne (t) = nβ[
1 + (1/5) ρn

1/5
β (t − tβ)

]5
. (21)

Here it is assumed that the time tβ when thermalization is
achieved also marks the transition between the initial cooling
phase and the following recombination phase. The solution
(21) does not depend on the initial density nβ for t → ∞. This
property is typical for all recombination dominated discharges.
It should be noted further that the temporal evolution of the
density is not very sensitive to the exact power dependence
of the recombination rate on ne as long as this dependence is
weak (see the Appendix).

D. Excited states dynamics

The following states of the argon atom are considered (cf.
Fig. 1): the Rydberg levels nR above the bottleneck, the excited
levels n∗ below the bottleneck, and the metastable states nm.
The Rydberg levels are populated by recombination and lost
due to electron-impact quenching (with a rate constant kq):

ṅR = νrne − kqnenR. (22)

The excited radiative states are then populated from the
Rydberg states and lost due to spontaneous emission (with
a lifetime τ ∗):

ṅ∗ = kqnenR − n∗/τ ∗. (23)

The radiative and quenching rates (by electron collisions)
as a function of the principal quantum number p are shown
in Fig. 2. The rates are calculated using standard formulas
[36,37]. The electron density range covered in the experiment
is represented by the curves for quenching. From this graph
one expects the bottleneck between p = 12 and 21, depending
on the electron density.

The metastable states are populated from the radiative states
(with a probability A∗) and lost by diffusion (with a diffusive
time constant τD) and energy pooling (with a rate constant km):

ṅm = A∗n∗ − nm/τD − 2kmn2
m. (24)
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FIG. 2. Radiative (dashed curve) and quenching (continuous
curves) de-excitation rates as function of the principal quantum
number. The quenching rates are calculated for different electron
densities and an electron temperature equal to the gas temperature.

It can be assumed that the densities of the Rydberg states
above the bottleneck and of the excited radiative states are
limited by their losses, that is, they are changing adiabatically
(ṅR ≈ 0, ṅ∗ ≈ 0). In this case their densities are

nR (t) ≈ νr

kq
= ρ

kq

n
1/5
β[

1 + (1/5) ρn
1/5
β (t − tβ)

] , (25)

n∗ (t) ≈ kqτ
∗nenR = ρτ ∗n6/5

β[
1 + (1/5) ρn

1/5
β (t − tβ)

]6 . (26)

In the experiment the intensity of the emitted light is observed:
I ∝ n∗. It has the same temporal variation as the population
density of the emitting states.

For the metastable states the loss mechanisms are much
slower than the population and quasisteady state cannot be
assumed for them. At lower pressures the metastable densities
in the afterglow are low (due to less recombination) and the
diffusional losses dominate over energy pooling. In this case,
assuming that at the end of the cooling phase of the electrons
the metastables are completely quenched, the solution of
Eq. (24) is

nm (t) = A∗τ ∗ρn
6/5
β exp

(
− t

τD

)

×
t∫

tβ

exp(t ′/τD)[
1 + (1/5)ρn

1/5
β (t ′ − tβ)

]6 dt ′. (27)

Here A∗τ ∗ is the branching ratio of excited state(s) for radiative
transitions to the metastable state. In fact, the diffusive losses
of the metastables are so slow in comparison with the density
variation that the exponent under the integral can be taken as
unity. This allows the integration to be performed yielding

nm (t) ≈ A∗τ ∗nβ exp

(
− t

τD

)

×
{

1 − 1[
1 + (1/5)ρn

1/5
β (t − tβ)

]5

}
. (28)

At higher pressures, owing to higher plasma densities, the
recombination process is more pronounced. As a result the

metastable density in the afterglow is higher, in some cases
even exceeding the steady-state value. In this case the energy
pooling is comparable to the diffusional losses and cannot
be neglected. This does not permit an analytical solution to
Eq. (24). However, an approximate solution can still be found
due to the different time scales of the terms in the equation.
The first term on the rhs of Eq. (24) has a strong time variation
given by Eq. (26). It describes the rise in the metastable density
after the end of the quenching phase and quickly diminishes.
In the subsequent decay of the metastables this term is small
and can be neglected. With this approximation and the initial
condition nm (t = tmax) = nmax = A∗τ ∗nβ , where nmax is the
peak density of the metastables reached in the afterglow at
time tmax, the solution is

nm (t) ≈ nmax

(1+2kmτDnmax) exp [(t − tmax) /τD] − 2kmτDnmax
.

(29)

The derived formulas describe the general temporal evolu-
tion of the different plasma parameters in the low pressure
afterglow. In the next sections these predictions will be
compared against experiments. The comparison is mainly
in the form of fits of the corresponding equations to the
experimental data. The lack of knowledge on certain quantities,
like for example, the branching ratio for populating the
metastables, entering the theoretical formulas does not allow
calculating all quantities ab initio. However, these factors
concern mostly the absolute scaling and not the time constants
and the actual functional dependence given by the equations.

III. EXPERIMENTAL SETUP

A schematic of the discharge chamber and the adherent
diagnostics is given in Fig. 3. The plasma is produced by
radio-frequency (rf) power at frf = 13.56 MHz coupled via a
2.5 turn fourfold inductive planar antenna (200 mm diameter)
[35,38]. The antenna is separated from the plasma by a quartz
dome of 12 mm thickness. All measurements are performed
in the downstream plane 240 mm below the quartz dome in

FIG. 3. (Color online) Schematic of the experimental setup.
The dimensions are in millimeters and the notations used are the
following: ECDL (external cavity diode laser), PD (photodiode), and
RFEA (retarding field energy analyzer).
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an argon plasma. The rf power to the antenna is supplied by
a Dressler Cesar 1312 rf generator through a standard L-type
matching unit (VM 1000). In the experiment the reflected
power is zero under all conditions and power values given
below refer to the output of the generator. The rf power is
pulsed with a duty cycle of 85% at a repetition frequency of
20 Hz, but depending on the conditions 5 and 10 Hz are also
used. The fall time of the rf current in the generator amounts
to less than 1 μs.

The time-resolved line-integrated electron density is mea-
sured by means of a microwave interferometer (MWI) [39].
This technique has the advantage of being noninvasive but only
the line averaged densities can be obtained. A cosine profile
is assumed to convert the measured densities to the values in
the center. A rough estimation shows that the possible error
caused by deviation of the profile due to recombination is
not larger than about 10%. The linear frequency f of the
interferometer (Miwitron Ltd., MWI 2650) is 26.5 GHz. A
pair of lenses located in front of the emitter and the receiver
(separated by about 2 m) is used to increase the signal to
noise ratio. The time resolution of the system is 10 μs and the
minimum measurable electron density is about 1014 m−3.

To cover the whole dynamic of the density decay, the
repetition rate of the rf pulse is set to 5 Hz. The curves
measured with an oscilloscope (LeCroy WaveSurfer 424)
consist initially of 250 000 points. The data are numerically
processed: 100 points corresponding to an interval of 20 μs are
averaged to produce a single data point. The reduced data set
is then numerically differentiated by using a Savitzky-Golay
filter with an adaptive control of the window size [40]. This
ensures a reasonable trade-off between temporal resolution
and additional filtering.

The plasma emission in the afterglow is recorded by
using a Hamamatsu photomultiplier tube (R 928). A tunable
interference filter (VariSpec VIS) with a full width at half
maximum (FWHM) of 10 nm is adjusted to a wavelength
of 418 nm. Thus, line-integrated emission in the wavelength
range between 413 and 423 nm is recorded. Additionally, a
1/8 m grating spectrometer (Oriel) in combination with an
intensified CCD camera (Roper PIMAX) is used to record
time-resolved spectra in the afterglow. The spectrograph
consists of an entrance slit of 200 μm, two parabola mirrors
with a focal length of 125 mm, and a grating with a line
density of 400 grooves/mm. A mechanical micrometer drive
controls the wavelength tuning. The wavelength resolution of
this system is about 1.6 nm and the wavelength range is about
250 nm. The absolute frequency calibration is done by use
of two sufficiently isolated and identifiable plasma emission
lines. Plasma light is collected by an optical fiber of 200 μm
diameter and a numerical aperture 0.22 which guides the light
to the input slit of the spectrometer.

The temporal evolution of the line averaged metastable
density is measured by a tunable diode laser absorption
spectroscopy (TDLAS) system. It consists of a compact
grating-stabilized external cavity diode laser (ECDL) [41]
and the adherent optics. The laser is tuned at 696.73 nm
corresponding to the 2p2 ← 1s5 Ar atom transition (in Paschen
notation). Wavelength monitoring is done via a Fabry-Pérot
interferometer. To avoid saturation, the laser power is reduced
to about 3 μW via a neutral density filter. The laser beam

FIG. 4. Variation of the steady-state center density with power at
a pressure of 1 Pa measured by microwave interferometry.

transmission behind the plasma is detected via an ultrafast Si
PIN photodiode (PD, EG&G FND 100, rise time < 1 ns). To
increase the signal to noise ratio, a 10 k� terminal resistance is
chosen, leading to an effective time resolution of around 1 μs.
An interference filter (FWHM = 10 nm) is installed in front
of the detector. The measurements at 1 Pa were performed
at a repetition frequency of 20 Hz, but at higher pressures
this is reduced to 10 Hz to cover the whole dynamics of the
metastables.

A 3-grid retarding field energy analyzer (Impedans Semion)
placed at the bottom of the chamber is combined with a digital
oscilloscope (LeCroy WaveSurfer 424) to record temporally
resolved ion energy distributions. Via the floating potential
their peak energy is converted into temporally resolved
electron temperatures. Comparison between measured and
calculated values is made in a recent paper [7].

IV. EXPERIMENTAL RESULTS

In this section the results from the various experimental
techniques employed are presented. The different aspects of
the recombination are investigated and a comparison with the
theoretical formulas is shown.

A. Electron density evolution

Figure 4 shows the dependence of the center plasma density
on the rf power in the stationary discharge in argon at 1 Pa. An
almost linear increase with the power is observed as expected
[12]. These densities are identical to the initial values for the
density decay in the afterglow (shown in Fig. 5) since the
duty cycle is large. In the afterglow the temporal evolution
at lower powers and hence lower initial plasma densities is
fundamentally different from the one observed at higher initial
densities—the higher the density, the faster the decrease. This
dependence on the initial density can be easily understood
in terms of recombination in the plasma volume—at higher
densities the charged particles are lost due to recombination in
addition to the diffusive losses, which leads to the steeper slope.
Furthermore, three different decay intervals can be identified
in Fig. 5—an initial fast decrease in the first 1–2 ms, an almost
exponential interval until around 12 ms, immediately followed
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FIG. 5. Temporal development of the electron density normalized
to its initial value as a function of power at p = 1 Pa. The dashed
curve represents a fit to the data at 1 kW according to Eq. (21).

by an interval of slower density decrease during the rest of the
afterglow phase.

The initial density decay phase is well described by
ambipolar diffusion with a temporally changing electron
temperature due to the evaporative cooling. The electron
density variation is given in this case by Eq. (11). Figure 6
shows the measured electron density for one of the curves in
Fig. 5 (50 W) in this initial time interval with a fit according to
Eq. (11) superimposed. The agreement between measurement
and model is excellent and this is also the case at other
powers [7]. The values of the fit parameters are also close
to those predicted by the theory. Similarly, good agreement is
also found for the electron temperature decay [7].

The second interval, starting at about 2 ms and continuing
to roughly 12 ms after pulse termination, shows a qualitatively
different behavior—different slopes at different powers are
observed. In this time interval the electron temperature has
reached gas temperature and recombination has been triggered.
This is confirmed by the good agreement of Eq. (21) with the
data for the case of 1 kW (Fig. 5). The different slopes at
different powers are due to different values of the density nβ

at the beginning of the recombination phase. Between 50 W
and 1 kW clearly the density decay makes a transition from
the diffusion to the recombination dominated regime.

FIG. 6. Measured electron density decay for 50 W at p = 1 Pa
obtained with the microwave interferometer. A fit of Eq. (11) is
superimposed (dashed curve). The fit results provide β = 0.028,
γ = 0.07, and τε = 42 μs, in good agreement with the model [7].

FIG. 7. Decay rates of the plasma density obtained from the MWI
measurements at 1 Pa and different powers. The horizontal dotted
lines present the diffusional loss rate at Te = 0 (lower line) and at
Te = Tg (upper line). The dashed curve gives the prediction of the
theoretical formula (17) with η = 1 plus a diffusional rate at Te =
0.8Tg (see text for explanations).

The last and final phase in the electron density evolution,
which spans from about 12 ms until the end of the afterglow,
is determined by a pure diffusional decay. Although at higher
power levels, that is, at higher steady-state electron densities,
considerable gas heating takes place (as measured in Ref. [35]),
analytical estimations show that the gas temperature reaches
room temperature on a time scale of about 3 ms. This has
an influence only on the first phase, while during the second
and third intervals diffusion takes place at room temperature.
Therefore the diffusional electron loss rate is the same for all
powers leading to identical slopes exhibited in the third and
final phase of the electron decay.

From the curves in Fig. 5 the electron decay rates are
obtained and plotted against the density (Fig. 7). Apparently all
curves overlap and follow the same slope. At lower densities
(the third phase in the decay) all curves converge in the
ambipolar diffusion regime, as expected. The actual diffusion
rates vary for each case but are confined between the values
corresponding to zero electron temperature and an electron
temperature equal to the ion temperature (considered to be
equal to the gas temperature). It should be noted that in this
region of low densities and rates noise, especially resulting
from differentiation, is rather large.

The slope on the right goes with the power of 0.2. Here the
factor ψ̂IT in Eq. (17) has only a very low value close to 0.1 and,
hence, has a relatively small contribution. In such case Eq. (17)
predicts exactly the same density scaling. For comparison,
the Hahn formula (7) gives a much steeper n

2/3
e dependence

which is clearly well outside the uncertainty limits of the
experimental data. This means that the maximum quantum
number is limited mainly by re-ionization by thermal electrons
and to a much lesser extent by microfields [in Eq. (8) the second
term on the rhs dominates over the first one].

The exact prediction of Eq. (17) (with an added constant
diffusional rate) is also shown in Fig. 7. It has to be noted that
for a good quantitative agreement the value of δ in Eq. (12) is
0.42α

2/5
0 . This corresponds in the frame of the reasoning given

for δ to an electron temperature of Te ≈ 0.8Tg for η = 1 and

056401-7



YUSUF CELIK et al. PHYSICAL REVIEW E 85, 056401 (2012)

Te ≈ 0.99Tg for η = 4. Naturally the exact value of Te and η

cannot be determined out of this measurement.
Another point to be noted is the abrupt change in the rate

at densities around 1016 m−3 (marked by a vertical line).
Though the exact origin of this phenomenon is still unclear, the
fact that this sudden transition from recombination dominated
to diffusion dominated decay occurs at approximately the
same densities regardless of the discharge conditions is
remarkable. It should be noted that this transition occurs where
the recombination rate becomes approximately equal to the
diffusive loss rate which might be a starting point for further
investigations.

B. Time and spectrally resolved emission

The highly excited states formed in the recombination
process relax to lower levels through collisional quenching
and spontaneous emission. For the higher lying levels the
collisional quenching dominates, while for the lower levels
the de-excitation through emission overtakes. Due to the
strong dependence of both processes on the quantum number,
the levels where the two processes give equal contribution
exhibit the lowest net de-excitation rate. This is the so-called
bottleneck [42] which limits the recombination. Its exact
position depends on electron density and temperature and is
represented by the factor η in Eq. (8). For the density range
occurring in our experiments, the bottleneck appears for the
levels characterized with quantum numbers p between 12 and
21, depending on the exact conditions as shown in Fig. 2. Then,
the emission observed in the afterglow is expected to originate
mostly from the states below the bottleneck.

Figure 8 shows the evolution of the spectra in the afterglow
at 5 Pa and 1 kW rf power. The higher pressure is chosen since
it provides a much better signal to noise ratio. For comparison,
the steady-state spectrum in the same spectral range is also
shown. Due to the decrease of the electron temperature all
excitation processes are quickly extinguished leading to the
observed disappearance of the emission immediately after
power switch-off. At later times recombination populates the
upper states and they start to cascade down which leads to
reappearance of the emission. A comparison of the afterglow
spectra with the spectrum under stationary conditions shows
that the most intense lines in both cases originate from the
transitions with upper states with quantum numbers p = 5
and p = 6. It is further observed that in the afterglow for
t > 500 μs the relative line intensities and their ratios do not
change. This indicates that the relative population of the upper
states of the observed transitions is independent of the temporal
change of the electron density and temperature.

A more striking—but expected—effect is that beside the
emission lines present in the steady-state discharge, some
additional lines emerge. These are for example the lines in the
wavelength region between 470 and 515 nm. Figure 9 shows a
comparison between the spectra in the stationary plasma and
in the afterglow in this wavelength region. The spectrum for
t = 500 μs is chosen but it is representative for all subsequent
spectra. The vertical lines represent transitions of neutral argon
atoms obtained from the NIST database [43]. The principle
quantum number of the upper state of the transition is also
shown next to the lines.

FIG. 8. Temporal evolution of the spectrally resolved emission
intensity in the afterglow at p = 5 Pa and Prf = 1 kW. In the first
figure also the spectrum for the stationary discharge is shown. Note
that the scales are different.

This reveals that the relatively strong afterglow line around
488 nm is most likely a superposition of several lines which
could not be resolved with the spectrometer. These lines
originate from states with principal quantum numbers between
7 and 11. The line with the highest quantum number is the line
at 480 nm corresponding to p = 12 with an energy (15.66 eV)
close to the ionization threshold (15.76 eV). The fact that such
lines are present, indicates that the mean electron energy is
much lower than the ionization energy of these states (0.1 eV).
This is consistent with the picture of evaporative cooling of

FIG. 9. Comparison of the argon spectra between 470 and 515 nm
in the stationary plasma and in the afterglow. The vertical lines
represent transitions from higher lying states. The numbers indicated
next to the lines are the quantum numbers of the upper state of the
transitions.
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FIG. 10. Emission intensity between 413 and 423 nm measured
at Prf = 1 kW and various pressures. The intensity is normalized to
its steady-state value. The dashed lines are fits according to Eq. (26).
For the fit curve at 1 Pa only the absolute value is adjusted, the other
parameters are the same as for the curve in Fig. 5.

electrons. In the case of the stationary discharge spectra, ionic
transitions must be considered additionally since there the
electron density and temperature are high. For example, the
488 nm line might originate from the prominent Ar+ transition
known from helicon discharges [44–46]. The lines around 484
and 499 nm only appear in the afterglow and are related to high
lying states as shown in Fig. 9. The observed optical transitions
originating from levels with quantum numbers up to p = 12
are consistent with the picture of the de-excitation bottleneck
since at 5 Pa the electron density is higher and the bottleneck
occurs at a state with a lower quantum number (Fig. 2).

The spectrum in a narrower spectral range between 413
and 423 nm recorded at different pressures is presented in
Fig. 10. It is obvious from Fig. 8 that the strongest lines
are in this wavelength range. These neutral lines correspond
to the following transitions: the Ar 3p6 → 1s5 transition (in
Paschen notation) at 415.8 nm, the 3p1 → 1s5 transition at
419.8 nm, and the 3p9 → 1s5 transition at 420.1 nm. The
radiative lifetimes of the corresponding upper states of these
three lines are all about 1 μs [43].

The initial decrease of the emission and its following
increase are better visible in Fig. 10. The increase is up
to 50% of the value in the stationary plasma. The time at

which the maximum occurs varies with pressure and decrease
from tmax ≈ 1000 μs at 1 Pa over tmax ≈ 800 μs at 2 Pa
to tmax ≈ 500 μs at 5 Pa. This behavior can be explained by
enhanced recombination at the higher electron densities which
shifts the maximum naturally to earlier times [Eq. (28)].

Noting that the registered intensity is proportional to the
density of the radiative states, a comparison with Eq. (26) can
be made. An amazing agreement is obtained. This agreement
also provides indirect confirmation of the assumption for
adiabatic change of the densities of both the Rydberg states
and the radiative states. The deviations from the analytical
formula around the peaks are probably due to violation of this
assumption. The radiative de-excitation of these states leads to
enhancement in the population of the metastable states.

C. Metastable density evolution

After the recombination and the subsequent de-excitation,
the atoms end up either in the ground state or in one of the
metastable states of the argon atoms, leading to an increase in
their density. TDLAS is applied to measure the metastable
density evolution in the afterglow. Figure 11(a) shows
the temporal development of the absolute metastable density
(1s5) at 1 Pa and different powers. The values in the stationary
discharge are given in Fig. 11(b). Figure 12 presents the
obtained temporal variation of the normalized metastable
density at an rf power of 1 kW and different gas pressures.
Figures 11 and 12 show only mean densities since the absorp-
tion measurement performs a line integration. In the stationary
discharge the metastable density is indeed distributed rather
homogeneously [35]. However, when metastables are created
by recombination a density profile close to the electron density
distribution (Bessel function J0) can be expected.

The evolution of the metastable density in the afterglow—as
opposed to that in the stationary discharge [35]—is determined
by a number of different processes as depicted in Fig. 1. These
leave a specific fingerprint that can be identified in the observed
temporal development. Immediately after pulse termination
the metastable density decreases mostly due to quenching
by electrons, the diffusional losses occur on a much longer
time scale. A comparison of the different collisional rates [47]
reveals that it is mostly excitation to the neighboring Ar 1s4

resonance state followed by radiative decay to the ground state

FIG. 11. Temporal evolution of the metastable density at 1 Pa and different rf powers (a) and variation of the metastable density with the rf
power in the steady state (b). The line in (b) is only a guide to the eye.
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FIG. 12. Temporal evolution of the metastable density in the
afterglow as a function of the pressure at Prf = 1 kW. A fit according
to Eq. (28) is superimposed on the data for 1 Pa and according to
Eq. (29) to the data at 5 Pa.

that contribute to the loss of the metastable atoms. Since the
quenching rate is proportional to the electron concentration,
information about the steady-state electron density could
be extracted from this initial phase [35]. Higher electron
concentrations correspond to shorter quenching times and
hence steeper decays. This is well illustrated in Fig. 11(a)
where the metastables at 1 kW are practically completely
destroyed within the first 500 μs of the afterglow, while at 50 W
an appreciable amount of metastable atoms is still present even
several milliseconds after the power has been switched off. The
same trend can be recognized also in the curves at different
pressures (Fig. 12). In this case a higher pressure corresponds
to higher plasma densities and steeper decay.

At t ≈ 500 μs the electrons are already cooled efficiently
to values close to room temperature by evaporative cooling
[7] which enhances recombination. Recombination produces
highly excited states which then cascade down and start to
populate the metastable states (cf. Fig. 1). This gives rise to the
observed increase in their density and is described by the first
term on the rhs in Eq. (24). Naturally, at lower rf powers and,
respectively, lower electron densities recombination becomes
negligible (cf. Fig. 7). Therefore, no increase of the metastable
density is observed at lower powers [Fig. 11(a)].

At higher pressures the density of the ground state atoms is
also higher making the optical transitions to them effectively
less frequent due to the optical trapping of the radiation. This
ultimately means that a bigger percentage of the excited atoms
produced by recombination will end in the metastable states.
As a result, the maximum density in the afterglow should
increase with pressure compared to the value in the steady
state (Fig. 12). This effect, in conjunction with the higher
plasma densities (i.e., enhanced recombination), leads to an
overshoot in the metastable density in the afterglow. At 5 Pa
it is already a factor of 10 larger than the steady-state value.
Furthermore, the absolute value of the steady-state metastable
density decreases with pressure due to the decrease of the
electron temperature.

At p = 1 Pa the afterglow metastable density is low and
diffusion relatively strong. Therefore, Eq. (28) should provide
a good description. In fact, the comparison is very satisfying

throughout. Also the diffusion rate of 172 s−1 obtained from
the fit is in excellent agreement with the literature value [48].

At higher pressures diffusion decreases. However, the
obtained behavior clearly shows an increased decay rate. This
increase is related to the increase in the metastable density
formed in the afterglow. Metastables can now extinguish each
other efficiently by energy pooling collisions. This behavior
is represented by Eq. (29) which gives an excellent fit to the
5 Pa case. Due to the assumptions involved, however, this
equation cannot describe the (short) rise of the metastables.
The parameters obtained from the fit show that the pooling
time constant is approximately equal to the diffusional time,
which in this case amounts to about 10 ms. It has to be noted
that this diffusional time is a factor of 3 shorter than one would
expect from direct pressure correction of the diffusional rate at
1 Pa. This could be due to gas temperature effects or variation
in the diffusion length resulting from different spatial profiles
of the metastable density.

From the pooling time constant τp = 0.5/ (kmnmax) an
estimate for the maximal density nmax can be obtained. Using
for km the value of 6.4 × 10−16 m3/s [49], a value for nmax of
8.2 × 1016 m−3 is calculated. This agrees within a factor of 5
with the measured metastable density. The large factor cannot
be a surprise as the rate calculation for energy pooling is only
estimated by Ferreira et al. [49]. Given further inaccuracies
resulting from the measurement (line integration) and from the
diffusion rate, in fact, the agreement seems to be reasonable.
The curve at 2 Pa shows a more complicated transition behavior
where none of the simplifying assumptions in the analytical
calculations can be justified.

V. CONCLUSION

In summary, a comprehensive and consistent picture of
the recombination process in the low-pressure argon post-
discharge is presented. A new recombination formula is
proposed which considers both Stark splitting by ionic mi-
crofields and re-ionization by thermal electrons. This formula
is combined with the effects of evaporative cooling and
Coulomb collision, which allows the evolution of the electron
density to be fully reproduced. Using the density evolution
obtained in this way, further analytical models for the dynamics
of the Rydberg atoms, the radiative excited states, and the
metastable states are developed. The predictions of the models
are compared with experimental data and very good agreement
is found throughout.

Our results strongly support the following picture of the
processes taking place in the afterglow: after the power is
cut, the electrons lose energy by evaporative cooling and the
existing metastable states are quenched. When the electron
temperature reaches the gas temperature, the recombination
sets in. This process populates the Rydberg states which
decay down by quenching by the electrons to radiative states.
The Rydberg states and the radiative states are separated
by the so-called bottleneck. Furthermore, the de-excitation
continues by spontaneous emission which ultimately leads to
repopulation of the metastable states. At lower pressures these
atoms are lost mainly by the slow diffusional process while
at higher pressures energy pooling starts to play a role too.
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FIG. 13. (Color online) Plot of the solution of Eq. (A2) for
various values of the parameter ε. The dashed line is the exponential
function which is the limiting case for ε → 0. The vertical axis covers
the range of normalized densities from Fig. 5 (ε = 0.2) where the
recombination dominates.

This effectively leads to a faster loss of metastable atoms as
compared to the lower pressures.

An open challenge is the measurement of electron tem-
peratures below the gas temperature. Furthermore, a direct
measurement of the Rydberg states populated in the recom-
bination process is highly desirable. Last but not least, the
observed surprisingly sudden transition from recombination
to diffusion poses an interesting question about the physical
cause.
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APPENDIX

The essential point in the scaling of the recombination rate
with the density according to Eq. (17) is that the dependence is
rather weak: νr ∝ nε

e, with ε = 2 − (9/2) κ � 1, where Te ∝
nκ

e . In the theory presented in the theoretical section ε varies
between 1/5 and 2/3. The differential equation for the density
evolution generally has the form

ẏ = −y1+ε . (A1)

In this equation y (t) = ne (t) /ne (t = 0) is the density normal-
ized to its initial value and the time has been normalized to a
characteristic time constant τ−1 = ρne (t = 0)ε . The solution
with the initial condition y (t = 0) = 1 is

y (t) = 1

(1 + εt)1/ε
. (A2)

This function has the property that in the limit ε → 0 it
converges to exp (−t). For small but finite values of ε the
solution deviates from an exponential function. However, the
form is not very sensitive to the actual value of ε as long as
ε � 1. An example of the solutions for different values of ε is
shown in Fig. 13.

The value of ε = 0.2 derived in the theoretical section
provides a very good fit to the experimental data. Nevertheless,
from the above discussion a variation of this value by about
�ε/ε = ±0.3 would be difficult to identify. However, for κ

the uncertainty is much smaller:

�κ

κ
= 2

9

ε

κ

�ε

ε
= 1

9

�ε

ε
= ±0.033. (A3)

Therefore, the basic physical principal is well identified.
In order to achieve a precise determination of the parameter
time-resolved measurements of the electron temperature in the
10 meV regime would be necessary, which seems to be a real
challenge.
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Petrović, M. M. Turner, T. Gans, and U. Czarnetzki, Plasma
Sources Sci. Technol. 16, 355 (2007).

[28] S. Mohr, B. Du, D. Luggenhölscher, and U. Czarnetzki, J. Phys.
D: Appl. Phys. 43, 295201 (2010).

[29] J. J. Thomson, Philos. Mag. 23, 449 (1912).
[30] Y. Hahn, Rep. Prog. Phys. 60, 691 (1997).
[31] M. J. Seaton, Rep. Prog. Phys. 46, 167 (1983).
[32] M. Yu. Romanovsky and W. Ebeling, Contrib. Plasma Phys. 46,

295 (2006).

[33] D. R. Inglis and E. Teller, Astrophys. J. 90, 439 (1939).
[34] A. V. Mitrofanov, Sov. Astron.–AJ 16, 867 (1973), http://articles.

adsabs.harvard.edu/cgi-bin/nph-iarticle_query?bibcode=1973
SvA....16..867M&db_key=AST&page_ind=0&plate_select=
NO&data_type=GIF&type=SCREEN_GIF&classic=YES.

[35] Y. Celik, M. Aramaki, D. Luggenhölscher, and U. Czarnetzki,
Plasma Sources Sci. Technol. 20, 015022 (2011).

[36] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms, 2nd ed. (Plenum, New York, 1977).

[37] L. Vriens and A. H. M. Smeets, Phys. Rev. A 22, 940 (1980).
[38] T. Gans, D. L. Crintea, D. O’Connell, and U. Czarnetzki, J. Phys.

D: Appl. Phys. 40, 4508 (2007).
[39] A. Brockhaus, G. F. Leu, V. Selenin, Kh. Tarnev, and

J. Engemann, Plasma Sources Sci. Technol. 15, 171 (2006).
[40] Ts. Tsankov and Zh. Kiss’ovski, in Meetings in Physics at

University of Sofia, edited by A. Proykova (Heron, Sofia, 2005),
Vol. 6, pp. 38–42.

[41] L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich,
C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, Opt.
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