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Map of fluid flow in fractal porous medium into fractal continuum flow
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This paper is devoted to fractal continuum hydrodynamics and its application to model fluid flows in fractally
permeable reservoirs. Hydrodynamics of fractal continuum flow is developed on the basis of a self-consistent
model of fractal continuum employing vector local fractional differential operators allied with the Hausdorff
derivative. The generalized forms of Green-Gauss and Kelvin-Stokes theorems for fractional calculus are proved.
The Hausdorff material derivative is defined and the form of Reynolds transport theorem for fractal continuum
flow is obtained. The fundamental conservation laws for a fractal continuum flow are established. The Stokes
law and the analog of Darcy’s law for fractal continuum flow are suggested. The pressure-transient equation
accounting the fractal metric of fractal continuum flow is derived. The generalization of the pressure-transient
equation accounting the fractal topology of fractal continuum flow is proposed. The mapping of fluid flow in a
fractally permeable medium into a fractal continuum flow is discussed. It is stated that the spectral dimension of
the fractal continuum flow ds is equal to its mass fractal dimension D, even when the spectral dimension of the
fractally porous or fissured medium is less than D. A comparison of the fractal continuum flow approach with
other models of fluid flow in fractally permeable media and the experimental field data for reservoir tests are
provided.
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I. INTRODUCTION

Fluid flow in permeable media plays an important role in
a wide variety of environmental and technological processes
[1]. Natural porous and/or fissured materials usually possess
formidably complicated architecture characterized by statis-
tical scale invariance over many length scales [2–4]. In this
context, the fractal geometry offers helpful scaling concepts
to quantify fluid transport in fractally permeable media.
Consequently, different approaches have been addressed to
the problems related to the fluid flow in fractal reservoirs (see
Refs. [5–8] and references therein).

In a recent Rapid Communication [8] we have suggested
that essentially discontinuous fractal flow �D in a fractally
permeable medium can be mapped to the fractal continuum
flow �3

D ⊂ E3, which is describable within a continuum
framework (see Fig. 1). From this perspective, in Ref. [8]
a self-consistent model of fractal continuum flow employing
the local fractional differential operators was suggested, the
fundamental conservation laws and the generalized Navier-
Stokes equations for an anisotropic fractal continuum flow
were derived, and some features of fractal continuum flow
were discussed. It should be emphasized that the geometric
framework of fractal continuum hydrodynamics is the three-
dimensional Euclidean space with a fractal metric.

In this paper, the hydrodynamics continuum flow is ad-
vanced to account for the flow topology and employed to
model fluid flow in a fractal porous (fissured) medium. The
paper is organized as follows. In Sec. II the fractal properties
of fractally permeable media are outlined. In Sec. III the
concept of fractal continuum flow is generalized to account
for nontrivial topology and dynamics of fractal continua ds

d�
�3
D .

The vector local fractional differential operators allied with the
Hausdorff derivative are developed. The generalized forms of
Green-Gauss and Kelvin-Stokes theorems for fractional calcu-
lus are proved. The fractional Jacobian for fractal continuum
flow and the Hausdorff material derivative are defined and the

form of Reynolds transport theorem for fractal continuum flow
is obtained. The fundamental conservation laws for fractal
continuum flow are established. The gravitational head and
hydrostatic pressure distributions in fractal continuum are
defined. The generalized Euler equation, Bernoulli integral,
and wave equations for fractal continuum flow are derived.
The vector form of the generalized Navier-Stokes equation for
fractal continuum flow D

3�
3
D ⊂ E3 is derived. Section IV is

devoted to the mapping of fluid flow in a fractally permeable
medium into the fractal continuum flow D

d�
�3
D ⊂ E3. The

analog of Darcy’s law for fractal continuum flow is suggested
and the pressure-transient equation is derived. Comparisons
of the fractal continuum flow approach with other models of
fluid flow in fractally permeable media and the experimental
field data for reservoir tests are discussed. A brief summary
and some relevant conclusions are outlined in Sec. V.

II. FRACTAL PROPERTIES OF PERMEABLE MEDIA

Now it is widely accepted that the porosity and fractures
in soils and geological formations exhibit fractal features over
many length scales, ranging from the microscopic pore to field
scale (see, for review, Refs. [1–7]). These include the fractal
geometries of pore space or fracture networks, the fractal
roughness of pore and/or fracture surfaces, and the heavy tiled
distributions of pore and/or fissure sizes. A medium displaying
one or more of these features we call a fractally permeable
medium.

Mathematically, a fractal can be characterized by its intrin-
sic metric dimension associated with an appropriate intrinsic
measure characterized by the intrinsic metric dimension d� [9],
commonly called the chemical [10] or the spreading [11]
dimension. This dimension quantifies how the “elementary”
structural units of the fractal are “glued” together to form the
entire fractal object and determines the number of independent
mutually orthogonal directions on the fractal. Accordingly, the
number of the independent coordinates that can be introduced
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FIG. 1. Illustration of the mapping of a discontinuous prefractal
Menger sponge into the fractal continuum with the mass fractal
dimensionD = ln 20/ ln 3. Notice that the intersection of the Menger
sponge with a plane is the Sierpinski carpet of the fractal dimension
d = ln 8/ ln 3, while the intersection of the Menger sponge with a line
is the Cantor set with the fractal dimension α = ln 2/ ln 3, whereas
the density of states along the normal to the intersection of the fractal
continuum with the plane is characterized by the scaling exponent
ζ = ln(2.5)/ ln 3 > α.

in the fractal space is equal to d�. In this context d� can be
treated as a fractional analog of the Euclidean topological
dimension. Although there were attempts to formally introduce
a fractional number of coordinates in the fractal space (see,
for example, Ref. [12]), the concept of fractional coordinates
(see Refs. [13]) seems to be a more physical framework
[8]. Furthermore, the dynamic properties of the fractal are
governed by its spectral dimension ds, which defines the
Lagrangian dimension of the fractal and thus governs the
density of characteristic modes of the fractal structure�(ω) ∝
ωds−1 [14]. Consequently, the fractal dimension of random
walk on the fractal is equal to dW = 2d�/ds [14,15].

On the other hand, the embedding of a fractal with
the chemical dimension d� < n into Euclidean space En is
characterized by the metric dimension D associated with an
appropriate Euclidean measure [16] and the fractal dimension
of geodesic lines on the fractal dmin, also called the fractal
dimension of the shortest (or minimum) path [14–16]. These
dimensions are related to the chemical (intrinsic metric)
dimension as D = dmind� (see Fig. 2 and Table I), while the
fractal dimension of random walk on the fractal embedded
in En is DW = 2D/ds = 2d�dmin/ds = 2 + θ , where θ is the
so-called anomalous diffusion exponent [11]. In the case
of ordinary diffusion θ = 0, whereas θ > 0 and θ < 0 are
associated with sub- and superdiffusion, respectively [11].

It is important to note that the mathematical definitions
of fractal dimension D are based on the concept of fractal
covering by balls or cubes of some size �, or at most � in the
limit � → 0 [16]. In many cases, the number of covering balls
(cubes) scales with � as N (�) ∝ �D [16,17]. It is precisely this
scaling property that gives rise to the use of fractal concepts
to model the “physical fractals,” such as porous media, which
can display the scaling behavior N (�) ∝ �D in the bounded
interval of length scale �0 < � < ξ only, where �0 and ξ are the

FIG. 2. Fractal models of porous media: (a) Cantor dust
D = 3 ln 2/ ln 3 = 1.89, (b) Sierpinski gasket (D = ln 4/ ln 2 = 2),
(c) Menger sponge (D = ln 20/ ln 3 = 2.7268), and (d) percolation
cluster (D = 2.524 ± 0.008). The compete sets of fractal parameters
of these fractals are given in Table I.

lower and upper cutoffs of the fractal (power-law) behavior.
Accordingly, the definitions of fractal dimensions for real-
world systems are based on some kind of fractal quasimeasure
(see [18]), rather than on a strictly metric measure. In this
context, the fractal dimension of a physical fractal is commonly
associated with the power-law dependence of the mass of any
of its fraction m(L) on the characteristic size of this fraction
L � �0, which can be expressed as

m(L) = m0(L/�0 + 1)D, (1)

where m0 is a proportionally constant, �0 is the lower
cutoff, and D is the mass fractal dimension. In the case of
porous medium with a fractal geometry of the pore space,
the Euclidean volume of the pore space scales with the
characteristic size of fractally permeable medium fraction as

VP (L) = 2−D�3
0(L/�0 + 1)D, (2)

where D is the mass fractal dimension of the pore space (see
Refs. [2–4]).

It is imperative to emphasize that the mass fractal dimension
tells us nothing about the connectivity and tortuosity of flow
paths in the fractally permeable medium. In fact, fractals
characterized by the same fractal dimension D can have
different chemicals, minimum paths, and spectral dimensions.
Hence, to model a specific porous and/or fissured medium we
need to know at least three independent fractional dimensions,
as well as the corresponding scaling ranges. Additionally, the
specific fractal geometry of a porous (fissured) medium can be
characterized by another set of independent scaling exponents,
such as the fractal dimension of the backbone Dbb of the
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TABLE I. Fractal characteristics of four classic fractals (see Fig. 2) widely used as models of porous media (data are taken from
Refs. [10,11,16,17,19]).

Cantor dust in three Three-dimensional Sierpinski Percolation cluster in three
Scaling exponent dimensions gasket Menger sponge dimensions

D 3 ln 2/ ln 3 =1.89a 2a ln 20/ ln 3 = 2.7268a 2.524 ± 0.008b

d� 3a D = 2a d� = D 1.837b

ds 3a 2 ln 4/ ln 6 = 1.55a 2.51b 1.33b

dmin D/d� ln 2/ ln 3 =0.63a 1a 1a 1.374 ± 0.004b

DW 2D/ds DW = 2dmin ln 6/ ln 2 = 2.58a 2.17b 3.755b

θ DW − 2 –0.74 0.58 0.17 1.755
Dbb Dbb = D Dbb = D 1.87 ± 0.03b

dbb� dbb� = Dbb = D dbb� = d� 1.36 ± 0.02b

dbbs dbbs = ds dbbs = ds 1.21b

Dbb
W 2Dbb/dbbs Dbb

W = DW Dbb
W = DW 3.09 ± 0.03b

Dred 1.14 ± 0.01b

Dhull Dhull = D Dhull = D Dhull = D 2.55 ± 0.02b

di 2 ln 2/ ln 3 = 1.26a ln 2/ ln 3 = 0.63a ln 8/ ln 3 = 2.8928a D− 1 = 1.53

αi
ln 2/ ln 3 = 0.63

1a ln 2/ ln 3 = 0.63 < D/3 D− 2 = 0.53 >αi= dmin = (1/3)Da

D − di
ln 2/ ln 3 = 0.63
= αi = (1/3)D

ln(4/3)/ ln 2 = 0.415 < D/3 < αi
ln 2.5/ ln 3
= 0.834 > αi < D/3

1 > D/3 > αi

aExact values.
bResults of numerical simulations.

pore space or fracture network, defined as the union of all
self-avoiding random walks between two points [10,11,19],
the fractal dimension Dred of the red bonds, defined as the
bonds which, when broken, divide the whole fractal into two
parts, and the fractal dimension Dhull of the hull, defined as
the set of fractal sites that form the entire external perimeter,
among others [11]. Besides, the fractal distribution of pore
(fissure) sizes can have the heavy tail asymptotic P ∝ LDdist ,
where Ddist is the fractal distribution dimension, even when
the pore space geometry is Euclidian (see Refs. [20]).

Regarding the transport in a fractally permeable medium
it is easy to understand that that the fluid flow is controlled
by the fractal dimension of the backbone Dbb of the fracture
network or pore space, rather than by the corresponding
mass fractal dimension D � Dbb [10,19]. Furthermore, the
connectivity and tortuosity of flow path through a fractally
permeable medium can be characterized by the backbone
chemical dimension dbb� , which can be defined from the scaling
behavior,

VBB = �
3−dbb�
0 
dbb� , (3)

where VBB is the volume of the backbone space and


 = 2−dmin�0

(
L

�0
+ 1

)dmin

(4)

is the length of the shortest path between two points on the
fractal divided by the distance L in the embedding Euclidean
space, while VBB(�0) = �3

0. Notice that the geodesic lines on
the fractal backbone are characterized by the same dimension
of the minimum path dmin as the geodesic lines on the whole
fractal [10]. Accordingly, the tortuosity of the shortest path,
defined as the ratio � = 
/L, scales with the Euclidean

distance between two points as

� ∝
(
L

�0

)dmin−1

(5)

for L � �0. Notice that for discontinuous fractals, such as
Cantor dust, the fractal dimension of the shortest path can
be less than one (see Fig. 2 and Table I), and so the chem-
ical fractal dimension d� = D/dmin is larger than the mass
fractal dimension D defined by Eqs. (1) or (2). On the other
hand, if there is a continuous path between any two points
on the fractal, the fractal dimension of the shortest path
dbbmin = dmin � 1, while the chemical dimension dbb� � d� � D

(see Table I). Besides, a random walk on the backbone of a
fractally permeable medium is characterized by the random
walk dimension

Dbb
W = 2 + θbb = 2Dbb

dbbs
� DW, (6)

where dbbs is the spectral dimension of the backbone and θbb
is the exponent characterizing an anomalous diffusion on the
backbone (see Refs. [10,11,19] and Table I). It is pertinent
to point out that while θ is frequently considered as an
intrinsic property of the fractal, in fact, however, it is allied
with the mechanism of the diffusion process. Specifically,
in the case of continuous Darcian flow through a fractal the
anomalous diffusion exponent is θ = 0 (ds = D, or ds = Dbb,
if Dbb < D and so DDarcian

W ≡ 2), even when the random walk
on the fractal is characterized by θ > 0, and so DW > 2 (see
Table II).

The fluid flow in a fractally permeable medium is also
dependent on the fractal dimension of the pore (fracture)
surfaces DS and the fractal dimensions di of backbone
intersections with the two-dimensional Cartesian planes per-
pendicular to coordinate axis i = 1,2,3 (see [8]). Specifically,
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the fractal dimension DS governs the medium permeability
(see Refs. [21]), whereas the fractal dimension di controls
the Darcian velocities (volume of liquid flowing per unit area
per unit time) in a fractally permeable medium. Although there
are many isotropic fractals obeying the so-called Mandelbrot’s
rule of thumb for intersections according to which the fractal
dimension of intersection between the fractal and a two-
dimensional plane is equal to

d = D − 1 (7)

for any intersection with the two-dimensional plane (e.g.,
see Table I and Refs. [17,22]), more generally, the frac-
tal dimensions of intersections 0 < di � 2 are independent
characteristics of a specific fractally permeable isotropic or
anisotropic medium (e.g., see Figs. 1 and 2, Table I, and
Refs. [8,16]).

III. THE CONCEPT OF FRACTAL CONTINUUM FLOW

The aim of the fractal continuum approach consists of
the mapping of an intrinsically discontinuous fractal medium
into the fractal continuum model (see Fig. 1), the behavior
of which is describable within a continuum framework [8].
Strictly speaking, a fractal �D with D < 3 cannot contin-
uously fill the embedding Euclidean space E3. Still, we
can define the three-dimensional fractal continuum ds

d�
�3
D ⊂

E3 accounting the fractal metric, topology, and dynamic
properties of the modeled fractal medium �D . In this way,
in Ref. [8] the fractal continuum �3

D ⊂ E3 was defined as a
three-dimensional region of Euclidean space E3 filled with
continuous matter (leaving no pores or empty spaces) such
that its properties, for example, density ρ(xi), displacements
vj (xi), etc., are describable by the continuous (or, at worst,
piecewise continuous) and differentiable functions of the of
the space and time variables, whereas the mass of any cubic
(or spherical) region W ⊂ �3

D of size L obeys the fractal
scaling law (3) with the mass fractal dimension D related to
some kind of box-counting quasimeasure. This definition tells
nothing about the topology and dynamic properties of fractal
continuum, because in Ref. [8] it was implicitly assumed that
the fractal continuum �3

D is characterized by the chemical
dimension d� = 3, while the spectral dimension is ds = D,
and so �3

D ≡ D
3�

3
D . Below, the concept of fractal continuum

flow is generalized for the case of arbitrary values of d�
and ds .

A. Fractal metric of fractal continua

The above definition of fractal continuum�3
D ⊂ E3 implies

that the mass of region W ⊂ �3
D should be defined as

m =
∫
W

ρ(xi)dVD =
∫
W

ρ(xi)c3(xi,D)dV3 ∝ LD, (8)

where dV3(dxi) is the infinitesimal volume element in E3,
while dVD = c3(xi,D)dV3 is the infinitesimal volume element
of �3

D ⊂ E3, such that the function providing transformation
between the Euclidean and fractal quasimeasures is defined as

c3(xi,D) = dVD/dV3. (9)

Physically, function c3(xi,D) plays the role of density
of states in the fractal continuum, that is, describes how
permitted states of particles forming the fractal continuum
are closely packed in the Euclidean space (see Ref. [23]).
The symmetry and functional form of the transformation
function are determined by the symmetry of the fractal under
consideration [8]. Generally, the infinitesimal volume element
of �3

D can be presented in the following form:

dVD = dζ xkdA
(k)
d (xi �=k), (10)

where dA
(k)
d = c

(k)
2 (xi �=k,dk)dA

(k)
2 is the infinitesimal area

element on the intersection of fractal continuum with the
Cartesian plane (xi,xj ) ∈ E2 normal to axes k in �3

D and
dA

(k)
2 is the infinitesimal area of this element in E2, while

the transformation function c
(k)
2 (xi �=k,�i �=k,dk) = dA

(k)
d /dA

(k)
2

represents the density of states on the intersection; dζ xk =
c

(k)
1 (xk,ζk)dxk is the infinitesimal length element along a

normal to the intersection and c
(k)
1 (xk,ζk) is the density of

states along this direction [8].
In the case of homogeneous fractal continuum

ρ(xi) = ρc = const, (11)

and so from Eqs. (9) and (10) follows that the density of states
in the homogeneous fractal continuum can be represented in
the following form:

c3(xi,D) = �
ζk−1
k (xk/�k + 1)ζk−1c

(k)
2 (xi �=k,�i �=k,dk), (12)

where �i is the lower cutoff along the Cartesian axis i and the
scaling exponent ζk characterizing the density of states along
the direction of the normal to the intersection is defined as

ζk = D − dk, (13)

such that, generally,

3∑
i

ζi �= D; (14)

for example, in the case of fractal continuum obeying the
Mandelbrot’s rule of thumb (7), for example, the percolation
cluster in 3D [see Fig. 2(d)], the sum

∑3
i ζi = 3 > D, whereas

in the case of the Menger sponge [see Fig. 2(c)], the sum∑3
i ζi = 2.5021 < D = 2.7268 (see Table I and Ref. [8]).
Equations (8)–(13) define the fractal metric of fractal

continuum, which is independent on the fractal dimensions
d� and ds . Accordingly, here we assume that fractal continua
ds
d�
�3
D ⊂ E3 with different d� and ds are characterized by the

same fractal metric defined by Eqs. (8)–(13), whereas the
fractal continuum topology and dynamics are characterized
by d� and ds , respectively. Furthermore, it is pertinent to note
that, regardless of the homogeneity of the fractal continuum
expressed by Eq. (11), the density distribution in E3 displays
the long-range correlations characterized by the power-law
scaling behavior of the density-density correlation function

C(a) = 〈ρ(
x)ρ(
x + 
a)〉
= V −1

3

∫
W

ρ(
x)ρ(
x + 
a)c3(
x,D)dV3 ∝ |
a|D−3 (15)

for |
a| � �0, where 
a ∈ E3 and the brackets denote the spatial
average. It is easy to understand that any space independent
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property of the fractal continuum possesses the same kind of
long-range correlations.

B. Fractional calculus in fractal continua

To describe the kinematics and dynamics of fractal continua
ds
d�
�3
D ⊂ E3 we need to define an appropriate fractional calculus

linked to the fractal metric defined by Eqs. (8)–(13) and
accounting for the topology and dynamic properties of the
fractal continuum flow. In this way, we noted that the right-
hand side integral in Eq. (8) with the transformation function
c3(xi) defined by Eq. (12) represents the multivariate Riemann-
Liouville fractional integral up to a constant numerical factor
(see Ref. [8]). The nonlocal fractional derivatives are also
commonly employed when dealing with fractals (see, for
example, Refs. [24]). One of the principal stimuli to the use
of the nonlocal differential operators is a nondifferentiability
of fractal functions. However, this is not the case with fractal
continuum ds

d�
�3
D , the properties of which are continuous dif-

ferentiable functions in the Euclidean space E3. This permits
the use of local differential operators related to some kind of
a local fractional derivative inverse to the Riemann-Liouville
fractional integral employed in the definition of the fractal
continuum.

There are several definitions of local fractional derivatives
(see, for review, [25] and references therein). In most of
them, the local fractional derivative dαf/dxα is introduced
as a special case of the nonlocal fractional derivative, for
example, in the limit x → y, where y is the upper (or
lower) limit of the fractional integral used to define the
corresponding nonlocal fractional derivative. While the local
fractional derivative defined in such way is automatically
inverse to the corresponding fractional integral, the expression
of associated local fractional operators in terms of ordinary
derivatives is somewhat complicated and does not always exist.

At the same time, in Refs. [26,27] the local Laplacian
operator in En was generalized for the Euclidean space Eα

with the fractional topological dimension α. Specifically, in
Ref. [26] the local fractional Laplacian operator in Eα was
defined as

∇2
D = ∂2

∂r2
+ D − 1

r

∂

∂r
+ 1

r2

[
∂2

∂ϑ2
+ D − 2

tanϑ

∂

∂ϑ

]
, (16)

where the angles ϑ is measured relative to any axis in the
fractional space passing through the origin. This definition
was generalized in Ref. [27] to three orthogonal coordinates
as

∇2
D =

3∑
i

(
∂2

∂xi
+ αi − 1

xi

∂

∂xi

)

=
3∑
i

1

x
αi−1
i

∂

∂xi

(
x
αi−1
i

∂

∂xi

)
, (17)

whereαi � 1 are the topological exponents along the Cartesian
axes i = 1,2,3 in E3, such that

∑3
i αi = α � 3. It is pertinent

to note that the generalized Laplacian (17) can be linked to the
topology of the fractal continuum ds

d�
�3
D ⊂ E3 characterized by

the chemical fractal dimension d�, rather than to its metric
defined by Eqs. (8)–(13).

On the other hand, quite recently, the authors of [28] have
introduced the concept of Hausdorff derivative defined as
follows:

dH

dxζ
f = lim

x→x ′

f (x ′) − f (x)

x ′ζ − xζ
. (18)

It is easy to see that Eq. (18) can be presented in the form
of ordinary derivative multiplied by a power-law function of
x. Furthermore, rewriting Eq. (18) in the form

dH

dxζ
f = lim

�x→0

ζ�f (x)

�0�(x/�0 + 1)ζ

= lim
�x→0

�f (x)

�x

ζ

�0�(x/�0 + 1)ζ /�x

= ζ�−1
0

[
d(x/�0 + 1)ζ

dx

]−1
d

dx
f

=
(
x

�0
+ 1

)1−ζ
d

dx
f = �

ζ−1
0

c1

d

dx
f = d

dζ x
f, (19)

it is straightforward matter to verify that Hausdorff derivative
(19) is inverse to the fractional integral

∫
f dζ x = ∫

f c1dx,
where the density of states along the x axis c1(xi) is defined as
in Eq. (12). Accordingly, in Ref. [8] the fractional (Hausdorff)
partial derivative was defined in the following form:

∇H
k =

(
xk

�k
+ 1

)1−ζk ∂

∂xk
, (20)

where the exponents ζk are defined by Eq. (13). Therefore,
the fractional Laplacian for the fractal continuum D

3�
3
D can be

defined as follows:

�Hψ = ∇H
i ∇H

i ψ

=
3∑
i

(χ (i))2

[(
∂2ψ

∂x2
i

)
+ 1 − ζi

xi + �i

(
∂ψ

∂xi

)]
, (21)

where

χ (i) = �
ζi−1
i /c

(i)
1 (xi) = (xi/�i + 1)1−ζi , (22)

while the scaling exponents ζi are defined by Eq. (13). Notice
that the dimensions of the Hausdorff derivative (19), Hausdorff
partial derivative (20), and Laplacian (21) are the same as of the
conventional ones, that is, [dH/dxζ ] = [L−1], [∇H

i ] = [L−1]
and [�H ] = [L−2], respectively.

It is important to point out the difference between the
Hausdorff Laplacian (21) and the fractional Laplacian (17),
although both are converted in the conventional Laplacian
in the Euclidean limit ζi = αi = 1. This difference arises
from different origins of these Laplacians associated with
the fractional metric and fractional topology, respectively (see
Table II). In this context, it is straightforward to introduce
the generalized fractional Laplacian for the generalized fractal
continuum ds

d�
�3
D ⊂ E3 with the chemical dimension

d� =
3∑
i

αi = α � 3 (23)
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in the following form:

�H
Dψ =

3∑
i

(χ (i))2

[(
∂2ψ

∂x2
i

)
+ αi −D + di

xi + �i

(
∂ψ

∂xi

)]
,

(24)

accounting the fractal topology, as well as the fractal metric
of the fractal continuum ds

d�
�3
D ⊂ E3. Notice that when d� = 3,

the generalized Laplacian (24) is converted in the Hausdorff
Laplacian (21), whereas whenD − di = 1 for all i, while d� <
3, the fractional Laplacian (24) is converted in the fractional
Laplacian (17).

Although the definition of the generalized Laplacian (24) is
somewhat speculative, it is based on the same phenomenology
as the introduction of the fractional Laplacian (17) in the
fractional Euclidean space (see Refs. [26,27]). Unfortunately,
we cannot define the local fractional derivative allied with
the generalized Laplacian (24). Even though in the case
of generalized fractal continuum flow ds

d�
�3
D ⊂ E3 we can

use the local fractional differential operators associated with
the fractal metric defined by Eqs. (8)–(13), the generalized
Laplacian (24) can be used to construct the constitutive
laws for fractal continuum flows ds

d�
�3
D ⊂ E3 with different

topologies characterized by the chemical dimension d� �= D

(see Table II).
It is straightforward to verify that the partial Hausdorff

derivatives (20) obey the rule ∇H
i (ψϕ) = ψ∇H

i ϕ + ϕ∇H
i ψ

and ∇H
i const = 0. Furthermore, we can construct the local

fractional (Hausdorff) operators for vector calculus on the
fractal continuum. Specifically, a fractional (Hausdorff) nabla
operator is defined as follows:


∇H = 
e1χ
(1) ∂

∂x1
+ 
e2χ

(2) ∂

∂x2
+ 
e3χ

(3) ∂

∂x3
, (25)

where 
ei are base vectors. Accordingly, the Hausdorff gradient
can be defined as the nabla operator (25) applied to a scalar
function ψ(xi) as

gradHψ = 
∇Hψ = (∇H
1 ψ

)
e1 + (∇H
2 ψ

)
e2 + (∇H
3 ψ

)
e3,

(26)

while the Hausdorff divergence of vector field 
� =
(ψ1,ψ2,ψ3) can be defined as the scalar product

divH 
� = 
∇H · 
� =
3∑
i

∇H
i �i, (27)

where the symbol “·” denotes the scalar product. Notice that the
Hausdorff divergence represents the ratio of total flux through a
closed surface to the fractal continuum enclosed by the surface
when the volume shrinks toward �3

0. This leads to definition of
the Hausdorff curl operator of a vector field in the following
form:

rotH 
� = 
∇H × 
�, or ∇H
i �j = εkij∇H

i �j , (28)

where the symbol × denotes the vector product and εijk is the
Levi-Civita symbol.

Now it is straightforward matter to verify that Hausdorff
operators (24)–(28) obey the identities which resemble the
fundamental identities of the conventional vector calculus.

Namely,

divH rotH 
� = 
∇H · ( 
∇H × 
�) = 0, (29)

rotHgradHψ = 
∇H × ( 
∇Hψ) = 0, (30)

divHgradHψ = 
∇H · 
∇Hψ = �Hψ, (31)

where the Hausdorff Laplacian operator �H is defined by
Eq. (21), while the Hausdorff Laplacian of a vector field is
defined as

�H

� = (�Hψi)
e1 + (�Hψj )
e2 + (�Hψk)
e3

= gradHdivH 
� − rotH rotH 
�. (32)

Accordingly, the generalization of the Green-Gauss diver-
gence theorem for fractal continuum reads as∫

A


� · 
ndAd

=
∫
A

�knkdA
(k)
d =

∫
A

�kc
(k)
2 (xi �=k,dk)dA

(k)
2

=
∫
W

c
(k)
2 (xi �=k,�i �=k,dk)

∂�k

∂xk
dV3

=
∫
W

c−1
3 (xi/�i,DM )c(k)

2 (xi �=k,�i �=k,dk)
∂�k

∂xk
dVD

=
∫
W

∇H
k �kdVD =

∫
W

divH 
�dVD, (33)

where 
� = �k
ek is any vector field accompanied by fractal
flow, while 
n = nk
ek is a vector of normal. Furthermore the
Kelvin-Stokes theorem, which relates the surface integral of
the curl of a vector field 
f over a surfaceA in Euclidean three-
dimensional space to the line integral of the vector field over
its boundary ∂A, can be generalized for the fractal continuum
flow as∮

∂A


f ·
−→
dx (ζ )

=
∮
∂A

fkdx
(ζ )
k =

∫
∂A

c
(k)
1 fkdxk =

∫
A

nkεkji∇H
j

(
c

(i)
1 fi

)
=

∫
A


n · rotH 
f dAd. (34)

It should be pointed out that while formally Eqs. (33)
and (34) are similar to those derived in Refs. [29,30] for an
isotropic fractal continuum [31], the local fractional operators
used in Eqs. (33) and (34) are substantially different from
the corresponding fractional operators used in Refs. [29,30].
In this context it is pertinent to note that a general Stokes
theorem for nonsmooth chains was proved in Ref. [32].
The Green-Gauss divergence and Kelvin-Stokes theorems
for domains with boundaries of noninteger box dimension
were proved in Refs. [33]. The fractional generalizations of
Green-Gauss divergence and the Kelvin-Stokes theorem for
nonlocal calculus were suggested in Refs. [34].

The Lagrangian metric of fractal continuum ds
d�
�3
D ⊂ E3 can

be accounted by using the Hausdorff partial time derivative
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defined as

∇H
t = χτ (t)

∂

∂t
, (35)

where τ0 is the characteristic time scale and

χτ =
(
t

τ0
+ 1

)1−ατ
, (36)

while the fractal dimension of time scale is defined as

ατ = ds

D
= 2

DW

= 2

2 + θ
, (37)

where DW is the fractal dimension of random walk in the
fractal continuum ds

d�
�3
D ⊂ E3.

C. Kinematics and dynamics of fractal continua

The mathematical description of fractal continuum flow
ds
d�
�3
D ⊂ E3 requires two sets of variables: a set for the flow

domain in the Euclidean spaceE3 and time, called independent
variables, and a set for the flow phenomena taking place in
the fractional space-time domain, called dependent variables.
The independent variables can be established in various ways.
One can look at a region of space (Euler) or look at what
happens to specific pieces of the fractal continuum (Lagrange).
The material or Lagrangian description is the natural choice
for the setup of the basic laws for mass, momentum, and
energy, whereas the spatial or Eulerian description is the
most convenient framework for the solution of the associated
initial and boundary value problems. Each description leads
to a set of, at most, four independent variables and the basic
laws appear in different form in different descriptions. In this
context, the kinematic information on a fractal flow field can
be given in terms of the position field or the velocity field.
The velocity field does not track the behavior of individual
partials, but it describes the velocity of whatever happens to
be at a given location. In contrast to this, the acceleration
appears more naturally in the material description as the time
rate of change of the velocity of a fixed material point.

Here, we suppose that the three-dimensional fractal contin-
uum occupies at time t = 0 a region W0 ∈ ds

d�
�3
D ⊂ E3 and, at

time t > 0, occupies a region Wt ∈ ds
d�
�3
D ⊂ E3, where regions

W0 and Wt are assumed to be bounded, open, and connected.
The motion of fractal continuum is determined by the position

x of the material points in Euclidean space E3 as a function
of the reference position 
x ∈ E3 and the time t . Hence,

x = 
�(
x,t), where the function 
� is defined as the mapping
W0 → 
�(W0,t) = Wt , and so the displacement vector


v = 
�(
x,t) − 
x (38)

describes the displacement field in the initial (reference)
configuration of the fractal continuum. Further, as in the case
of classical continuum mechanics, we assume that for every
t > 0, function 
� is a smooth one-to-one map of every material
point of W0 onto Wt , such that there exists a unique inverse
of (38), at least locally, if and only if the determinant of the

fractal Jacobian matrix defined as

J
(ij )
D = [∇H

i Xj

] =

∣∣∣∣∣∣∣
∇H

1 X1 ∇H
2 X1 ∇H

3 X1

∇H
1 X2 ∇H

2 X2 ∇H
3 X2

∇H
1 X3 ∇H

2 X3 ∇H
3 X3

∣∣∣∣∣∣∣ (39)

is not identically zero, that is,

0 < JD = det J (ij )
D = εijk∇H

1 Xi∇H
2 Xj∇H

3 Xk < ∞, (40)

where εijk is the Levi-Civita permutation symbol. Notice that
the matrix in Eq. (39) is nothing other than the Hausdorff
deformation gradient in the fractal continuum ds

d�
�3
D ⊂ E3,

while the Jacobian (40) depends only on the fractal metric,
but not on the fractal continuum topology characterized by d�.
This is easy to understand since JD measures the local change
of volume only, such that a deformation conserves the volume
of a region W ⊂ ds

d�
�3
D , if and only if JD = 1.

In this context, the velocity of fractal continuum flow W ⊂
ds
d�
�3
D can be defined using either the intrinsic (fractal) or natural

time scale. In the former case, the particle velocity can be
defined as


υ = ∇H
t 
v, (41)

where the Hausdorff time derivative is defined by Eqs. (35)–
(37). Furthermore, using the conventional rule for determinant
differentiating it is straightforward to obtain the generalized
Euler’s identity for the fractal continuum ds

d�
�3
D ⊂ E3 in the

following form:

∇H
t JD = JD∇H

i υi. (42)

Accordingly, we can define the fractal material fractional
time derivative as(

d

dH t

)
D

ψ = ∇H
t ψ + υk∇H

k ψ = χτ
∂

∂t
ψ + υkχ

(k) ∂

∂xk
ψ,

(43)

where ψ(xi,t) is any quantity accompanied by a moving
regionWt ⊂ ds

d�
�3
D , such that the generalization of the Reynolds

transport theorem for a fractal continuum ds
d�
�3
D ⊂ E3 will reads

as follows:(
d

dH t

)
D

∫
Wt

ψdVD

=
(

d

dH t

)
D

∫
W0

ψJDdV
0
D

=
∫
W0

[(
d

dH t

)
D

ψJD + ψ

(
d

dH t

)
D

JD

]
dV 0

D

=
∫
W0

[(
d

dH t

)
D

ψ + ψ∇H
k υk

]
JDdV

0
D

=
∫
Wt

[(
d

dH t

)
D

ψ + ψ∇H
k υk

]
dVD

=
∫
Wt

(∇H
t ψ + ∇H

k (ψυk)
)
dVD

=
∫
Wt

(∇H
t ψ

)
dVD +

∫
A

ψυknkdA
(k)
d . (44)
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Notice that in the case of fractal continuum �3
D ≡ D

3�
3
D ⊂

E3, Eqs. (41)–(44) are converted into the corresponding
equations derived in Ref. [8] and further into the conventional
equations for Euclidean continua, if the equality (7) holds.

Here, it should be pointed out that the use of an intrinsic
(fractal) time scale is justified when we describe an anomalous
diffusion of fractal continuum, but not when the fractal
continuum flow is used to model the fluid flow in a fractal
porous medium. In fact, anomalous values of DW reflect that
the walking particle can visit the same place many times, but
this is not the case of Darcian flow in a porous medium. Hence,
to model the Darcian flow in porous media we should assume
that the fractal continuum flow is characterized by the spectral
dimension ds = D, rather than by the spectral dimension of
fractal porous medium (see Table II). Moreover, in the next
section we show that the use of fractional time derivative leads
to failure of the momentum conservation, which is essential for
the fluid flow, but not for the diffusion. Therefore, the fractal
continuum flow velocity should be defined as


u = ∂

∂t

v (45)

and so the Euler’s identity for the fractal continuum D
d�
�3
D ⊂ E3

reads as (
d

dt

)
D

JD = JD∇H
i υi, (46)

where the fractal material time derivative is defined as(
d

dt

)
D

ψ = ∂ψ

∂t
+ uk∇H

k ψ, (47)

and the Reynolds transport theorem for a fractal continuum
has the following form:(

d

dt

)
D

∫
Wt

ψdVD

=
(
d

dt

)
D

∫
W0

ψJDdV
0
D

=
∫
W0

[(
d

dt

)
D

ψJD + ψ

(
d

dt

)
D

JD

]
dV 0

D

=
∫
W0

[(
d

dt

)
D

ψ + ψ∇H
k uk

]
JDdV

0
D

=
∫
Wt

[(
d

dt

)
D

ψ + ψ∇H
k uk

]
dVD

=
∫
Wt

(
∂

∂t
ψ + ∇H

k (ψuk)

)
dVD

=
∫
Wt

∂

∂t
ψdVD +

∫
A

ψuknkdA
(k)
d , (48)

which implies that a rate of change of the integral of a function
over a volume of fractal continuum is related to the change
in the value of the function in the volume and any change in
the size of the volume due to the movement of its boundaries.
Notice the difference between Eqs. (47) and (48) and the forms
of the material time derivative and the Reynolds transport
theorem adopted in the fractal continuum model suggested in
Refs. [35].

D. Conservation laws for fractal continuum flow

In previous Rapid Communication [8] the fundamental
conservation laws were derived for the special case of fractal
continua �3

D ≡ D
3�

3
D ⊂ E3. It is straightforward to see that a

specific fractal topology of generalized fractal continuum flow
D
d�
�3
D ⊂ E3 does not affect the fundamental balance equations

(see Sec. III C). Specifically, the continuity equation for the
fractal continuum flow D

d�
�3
D ⊂ E3 can be written in the form

∂ρc

∂t
= −divH (ρc 
u), (49)

which implies that the velocity field in a stationary flow (
u =
const) of an incompressible (ρc = const) fractal continuum is
solenoidal in the sense that for any closed surface ∂W the net
total flux through the fractal surface is equal to zero when

divH 
u = 0, whereas div
u =
3∑
i

∂ui

∂xi
�= 0. (50)

It is pertinent to point out that the solenoidal velocity field
in the fractal continuum can be expressed as the Hausdorff
curl of a vector potential 
�, that is, 
u = rotH 
�, where the
Hausdorff curl is defined by Eq. (28). In this context, the
irrotational flow of fractal continuum should be defined as
the flow with rotH 
u = 0. Making use of the terminology of
classical hydrodynamics, the vector field


ω = rotH 
u (51)

can be termed as the fractal vorticity. Furthermore, using
identities of fractional vector calculus (29)–(32), the velocity
of irrotational flow of fractal continuum can be presented as

u = gradHψ , where the scalar field ψ(xi) obeys the condition
�Hψ = 0. It is straightforward to verify that any velocity field
in fractal continuum can be decomposed into irrotational and
solenoidal parts as follows:


u = rotH 
� + gradHψ. (52)

Notice that in the case of fractal continuum flow obeying
Mandelbrot’s rule of thumb for intersections (7), Eq. (52) coin-
cides with the decomposition used in classical hydrodynamics.

The conservation of momentum is Newton’s second law.
Following to the concepts of classical continuum mechanics,
the forces that act on the fractal continuum or its part can be
divided into two categories: those that act by contact with the
surface, called surface tractions ( 
T ), and those that act at a
distance, called the volume or body forces ( 
F ). Further, taking
into account the definition of the fractal Jacobian (39), the
surface forces in the fractal continuum flow can be presented
as the Hausdorff gradient (26) of stresses, that is,


T = −∇H
i σij , (53)

where σij = pδij − σvij is the Cauchy stress tensor, p is the
pressure, and σvij is the viscosity stress tensor. The conservation
of momentum in fractal continuum flow D

d�
�3
D ⊂ E3 implies

that (
d

dt

)
D

∫
W

ρcuidVD =
∫
W

(
ρcfi + ∇H

j σij
)
dVD, (54)
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where fi is the density of volume forces, for example, the
gravitational constant g, or the density of electric or magnetic
forces, while the fractal material time derivative is defined by
Eq. (47). Using the continuity equation (49), the balance of
density of momentum in fractal continuum can be presented
in the following form:(

d

dt

)
D

ui = ∂

∂t
ui + ui∇H

j uj = fi + ρ−1
c

(∇H
i p + ∇H

j σ
v
ij

)
,

(55)

which converts into the conventional equation of the density
of momentum balance when di = D − 1 for all i. Notice that
Eq. (55), together with the mass conservation equation (49)
and appropriate boundary conditions, are sufficient to describe
the steady flow of an inviscid (σvij ≡ 0) incompressible (ρc =
const) fractal continuum.

The internal energy dE of an element of fractal continuum
of the mass dMD is equal to dE = e(xi,t)ρc(xi,t)dVD , where
e(xi,t) is the internal energy density, while the kinetic energy
of the mass dMD moving with the velocity 
u(xit) is equal to
dT = 0.5ρc|
u|2. Accordingly, the total energy of region Wof
fractal continuum is defined as follows:

U = E + T =
∫
W

ρc

(
e + u2

2

)
dVD.

The change of the total energy of region W can be defined
as

U (t1) − U (t2) = �M +�S +QS,

where �M is the work of mass forces 
f ρcdVD , �S is the
work of surface forces σijni 
eidVD , σij is the Cauchy stress
tensor, and 
QS = ρc 
γ is the heat that are influx into the region
W ∈ D

d�
�3
D ⊂ E3 through the surface ∂W , while 
γ = γini is

the heat influx density. Therefore, the rate of the total energy
change can be presented as follows:

d

dt

∫
W

ρc

(
e + u2

2

)
dVD

=
∫
W

ρcuifidVD +
∫
∂W

(
uiσijniei + niγi

)
dAd. (56)

Employing the generalized Green-Gauss divergence theo-
rem (33), Eq. (56) can be rewritten in the following form:

∫
W

[
ρc

(
d

dt

)
D

e − σij∇H
j ui − ρc∇H

i γi

]
dVD, (57)

which is valid for any region W of the fractal continuum
D
d�
�3
D ⊂ E3, while the material time derivative is defined by

Eq. (47). Hence, the differential equation of energy density
balance in the fractal continuum flow has the following form:

ρc

(
d

dt

)
D

e = ρc
∂e

∂t
+ uiρc∇H

i e = σij∇H
j ui + ρc∇H

i γi .

(58)

Notice that Eq. (58) converts into the conventional equation
of energy density balance when any intersection of the
continuum flow with Cartesian planes is characterized by the
same fractal dimension (7).

Here, it is pertinent to note that in the case of an anomalous
diffusion of fractal continuum with the intrinsic time scale
dimension ατ < 1, the continuity equation has the following
form:

∇H
t ρc = −divH (ρc 
υ). (59)

Taking into account the definitions of Hausdorff partial
time derivative (35) and particle velocity (41), Eq. (59) can be
rewritten in the form of Eq. (49) with the flow velocity defined
as


u = ∂

∂t

v =

(
t

τ0
+ 1

)αt−1


υ.

At the same time, the equation for balance of density
of momentum in the case anomalous diffusion of fractal
continuum can be presented in the form(

d

dH t

)
D

υi = ∇H
t υi + υi∇H

j υj

= χ2
τ

(
∂ui

∂t
+ ui

t + τ0
+ ui∇H

j uj

)
= fi + ρ−1

c

(∇H
i p + ∇H

j σ
ν
ij

)
. (60)

Equation (60) implies that the momentum cannot be
conserved during an anomalous diffusion of fractal continuum.
Furthermore, it should be pointed out that the failure of
the momentum conservation law is the common feature of
phenomenological models of fractal flow based on the concept
of anomalous diffusion.

E. Gravitational head and hydrostatic pressure
distributions in fractal continuum

When a fractal continuum is at rest and the volume force
field is determined by gravitation only, Eq. (55) of momentum
density balance in fractal continuum reduces to the condition
for hydrostatic equilibrium in the fractal continuum

gradHp = ρ 
g, (61)

where vector gradHp defined by Eq. (26) expresses the
magnitude and direction of the maximum spatial rate of
increase of the scalar property p. It should be emphasized that
hydrostatic distribution (61) is valid for any fractal continuum
at rest, regardless of its viscosity, because the viscous term
vanishes identically. In the hydrostatic condition, the pressure
variation is due only to the weight of the fluid. Notice that
the maximum pressure increase will be in the direction of the
gravity field.

In a given gravity field, the pressure may easily be calcu-
lated by integration of Eq. (61). If fractal continuum is so nearly
incompressible that we can neglect their density variation
in the hydrostatic equilibrium, the pressure distribution in a
homogeneous fractal continuum has the form

p(z) = p0 − g(D − dz)ρ0�z

(
z

�z
+ 1

)D−dz
, (62)

wherep0 = p(z = 0) is the pressure on the free surface normal
to the gravitational field. Notice that when D − dz < 1, the
gravitational head increases with the fluid elevation more
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slowly than in the Euclidean case and when the equality (7)
holds.

F. Generalized Euler equation and Bernoulli integral

For inviscid fractal continuum flow in a gravitational field,
Eq. (55) reduces to the generalized Euler equation in the form

ρc

(
d

dt

)
D


u = ρc 
g − gradHp, (63)

which resembles the classic form of Euler equation and
converts to it when the equality (7) holds. From Eq. (63)
immediately follows that the generalization of Bernoulli
integral for a steady incompressible flow of inviscid fractal
continuum in the gravitational field can be represented as

3∑
k

u2
k

2
+ p

ρ0
+ g(D − dz)�z

(
z

�z
+ 1

)D−dz
= h = const,

(64)

where the notations z = x3, �z = �3, and dz = d3 are used,
while h is the total hydraulic head. It is important to note
that Eq. (64) can be relatively easily verified in laboratory
experiments with prefractal porous reservoirs (see Ref. [8]).
Notice that, generally, the total hydraulic head can be presented
as the sum of elevation, pressure, fluid velocity, osmotic, and
other potentials.

G. Sound waves in fractal continuum flow

The wave equation in a fractal continuum can be derived
by considering small perturbations to the governing balance
laws describing the dynamics of the fractal continuum flow.
In the case of isotropic fractal continuum flow the isentropic
(adiabatic and reversible) oscillations of pressure, density, and
flow velocity about an equilibrium point (p0,ρ0, 
u0 = 0) can
be presented as

p = p0 + p′, ρc = ρ0 + ρ ′, and ui = u
(0)
i + u′

i , (65)

respectively, where p′ � p0, ρ ′ � ρ0, and u′
i � u

(0)
i , while

∂p0

∂t
= 0,

∂p0

∂xi
= 0,

∂ρ0

∂t
= 0,

∂ρ0

∂xi
= 0. (66)

Substituting (65), in Eqs. (49) and (55) under condition
fi = 0, we obtain the following equations for the first order of
the perturbation:

∂ρ ′

∂t
= −ρ0∇H

i u
′
i and

∂u′
i

∂t
= −ρ−1

0 ∇H
i p

′. (67)

Taking the partial time derivative of the first equation of
Eq. (67) and substituting the result into the second equation of
Eq. (67) we get

∂2ρ ′

∂t2
= ∇H

i ∇H
i p

′. (68)

For adiabatic processp = p(ρc,S) and so, for the first order
of perturbation we have

p′ = a2ρ ′, where a =
√(

∂p

∂ρ

)
S

(69)

is the sound velocity. Accordingly, the wave equations in an
isotropic fractal continuum flow can be written in the following
form:

∂2ρ ′

∂t2
= a2�Hρ

′ and
∂2p′

∂t2
= a2�Hp

′, (70)

where the Hausdorff Laplacian is defined by Eq. (24). Notice
the difference between Eq. (70) and the wave equation derived
in Ref. [29]. It is easy to see that the wave equations (70)
can be converted in the conventional equations for sound
propagation in a fluid by the change of variables xi → xi/χ

(i).
Consequently, the solutions of Eqs. (70) can be easily obtained
by the change of variables in the corresponding solutions of
the conventional wave equations in fluids.

H. Fractal continuum hydrodynamics

To develop fractal continuum hydrodynamics we need to
use two fundamental types of laws: the conservation laws and
the constitutive laws. The above-derived conservation laws
describe the conservation of matter, energy, and momentum,
while the constitutive law should define the relationship
between the displacements in the fractal continuum and the
applied forces. The constitutive laws of continuum mechanics
cannot be deduced from the laws of mechanics of material
points and rigid bodies, but can be defined from physical
experiments, for example, Hooke’s law of elasticity, the
Newtonian viscosity law, etc. To derive the hydrodynamic
equations for fractal continuum flow, the constitutive relations
of classical hydrodynamics should be mapped into the fractal
continuum framework. In this way, there are a number of
rules that must be used to produce constitutive equations that
are admissible from the rational and physical standpoints.
Specifically, the constitutive equations should be invariant
under any change of reference frame. Furthermore, the current
rheological and thermodynamic state of the material should
be completely determined by the history of the thermokinetic
process experienced by the material. Specifically, in the case
of incompressible materials, the stress state is determined
to within the hydrostatic pressure, which depends on the
boundary conditions and the problem geometry. Besides, the
stress tensor at a given point does not depend on movements
occurring at finite distance from this point.

Experimental observations suggest that when a fluid is
sheared, it begins to move at a strain rate inversely proportional
to fluid viscosity [36]. In the case of the Euclidean flow of a
Newtonian fluid, such as water and oils, the strain rate is a
linear function of applied shear. The Stokes constitutive law
for Euclidean continuum flow of a Newtonian fluid has the
following form:

σij = −pδij + μ

(
∂uj

∂xi
+ ∂ui

∂xj
− 2

3

∂ul

∂xl

)
+ λ

∂ul

∂xl
δij , (71)

where p is the fluid pressure, μ is the dynamic viscosity, λ is
the coefficient of internal viscosity, and δij is the Kronecker’s
δ [37]. Notice that the viscosity of Newtonian fluids is a
true thermodynamic property which varies with temperature
and pressure [36]. In the case of fractal continuum flow, the
definition of fractal Jacobian (39) implies that the tensor of
stresses in compressible Newtonian fluid should be presented
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in the following form:

σij = −pδij + μ
(∇H

i uj + ∇H
j ui − 2

3∇H
l ul

) + λ∇H
l ulδij ,

(72)

which expresses the linear relation between the shear stresses
and the pure shear strain rates in the fractal continuum D

3�
3
D ⊂

E3, whereas the conventional form of constitutive equation
(71) in the case of fractal continuum flow implies a nonlinear
dependence between the shear stresses and the pure shear strain
rates in the fractal continuum.

Substituting Eq. (72) into Eq. (55) and making use the
vector fractional differential operators, we get the generalized
Navier-Stokes equation for fractal continuum flow D

3�
3
D ⊂ E3

in the vector form,

ρc

[
∂ 
u
∂t

+ (
u · ∇H )
u
]

= −gradHp + μ�H 
u+
(
λ+ μ

3

)
gradHdivH 
u+ 
f ,

(73)

which resembles the vector form of the classic Navier-Stokes
equations describing the motion of a Newtonian fluid in E3.
Notice that Eq. (73) converts into the classic Navier-Stokes
form if di = D − 1 for any intersection of fractal continuum
flow with a two-dimensional plane in E3 [38].

In the case of generalized fractal continuum flow D
d�
�3
D ⊂

E3 with a nontrivial topology characterized by d� < 3, the
generalized Newtonian constitutive equation can be different
from Eq. (73). While we cannot define the general constitutive
equation for fractal continuum flow D

d�
�3
D ⊂ E3 in the form of

generalized Stokes law, in the next section, the fractal topology
of fractal continuum flow D

d�
�3
D ⊂ E3 will be accounted for in

the phenomenological form of the pressure-transient equation
for the generalized fractal continuum flow.

IV. MAPPING OF FLUID FLOW IN FRACTALLY
PERMEABLE MEDIUM INTO FRACTAL

CONTINUUM FLOW

Fluid transport in porous media can be described on
two fundamental scales: the microscopic pore scale and the
Darcy scale [1]. On the pore scale, transport phenomena are
governed by the classic Navier-Stokes and advection-diffusion
equations, whereas on the Darcy scale, the fractal flow is
expected to obey the fractal continuum hydrodynamics. In
fact, the question of whether a fluid flow in porous medium
can be considered as a continuum flow for the solution of
specific problems or analysis of some experimental data is
often a subjective matter. The concept of a continuum is an
idealization, which may approximate reality when one looks
at the appropriate distance and time averages. Therefore, the
term “continuous” commonly means that various properties
averaged on a length and time scale of interest vary smoothly
within the region except possibly for a small number of
discontinuities. Accordingly, heterogeneous media are often
modeled in a continuum framework using an effective medium
or mean field approaches (see, for example, Refs. [39,40]). In
this context, the fractal continuum hydrodynamics can provide
an overall description of fluids flow in a fractal porous medium.

Consequently, fluid flow in a fractally permeable medium
should be mapped into the flow of the three-dimensional fractal
continuum D

d�
�3
D ⊂ E3 with the fractal quasimetrics defined

by a nonuniform distribution of the degrees of freedom for
its points (see Fig. 1). The simplest case of fractal flow
in permeable media is flow of a single homogenous fluid
phase through a porous and/or fissured solid. The mapping
of fluid flow in a fractally permeable medium into the
fractal continuum flow implies that the density of the fractal
continuum ρc is related to the fluid density ρf as

ρc = φρf , (74)

where φ is the effective porosity of the fractally permeable
medium. Consequently, the dynamic viscosity of fractal
continuum flow is related to the fluid’s dynamic viscosity
μf = ρf ηf as

μc = ηcρc = ηφρf = φμf , (75)

while the kinematic viscosity of fractal continuum ηc is
assumed to be equal to the fluid’s kinematic viscosity, that
is, ηc = ηf = η (see Table III).

Furthermore, in this work we assume that the fractal con-
tinuum flow D

d�
�3
D ⊂ E3 is governed by the balance equations

(49), (55), and (58) associated with the fractal metric defined
by Eqs. (8)–(13), while the form constitutive equation depends
on the fractal flow topology characterized by the chemical
dimension d�, whereas the spectral dimension of hydrody-
namic (Darcian) flow is always ds = D, even when the spectral
dimension of fractally permeable porous medium is less than
its mass fractal dimension (see Table II and discussion in
Sec. III A). Formally, the equality ds = D can be interpreted as
a consequence of equality DDarcian

W = 2 under the assumption
that the fractal continuum flow obeys the Alexander-Orbach
law [41] ds = 2D/DW = 2D/(2 + θ ) (see Ref. [11]). In fact,
however, the Alexander-Orbach law is intimately linked to a
specific form of the fractal Einstein law related the electrical
resistivity exponent ϑ to the fractal dimensions of medium and
random walk [42]. It was proved that the Alexander-Orbach
law holds if ϑ = DW −D > 0 [43], but otherwise it can
be failed [44]. In the last case, the fractal Einstein law
has a more general form ϑ = 0.5DW (2 − ds), where DW

and ds are independent characteristics of the corresponding
fractal structure [44]. Hence, the random walk in the fractal
continuum flow can have the fractal dimension DW �= 2, even
if ds = D. The knowledge of the fractal dimension of random
walk in the fractal continuum flow is important in modeling
the diffusion in the flow (see Table II).

In this work, we are especially interested in either the
stationary flow through a porous and/or fissured medium,
conventionally described by Darcy’s law (see Refs. [1]), or the
pressure transients in porous (fissured) reservoirs, commonly
described using the equations derived by the substitution of
Darcy’s law into the continuity equation (see Refs. [45,46]).
Both cases are discussed below.

A. Analog of Darcy’s law for fractal continuum flow

Historically, Darcy’s law was introduced in a phenomeno-
logical way for single-phase flow through sand. In its original
form Darcy’s law states that the flux Q of a single phase fluid
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TABLE III. Relations between the properties of fractal continuum flow, the properties of the fractally permeable medium, fluid, and the
flow dynamics and geometry.

Flow in porous and/or fissured medium

Parameter Permeable medium Fluid Fluid flow Fractal continuum flow

Porosity φ

Characteristic size �0 Eq. (2) Eqs. (1) and (12)
Tensor of absolute permeability Kij

Relative permeability kij

Effective property of continuum flow K
(c)
ij = f (Kij ,kij )

related to the medium permeability
Fractal properties See Table I Determined by the fractal geometry See Table II

of permeable medium
Flow dimension See Fig. 3 d�
Density ρm = ρ0(1 − φ) ρf ρf (p,xi,t) Eq. (74)
Compressibility cm cf Eq. (85) Eqs. (90) and (91)
Constitutive law Newtonian Eq. (71) Eq. (72)
Kinematic viscosity ηf = η ηc = η

Dynamics viscosity μf = ρf η Eq. (75)
Coefficient of internal viscosity λf λc = φλf
Flow velocity (u) Eq. (45) Eqs. (45) and (52)
Darcian velocity Eq. (77) Eq. (80)
Hydrostatic head gz(x,y) Eq. (62)

is related to the pressure drop �p over sample length L as

Q = A2
K

μ

�p

L
, (76)

where A2 is the area of cross section and K is the intrinsic
permeability of the porous medium [36]. Accordingly, the
Darcy velocity, defined as

q = Q/A2 = φu, (77)

is not a true velocity of the fluid, but represents an effective
flow rate through the porous medium. Strictly speaking,
Darcy’s law holds only for Newtonian fluids over a certain
range of flow rates. As the flow rate increases, the deviations
from this law have been noticed. It has been experimentally
observed and mathematically shown that these deviations are
due to inertia, turbulence, and other high-velocity effects (see
Refs. [47] and references therein).

Although Darcy’s law was proposed from empirical ar-
guments, Hubbert [48] showed that an equation similar to
Darcy’s law can be obtained from averaging equations of flow
for fluids on the microscale. Further, in Ref. [49] it was showed
that Darcy’s law may actually result from the macroscale
momentum balance equation by upscaling of pore-scale mass,
momentum, energy, and entropy balances in the framework of
a thermodynamic averaging theory and applying a large set of
assumptions. Afterward, the authors of [50] have developed
a more rigorous approach that includes the use of spatial
averaging theorems to obtain the expression of Darcy’s law
for three-dimensional flow in the following form:


q = −Kij

μ
(∇p − ρ 
g), (78)

where the intrinsic permeability tensor Kij is assumed to be
a property of the porous medium and 
g is the gravity vector.
The same relationship between pressure gradient and flow rate

has been found by rigorously homogenizing the Navier-Stokes
equations but imposing the assumptions that inertial forces and
friction within the fluid can be neglected [51].

The effect of fractal geometry of porous media on the
Darcian flow was discussed in Refs. [52]. In these works
a convolved version of Darcy’s law based on a fractional
integral was proposed. The generalized Darcy law employing
the Riemann-Liouville fractional derivative was suggested in
Ref. [53]. In Ref. [54] Darcy’s law was modified, introducing
general memory formalisms operating on the flow as well
as on the pressure gradient, which imply a filtering of the
pressure gradient without singularities. In this context, the
authors of [55] have proposed fractional geometry to model
and explain deviations of Darcy’s velocity due to fractured
rocks in aquifers. Further, based on the study by O’Shaugnessy
and Procaccia [56] on anomalous fractal diffusion, the authors
of [57] have suggested that the permeability of fractal fracture
network vary as a power of distance from the source term r ,
that is,

Kr ∝ rDn−DE−θ , (79)

where DE and Dn are the Euclidean and fractal dimensions of
fracture network, respectively, while θ � 0 is the anomalous
diffusion exponent related to the dimension of random walk
as θ = DW − 2. The classical Darcy’s law was generalized
by regarding fluid flow as a function of a noninteger order
spatial derivative of the piezometric head [58]. More recently,
a fractional-order Darcy’s law was derived from a fractional
Newton’s law of viscosity employing nonlocal fractional
calculus [59].

A rigorous derivation of the generalized Darcy’s law for
a fractal continuum flow from the generalized Navier-Stokes
equation (73) represents a challenging task for further research.
The specific expression related the hydraulic head and flow
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velocity is dependent on the assumptions used to perform
the averages in the fractal continuum flow D

d�
�3
D ⊂ E3. Even

though, following the Darcy’s law derivation in Ref. [60],
but employing fractional Hausdorff operators (24)–(28), here
we anticipate that the generalized Darcy’s law for fractal
continuum flow D

3�
3
D ⊂ E3can be expressed in the following

form:

ui = −K
(c)
ij

μc

∇H
i (p − hg), (80)

where the pressure p(xi) and the gravitational head hg(xi)
are, generally, functions of Cartesian coordinates xi ∈ E3,
while K (c)

ij is the characteristic tensor property of the fractal
continuum flow associated with the permeability tensor Kij

in the fractally permeable medium under consideration (see
Table III). Notice that for reservoirs and wells of known
geometry the gravitational head can be defined in a usual way
taking into account Eq. (62), while divH 
u = ψ(xi), wherein
ψ(xi) is the source/sink term.

It is interesting to note that Eq. (80) resembles the classic
Darcy’s law (78) with the spatially varying permeability (79)
regardless the expression for the permeability scaling expo-
nent. In fact, assuming that K (c)

ii = Ki , while in the principal
coordinates K

(c)
ij = 0, and taking into account relationship

(75), Eq. (80) can be rewritten in the form of Eq. (78) as


q = φ
u = −KA
i

μf

grad(p − hg), (81)

with the spatially varying apparent permeability

KA
i ∝ χ (i)Ki ∝ x

1−D+di
i . (82)

Furthermore, in terms of the Darcy experiment, Eqs. (81)
and (82) can be presented in the form

Q = Ad

K�
D−dL−1
0

μ

�p

LD−dL , (83)

which can be used for the experimental validation of the
generalized Darcy’s law (80). If we chose A2 ∝ L2, Eq. (83)
implies that the apparent permeability scales with the reservoir
size R as

KA ∝ R2d−1−D, (84)

because Ad ∝ Ld−2, while q = Q/A2. Notice that the power-
law increase of hydraulic conductivity with increasing scale
of measurement is consistent with the field observations from
many sources (see Refs. [61]).

It is important to point out that, regardless of the similarity
of Eq. (80) to Darcy’s law (78) with the spatially varying
permeability (79), the physical essences of these models are
different. In fact, the power-law scaling of fractal permeability
(79) accounts for the fractal geometry of porosity (φ ∝ rD−DE )
and the anomalous diffusion characterized by the diffusion
coefficient Ddif ∝ r−θ , whereas the power-law scaling of
apparent permeability (81) reflects the metric properties of
the fractal continuum, while an anomalous diffusion plays no
role in the case of Darcian flow of a fractal continuum (see
Table II).

B. Pressure-transient equations for fractal continuum flow

Mathematical models of petroleum reservoirs have been
utilized since the late 1800s. The major goal of reservoir
simulation is to predict future performance of the reservoir
and find ways and means of optimizing the recovery of some
of the hydrocarbons under various operating conditions. A
mathematical model consists of a set of equations that describe
the flow of fluids in a petroleum reservoir, together with an
appropriate set of boundary and/or initial conditions [45].
A standard method to characterize hydraulic properties of
porous and/or fissured media is the pressure-transient analysis
of pumping test data. Pressure-transient testing techniques,
such as pressure drawdown, buildup, injection, fallow, and
interference tests are widely used to analyze and forecast
reservoir performance [46]. During a well test, the response of
a reservoir to changing production (or injection) conditions is
monitored. Since this response is related to reservoir proper-
ties, it is possible in many cases to infer reservoir properties
from the response. Therefore, the well test interpretation is an
inverse problem in which model parameters are inferred by
analyzing model response to a given input.

During a well test, a transient pressure response is created
by a temporary change in production rate. In most cases,
the flow rate is measured at the surface while the pressure
is recorded downhole. Before opening, the initial pressure
p0 is assumed to be constant and uniform in the reservoir.
During the flowing period, the drawdown pressure response
is defined as the pressure drop �p = p0 − p(xi,t). When the
well is shut-in, the buildup pressure change �p = p(t) − p∗
is estimated from the last flowing pressure p∗ = p(�t = 0).
The pressure response is analyzed versus the elapsed time �t
since the start of the period (time of opening or shut-in). In
practice, for a given period of the test, the change in pressure
�p is plotted on log-log scales versus the elapsed time �t ,
while the test period is defined as a period of constant flowing
conditions, for example, constant flow rate for a drawdown or
shut-in period for the buildup test (see Refs. [45]).

Conventional pressure-transient models have been devel-
oped under the assumption of a homogeneous reservoir.
Accordingly, to describe the pressure transient in a porous
reservoir, the Darcy equation (78) is combined with the
equation of continuity and an equation of state for fluid under
consideration. In the case of a slightly compressible fluid, it
is assumed that ∂ρf /∂p = cf ρf , where cf is the coefficient
of fluid compressibility. If a porous medium is also slightly
compressible, the time derivative of fluid density can be
replaced by

∂ρf

∂t
= cρf

∂p

∂t
, (85)

where c = cf + cm is the system compressibility, while cm
is the coefficient of matrix compressibility [46]. Accordingly,
the pressure transient in an isotropic radial flow obeys the
following diffusion equation:

cμφ
∂p

∂t
= Kr

rn−1

∂

∂r

(
rn−1 ∂p

∂r

)
, (86)

where the flow dimension n reflects how the apparent flow area
changes with distance from the source (see Fig. 3) and is not
necessarily related to the space filling nature of the flow, in the
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FIG. 3. The definition of flow dimensions n and d� in the case of
radial flow in a fractally permeable medium.

sense that the apparent surface area of one-dimensional flow is
constant regardless of the distance from the well, whereas the
surface area of two-dimensional flow is proportional to r1 and
that of three-dimensional flow is proportional to r2. Therefore,
in the case of one-dimensional flow n = 1, while in the case
of radial flow in cylindrical geometry n = 2, and n = 3 in
the case of spherical symmetry of radial flow. In practice (see
Refs. [45,46]), the data of well tests are commonly fitted using
the dimensionless variables defined in Table IV.

Although pressure-transient equation (86) and its analogs
in the Cartesian coordinates are sometimes used in petroleum
engineering, today it is widely accepted that in many cases the
experimental field data could not be satisfactorily described
using Euclidean models of natural reservoirs. This stimulates
the use of fractal geometry for reservoir modeling. In this con-
text, Barker [62] has proposed a pressure-transient equation
involving the fractional dimension of flow, while retaining the
assumptions of radial flow and homogeneity of the fractured
medium. The celebrated Barker equation can be written in the

following dimensionless form:

∂pD

∂tD
= 1

rD
∗−1

D

∂

∂rD

(
rD

∗−1
D

∂pD

∂rD

)
= ∂2pD

∂r2
D

+ D∗ − 1

rD

∂pD

∂rD
,

(87)

where 0 < D∗ � 3 is the flow dimension which can be
assumed to be fractional (see Fig. 3) and the dimensionless
variables are defined in Table IV. It should be pointed out
that Barker [58] considered the physical meaning of the
flow dimension unclear, but conjectured that it would be
related to the anomalous diffusion on fractal fracture network.
Still, the Barker pressure-transient equation has become very
popular, especially for practical applications (see Refs. [63]
and references therein).

Although, originally, Eq. (87) was derived using a geo-
metric model of fractured reservoir, we noted that it can be
obtained from Eq. (86) by the substitution of the Laplacian on
n-dimensional Euclidean sphere with the fractional Laplacian
(16). In this framework, Eq. (87) can be generalized for
anisotropic reservoirs as

∂pD

∂tD
= ∇2

DpD =
3∑
i

(
∂2pD

∂xDi
+ αi − 1

xDi

∂pD

∂xDi

)
, (88)

using expression (17) for the fractional Laplacian in the
dimensionless Cartesian coordinates xDi . Notice that the
fractional Laplacian (17) introduced in Refs. [26,27] is
related to the flow topology characterized by the chemical
dimension (23).

On the other hand, assuming the spatial variation of
hydraulic permeability according to relation (78), Chang and
Yortsos [57] have suggested the equation of radial fractal flow
which in the dimensionless form reads as

∂pD

∂tD
= 1

r
Dn−1
D

∂

∂r

(
r
Dn−1−θ
D

∂pD

∂rD

)

= 1

rθD

(
∂2p

∂r2
D

+ Dn − 1 − θ

rD

∂pD

∂rD

)
, (89)

where Dn is the fractal (mass) dimension of fracture network,
while the dimensionless variables are defined in Table IV.
Notice that in the case θ = 0, Eq. (89) converts into Eq. (87),

TABLE IV. Dimensionless variables for the pressure-transient equations at a constant production rate. Here rD is the dimensionless radial
distance from the pumping well, tD is the dimensionless time, pD is the dimensionless pressure drop, p0 is the initial pressure, RW is the well
radius,Q is the volumetric flow rate, and the coefficients κn are defined as follows: κ1 = HRW , κ2 = 2πH , κ3 = 4π , while κDn = 2D

∗−1πR3−D∗
W

and κθn = R
3−Dn+θ
W .

Dimensionless variables

Model and pressure-transient equation tD = t/τc pD = (p0 − p)/pc rD = r/rc

Euclidean, Eq. (86) τc = cμφR2
W

Kr
pc = Qμ

κnR
n−2
W

Kr
rc = RW

Barker, Eq. (87) τc = cμφR2
W

Kr
pc = Qμ

κDn R
D∗−2
W

Kr

rc = RW

Chang and Yortsos, Eq. (89) τc = cμφR2+θ
W

Kr
pc = Qμ

κθnR
Dn−θ−2
W

Kr

rc = RW

D
3�

3
D , Eq. (94) τc = cμφr2

c

Kr
pc = Qμ

κnr
n−2
c Kr

rc = RW
2ζ−1

(
RW
�0

+ 1
)ζ−1

D
d�
�3
D , Eq. (97) τc = cμφr2

c

Kr
pc = Qμ

4πrcKr
rc = RW

2ζ−1

(
RW
�0

+ 1
)ζ−1
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even though these equations are derived using two completely
different geometrical approaches. However, in contrast to
Eqs. (87) and (89) cannot be directly generalized for an
anisotropic three-dimensional flow with spatially varying
permeability.

To derive the transient pressure equation for a frac-
tal continuum flow D

3�
3
D ⊂ E3, we note that in the case

of a slightly compressible fractal continuum ∂ρc/∂p = cρc
and so

∂ρc

∂t
= cρc

∂p

∂t
, (90)

as is usually assumed in the hydrodynamics of slightly
compressible liquids [see Eq. (85)], while the coefficient of
fractal continuum compressibility c is determined by the fluid
compressibility cf = ∂ ln ρf /∂p and the compressibility of
porous medium cφ = ∂φ/∂p as

c = cf + φcφ. (91)

Substituting Eqs. (80) and (90) into Eq. (49) we obtain
the following equation of pressure diffusion in an anisotropic
three-dimensional fractal continuum flow,

cμc

∂p

∂t
= divH

[
K

(c)
ii gradH (p − hg)

]

=
3∑
i

K
(c)
ii

(
xi

�i
+ 1

)2(1+di−D) [ (
∂2(p − hg)

∂x2
i

)

+ 1 + di −D

xi + �i

(
∂(p − hg)

∂xi

)]
, (92)

where hg is the gravitational head defined by Eq. (62).
For reservoirs and wells of known geometry Eq. (92)

together with appropriate inner and outer boundary and initial
conditions can be used to model the pressure transients of
fractal flow. Notice that in the case of Euclidean porosity, as
well as in the case of isotropic fractal porosity (K (0)

ij ≡ K0)
obeying Mandelbrot’s rule of thumb (7), Eq. (92) converts
into the classical pressure-transients equation

cμf φ
∂p

∂t
= K0�(p − hg), (93)

which in the case of radial isotropic flow (hg = 0) through
a n-dimensional sphere (see Fig. 3) takes the form of
Eq. (86).

Furthermore, from (92) immediately follows that the
radial flow of an isotropic fractal continuum through a
dr -dimensional intersection of fractal continuum with n-
dimensional sphere obeys the following pressure-transient
equation:

∂pD

∂tD
= χ

(r)
D

(rD + �D)n−1

∂

∂rD

[
(rD + �D)n−1χ

(r)
D

∂

∂rD
pD

]

=
(
rD

�D
+ 1

)dr+2−D−n
∂

∂rD

[(
rD

�D
+ 1

)dr−D+n
∂

∂rD
pD

]

=
(
rD

�D
+ 1

)2(dr+1−D) (
∂2pD

∂r2
D

+ dr + n−D

rD + �D

∂pD

∂rD

)
,

(94)

where the dimensionless variables are defined in Table IV,
while the integer exponent n is determined by the flow
symmetry: n = 1 in the case of one-dimensional flow, n = 2
in the case of radial flow in cylindrical geometry, and n = 3 in
the case of spherical radial flow (see Fig. 3), while

χ (r)
n =

(
rD

�D
+ 1

)dr+1−D
, (95)

in all cases [�D is the dimensionless lower cutoff of scaling
behavior (1)]. It is worth noticing that Eq. (94) converts into
Eq. (86) if the fractal continuum flow obeys the Mandelbrot’s
rule of thumb (7). Furthermore, if dr = D − 1, but n = d� is
fractional, Eq. (94) converts in the Barker Eq. (87) with D∗ =
d�. Hence, physically, D∗ in Eq. (87) can be interpreted as the
chemical dimension (23) of the radial fractal flow in a porous
medium (see Fig. 3). This illustrates the difference between
two fractal metrics, associated with the fractional Laplacian
(16), (17) and the Hausdorff Laplacian (21), respectively.

In fact, Eqs. (87) and (94) describe two different pictures
of fractal flow. Namely, Eq. (87) is associated with the flow
field of the fractional topological dimension (see Fig. 3), but
having the Euclidean metric (D∗ 3�3

3 ⊂ E3), whereas Eq. (94)
is associated with the fractal continuum flow D

n�
3
D ⊂ E3.

Phenomenologically, these equations can be combined by the
replacing n in Eq. (94) with the fractional chemical dimension
d�. Mathematically, this can be treated as the mapping
of fractal flow in a porous medium d��

D into the fractal
continuum flow D

d�
�3
D ⊂ E3 by making use of the generalized

fractional Laplacian (24) for the generalized fractal continuum
flow D

d�
�3
D ⊂ E3. Physically, this mapping can be associated

with a specific (although unknown) form of constitutive
equation for the generalized fractal continuum flow D

d�
�3
D ⊂

E3. Although this statement is merely speculative, it has
the same phenomenological basis as the introduction of the
fractional Laplacian (16) in Refs. [26,27] and makes it possible
to obtain the phenomenological pressure-transient equation
(87) as a special case of the generalized pressure-transient
Eq. (94), when equality (7) holds, while the flow dimension
n = d� < 3 is fractional. In the Cartesian coordinates the
generalized pressure-transient equation for an anisotropic
fractal continuum flow D

d�
�3
D ⊂ E3 has the following form:

cμc

∂p

∂t
=

3∑
i

K
(c)
ii

(
xi

�i
+ 1

)2(1+di−D) [ (
∂2(p − hg)

∂x2
i

)

+ αi + di −D

xi + �i

(
∂(p − hg)

∂xi

)]
, (96)

while the relationship (23) holds. In the case of hg = 0
and K

(c)
ii = K0 Eq. (96) can be rewritten in the following

dimensionless form:

∂pD

∂tD
= �H

Dp,

where the generalized Laplacian is defined by Eq. (24) with
dimensionless coordinates defined in Table IV. In the case of
an isotropic fractal continuum flow D

d�
�3
D ⊂ E3, Eq. (96) can
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TABLE V. Expressions for parameters of pressure-transient equations for radial flow in an isotropic fractally permeable reservoir expressed
in the form of Eq. (98) and its analytical solution (100) with the initial and boundary conditions (99) corresponding to well production with a
constant rate Q = const for different pressure-transient models.

Model and pressure-transient equation γ β δ = 1 + β/γ

Euclidean, Eq. (86) 2 n− 2 n

2

Barker, Eq. (87) 2 D∗ − 2 D∗
2

Chang and Yortsos,
Eq. (89) 2 + θ Dn − 2 − θ Dn

2+θ
D
3�

3
D , Eq. (94) 2(D − dr ) n− 1 −D + dr

D−dr−1+n
2(D−dr )

D
d�
�3
D , Eq. (97) 2(D − dr ) d� − 1 −D + dr

D−dr−1+d�
2(D−dr )

be rewritten in the following dimensionless form:

∂pD

∂tD
=

(
rD

�D
+1

)dr+2−D−d� ∂
∂rD

[(
rD

�D
+1

)dr−D+d� ∂

∂rD
pD

]

=
(
rD

�D
+ 1

)2(dr+1−D) (
∂2pD

∂r2
D

+ dr + d� −D

rD + �D

∂pD

∂rD

)
,

(97)

where the chemical dimension of fractal continuum flow (d�)
is determined by the fractional flow dimension (α) of the fluid
flow in a fractally permeable medium (see Fig. 3).

Regardless of the different physical contents, mathemati-
cally, the pressure-transient equations (86), (87), (89), (94),
and (97) can be presented in the general dimensionless form
as

r
γ+β−1
D

∂pD

∂tD
= ∂

∂rD

(
r
β+1
D

∂pD

∂rD

)
, (98)

where the dimensionless variables and the scaling exponents
β and γ for each pressure-transient equation are defined in
Tables IV and V, respectively. Notice that Eq. (98) has the form
of the equation for the radial diffusion on fractals suggested
and analyzed in Refs. [56]. The authors of [56] have derived
an exact analytical solution of this equation for radial diffusion
from a point source. The radial pressure-transient equation of
the type (98) was analyzed in the context of well tests in
Refs. [6,57,62,63]. In a special case of well production with
a constant rate Q = const from an infinite reservoir the initial
and boundary conditions are

pD(rD,t = 0) = 0, lim
rD→∞pD(rD,tD) = 0,

lim
rD→1

r
β+1
D

∂pD

∂rD
= −1, (99)

where dimensionless parameters for different models are
defined in Tables IV and V. An analytical solution of Eq. (98)
with the initial and boundary conditions given by Eq. (99) can
be presented in the following form:

pD = x
−β
D

γ"(δ)
"

(
δ − 1,

x
γ

D

γ 2tD

)
, (100)

where "(a,y) = ∫ ∞
x
za−1e−zdz is the incomplete " function

(see Refs. [57,62]). Notice that a few more analytical solutions
of Eq. (98) have been suggested for some different sets of the
initial and boundary conditions (see Refs. [6,57,63]).

Typical forms of pressure-transient behavior (100) are
shown in Figs. 4–6. It is pertinent to note that these forms
of pressure-transient curves are commonly observed in field
drawdown tests (see, for review, Refs. [6,46,62,64–69]). It
is worth noticing that if d� − 1 < D − dr , the pressure drop

FIG. 4. Log-log plots of the dimensionless bottom hole pressure
drops pD (solid circles) defined in Table IV and their derivatives
dpD/d ln τD (open circles) versus the dimensionless time τD defined
in Table IV from the numerical solution of Eq. (97) with scaling
exponents defined in Table V for the cases of: (a) d� = 2, D − dr =
1.2; (b) d� = 1.6, D − dr = 1.2; and (c) d� = 2.8, D − dr = 0.4.
Curves, data fitting with Eq. (100); straight lines are guides for the
eye showing the power-law behavior with the scaling exponent ς .
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and its logarithmic derivative both obey the same power-law
asymptotic behavior pD ∝ ∂pD/∂ ln tD ∝ t

ς

D [see Figs. 4(a),
4(b), and 5], with the scaling exponent

ς = 1

2
+ 1 − d�

2(D − dr )
, (101)

such that two log-log graphs are offset at ln tD = 0 by the
constant $ = − ln ς [see Figs. 4(a) and 4(b)]. Such behavior
was observed in many real field experiments and is commonly
used for fast estimation of aquifer fractal properties (see, for
example, Refs. [64–69]). In the opposite case of d� − 1 >
D − dr the derivative of pD with respect to ln tD displays the
asymptotic power-law behavior with ς < 0 [see Fig. 4(c) and
curve (8) in Fig. 5(b)], but the pressure behavior does not
have a power-law asymptotic [see Fig. 4(c) and curve (8) in
Fig. 5(a)].

It is pertinent to point out that the pressure drop is localized
in the well vicinity region, the size of which, defined as
RD = rD(pD = 10−5 � 1,t) [see Figs. 6 and 7(a)], increases
in time as RD ∝ t1/γ (see Fig. 7 and Table V). This scaling
behavior, which was observed in the field experiments, has
given a reason to talk about an anomalous diffusion in fractally
permeable reservoirs (see Refs. [57,64]). In fact, however,
an anomalous scaling of RD [presented in Fig. 7(b)] can be
attributed to the fractional topology (see Fig. 3) of the Darcian

FIG. 5. Log-log plots of the dimensionless: (a) bottom hole
pressure drops pD and (b) derivatives dpD/d ln τD versus the di-
mensionless time τD (defined in Table IV) calculated using Eq. (100)
with the scaling exponents defined in Table V for Eq. (97) for the
cases of d� = 1 and D − dr = 1 (1), d� = 2 and D − dr = 1 (2),
d� = 3 andD − dr = 1 (3), d� = 0.5 andD − dr = 0.6 (4), d� = 1.5
and D − dr = 1.2 (5), d� = 1 and D − dr = 0.5 (6), d� = 0.25 and
D − dr = 1 (7), and d� = 2.8 and D − dr = 0.4 (8).

FIG. 6. Log-log plots of dimensionless pressure drops pD versus
dimensionless distance from well rD for different dimensionless times
tD =1 (circles), tD =10 (squares), tD =1000 (triangles), and tD =
100 000 (diamonds) from the numerical solution of Eq. (97) with
scaling exponents defined in Table V for the cases of fractal continuum
flow with: (a) d� = 2.5 andD − dr = 1.5, (b) d� = 2.2 andD − dr =
1.2, (c) d� = 1.8 and D − dr = 0.8, (d) d� = 1.6 and D − dr = 0.5.
Curves, data fitting with Eq. (100); arrows indicate the dimensionless
size of transient zone RD = rD(pD = 10−5,t).

fractal continuum flowD
d�
�3
D ⊂ E3, rather than to an anomalous

diffusion (see Tables II and V).
Here, it should be emphasized that the Euclidean (86)

and Barker (87) models can be treated as special cases of
the fractal continuum flow model (97) (see Table V and
Fig. 5). Furthermore, regardless of the fundamental difference
of physical models leading to the pressure-transient equations
(89) and (97), these equations are mathematically equivalent.
Therefore, both equations have identical numerical solutions

FIG. 7. (a) Log-log plots of dimensionless pressure drops pD
versus dimensionless distance from well rD (defined in Table IV)
from the numerical solution of Eq. (97) with scaling exponents
defined in Table V for time tD =10 in the cases of fractal continuum
flow with d� = 2.5 and D − dr = 1.5 (solid circles), d� = 2.2 and
D − dr = 1.2 (solid squares), d� = 1.8 and D − dr = 0.8 (solid
triangles), d� = 1.6 and D − dr = 0.5 (solid diamonds); curves,
data fitting with Eq. (100); arrows indicate the dimensionless size
of transient zone RD . (b) Log-log plots of dimensionless size of
transient zone RD versus dimensionless time tD from the numerical
solution of Eq. (98) with scaling exponents defined in Table V for
the fractal continuum flow with d� = 2.5 and D − dr = 1.5 (solid
circles), d� = 2.2 and D − dr = 1.2 (solid squares), d� = 1.8 and
D − dr = 0.8 (solid triangles), d� = 1.6 and D − dr = 0.5 (solid
diamonds); straight lines, data fittings with the power law RD ∝ t1/γ

with γ =3 (1), 2.4 (2), 1.6 (3), and 1 (4).
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TABLE VI. Results of the field data fitting with Eqs. (89) and (97). Experimental field data and fitting parameters of Eq. (89) are taken
from Refs. [65–68], while the fitting parameters of Eq. (97) are calculated using relationships (102) and (103).

Eq. (89) Eq. (97)

Field, Well Dn θ D − dr d�

Kamonjang field data [65] 1.6 0.5 1.25 1.35
Kizildere field data [66] 1.66 0.5 1.25 1.41
Aquifer in Poitiers, Well M1 [67] 3.57 3.36 2.68 1.89
Aquifer in Poitiers, Well M5 [67] 2.83 2.25 2.125 1.705
Aquifer in Plomeur, Well R46 [68] 2.49 1.73 1.865 1.625
Aquifer in Plomeur, Well R61 [68] 3.26 2.89 2.445 1.815
Aquifer in Plomeur, Well R200 [68] 2.54 1.81 1.905 1.635
Aquifer in Plomeur, Well R200b [68] 1.48 0.23 1.115 1.365
Aquifer in Plomeur, Well R273 [68] 1.91 0.82 1.41 1.5
Aquifer in Plomeur, Well R385 [68] 1.81 0.72 1.36 1.45

in the dimensionless variables when

θ = 2(D − dr − 1), (102)

while

Dn = d� + (D − dr − 1) = d� + θ/2, (103)

and so the corresponding spectral dimension of the flow
modeled by Eq. (89) is equal to

dns = 1 + d� − 1

D − dr
, (104)

whereas the spectral dimension of fractal continuum is equal
to its mass fractal dimension, that is, ds = D (see Table II). It
should be emphasized that equalities (102)–(104) are of pure
numerical nature and have no physical meaning. Even so, this
observation has very important practical implications. In fact,
although the physical basis of Eq. (89) is at least question-
able (e.g., see the discussion about anomalous diffusion in
Secs. III C and III D), it is widely used in the petroleum
engineering also. In this context, the successful applications
of Eq. (89) to fit the experimental pressure-transient data
have been reported by several authors (see, for example,
Refs. [6,64–68] and references therein). However, it should
be pointed out that in all applications the exponents Dn and
θ were used as fitting parameters, but were not estimated
from experiments. On the other hand, relationships (102) and
(103) make it possible to fit the same experimental data using
Eq. (97) based on the fractal continuum hydrodynamics (e.g.,
see Table VI). Furthermore, the general pressure-transient
equation (96) with appropriate boundary and initial conditions
can be used for numerical simulations of three-dimensional
flows in anisotropic fractally permeable reservoirs, whereas
the generalization of Eq. (89) for anisotropic reservoirs is
not a straightforward matter. Moreover, in contrast to the
anomalous diffusion exponent used as the fitting parameter
only, the scaling parameters of Eqs. (96) and (97) can be
obtained from independent field experiments on the reservoir
fractal characterization (e.g., see Refs. [69]).

V. CONCLUSIONS

Summarizing, in this work the hydrodynamics of fractal
continuum flow D

3�
3
D ⊂ E3 is developed on the basis of

self-consistent model of fractal continuum. Besides, a phe-
nomenological generalization of the pressure-transient equa-
tion for generalized fractal continuum flow D

d�
�3
D ⊂ E3 is

suggested. It is shown that the classical pressure-transient
equations for the flow in fractally permeable media can be
obtained as the special cases of the generalized pressure-
transient equation for fractal continuum flow. In this context,
the celebrated Barker’s equation was generalized for an
anisotropic fractional flow in the three-dimensional reservoirs.
It is shown that the pressure-transient equation based on the
fractal continuum hydrodynamics provides a good fitting of
the field experimental data reported in the literature.

It is pertinent to note that the fractal continuum hydrody-
namics developed in this work can be easily generalized for
the case of multiphase flow. The double [45,57] and triple [70]
porosities of many real aquifers can be accounted for by
the consideration of two or three coupled continuum flows.
Furthermore, the finite aquifer size and the well damage can be
easy accounted for by the modification of boundary conditions,
as is suggested in Refs. [57,71]. In this context, Eq. (96)
with appropriate boundary and initial conditions can be used
for numerical simulations of different pressure-transient tests
(drawdown, buildup, injection, fallow, and interference) in
anisotropic fractally permeable reservoirs. In these simulations
the fractal dimensions D, di , and d� can be either used as
the fitting parameters to fit the experimental field data, or
independently determined from the fractal analysis of the
reservoir.

The results reported in this paper provide an insight into
the hydrodynamics of fluid flow in fractally permeable media
and can be used to improve the fractal approach to model
the pumping well pressure response that is widely used
in petroleum engineering. Moreover, the fractal continuum
flow approach leads to a radical change of paradigm in
the well test interpretation. In fact, the pressure response
of fractal continuum flow is governed by the fractional
topology and metric of fractally permeably medium, rather
than by an anomalous diffusion. Besides, the fractal continuum
framework developed in this work can be employed to
model other problems arising in the mechanics of fractal
media.
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(1995); F. Flamenco-López and R. Camacho-Velazques, SPE
Res. Eval. Eng. 6, 39 (2003); R. Camacho-Velázquez, G.
Fuentes-Cruz, and M. Vasquez-Cruz, ibid. 11, 606 (2008);
R. Raghavan, J Petroleum Sci. Eng. 80, 7 (2011).

[65] S. Aprllian, D. Abdassah, L. Mucharam, and R. Sumantri, SPE
26465, 511 (1993).

[66] M. Onur, A. D. Zeybek, U. Serpen, and I. M. Gok, Geothermics
32, 147 (2003).

[67] S. Bernard, F. Delay, and G. Porel, J. Hydrol. 328, 647
(2006).

[68] T. Le Borgne, J. R. de Dreucy, P. Davy, and F. Touchard, Water
Resour. Res. 40, W03512 (2006).

[69] H. Dong and M. J. Blunt, Phys. Rev. E 80, 036307
(2009); J. Liu and K. Regenauer-Lieb, ibid. 83, 016106
(2011).

[70] D. Abdassah and I. Ershaghi, SPE Form. Eval. 1 113
(1986).

[71] Y. Zhao and L. Zhang, World J. Mech. 1, 209 (2011).

056314-21

http://dx.doi.org/10.1090/S0273-0979-1993-00429-4
http://dx.doi.org/10.1215/S0012-7094-92-06724-X
http://dx.doi.org/10.1088/0305-4470/32/28/310
http://dx.doi.org/10.1098/rspa.2000.0506
http://dx.doi.org/10.1098/rspa.2000.0506
http://dx.doi.org/10.1016/j.matpur.2005.10.005
http://dx.doi.org/10.1016/j.matpur.2005.10.005
http://dx.doi.org/10.1016/j.jmaa.2009.01.054
http://dx.doi.org/10.1016/j.jmaa.2009.01.054
http://dx.doi.org/10.1063/1.1994787
http://dx.doi.org/10.1016/j.physa.2005.11.015
http://dx.doi.org/10.1016/j.physa.2005.11.015
http://dx.doi.org/10.3103/S0027134909040031
http://dx.doi.org/10.1063/1.3319559
http://dx.doi.org/10.1063/1.3319559
http://dx.doi.org/10.1016/j.chaos.2011.03.002
http://dx.doi.org/10.1016/j.chaos.2011.03.002
http://dx.doi.org/10.1098/rspa.2009.0101
http://dx.doi.org/10.1098/rspa.2009.0101
http://dx.doi.org/10.1007/s10659-011-9333-6
http://dx.doi.org/10.1016/S0022-1694(03)00042-8
http://dx.doi.org/10.1051/jphyslet:019820043017062500
http://dx.doi.org/10.1051/jphyslet:019820043017062500
http://dx.doi.org/10.1007/BF00339997
http://dx.doi.org/10.1007/BF02213455
http://dx.doi.org/10.1103/PhysRevLett.103.020601
http://dx.doi.org/10.1103/PhysRevLett.103.020601
http://dx.doi.org/10.1016/0022-1694(77)90060-9
http://dx.doi.org/10.1007/BF00192152
http://dx.doi.org/10.1007/BF00192152
http://dx.doi.org/10.1063/1.857691
http://dx.doi.org/10.1007/BF01063962
http://dx.doi.org/10.1029/96WR03495
http://dx.doi.org/10.1029/96WR03495
http://dx.doi.org/10.1016/S0266-352X(97)00005-0
http://dx.doi.org/10.1017/S0022112002008947
http://dx.doi.org/10.1016/j.jhydrol.2009.06.015
http://dx.doi.org/10.1007/s12182-011-0115-3
http://dx.doi.org/10.1007/s11242-011-9730-0
http://dx.doi.org/10.1007/s11242-011-9730-0
http://dx.doi.org/10.1086/624930
http://dx.doi.org/10.1016/0309-1708(80)90016-0
http://dx.doi.org/10.1016/0309-1708(80)90016-0
http://dx.doi.org/10.1021/ie50720a004
http://dx.doi.org/10.1007/BF01063960
http://dx.doi.org/10.1098/rspa.2006.1704
http://dx.doi.org/10.1098/rspa.2006.1704
http://dx.doi.org/10.1134/S1028335810120074
http://dx.doi.org/10.1134/S1028335810120074
http://dx.doi.org/10.1007/s11242-011-9730-0
http://dx.doi.org/10.1007/s11242-011-9730-0
http://dx.doi.org/10.1016/0167-2738(83)90207-2
http://dx.doi.org/10.1007/BF01012930
http://dx.doi.org/10.1002/pssb.2221330150
http://dx.doi.org/10.1088/0305-4470/29/15/007
http://dx.doi.org/10.1088/0305-4470/29/15/007
http://dx.doi.org/10.1016/S0045-7825(98)00108-X
http://dx.doi.org/10.1016/S0045-7825(98)00108-X
http://dx.doi.org/10.1029/1999WR900299
http://dx.doi.org/10.1007/s10040-002-0198-4
http://dx.doi.org/10.1007/s10040-002-0198-4
http://dx.doi.org/10.1007/s10040-002-0197-5
http://dx.doi.org/10.1007/s10040-002-0197-5
http://dx.doi.org/10.1103/PhysRevLett.54.455
http://dx.doi.org/10.1103/PhysRevLett.54.455
http://dx.doi.org/10.1103/PhysRevA.32.3073
http://dx.doi.org/10.1016/j.ijengsci.2005.12.004
http://dx.doi.org/10.1016/j.physa.2006.07.033
http://dx.doi.org/10.1016/j.physa.2006.07.033
http://dx.doi.org/10.1007/BF01036523
http://dx.doi.org/10.1029/JB089iB06p04327
http://dx.doi.org/10.1016/0022-1694(94)90249-6
http://dx.doi.org/10.1111/j.1745-6584.1995.tb00023.x
http://dx.doi.org/10.1111/j.1745-6584.1999.tb01190.x
http://dx.doi.org/10.1007/s10040-005-0453-6
http://dx.doi.org/10.1007/s10040-005-0453-6
http://dx.doi.org/10.1029/WR024i010p01796
http://dx.doi.org/10.1016/0022-1694(94)90045-0
http://dx.doi.org/10.1080/00908310051128237
http://dx.doi.org/10.1080/00908310119920
http://dx.doi.org/10.1029/94WR02260
http://dx.doi.org/10.1029/94WR02260
http://dx.doi.org/10.1016/j.petrol.2011.10.003
http://dx.doi.org/10.1016/S0375-6505(02)00068-8
http://dx.doi.org/10.1016/S0375-6505(02)00068-8
http://dx.doi.org/10.1016/j.jhydrol.2006.01.008
http://dx.doi.org/10.1016/j.jhydrol.2006.01.008
http://dx.doi.org/10.1029/2003WR002436
http://dx.doi.org/10.1029/2003WR002436
http://dx.doi.org/10.1103/PhysRevE.80.036307
http://dx.doi.org/10.1103/PhysRevE.80.036307
http://dx.doi.org/10.1103/PhysRevE.83.016106
http://dx.doi.org/10.1103/PhysRevE.83.016106
http://dx.doi.org/10.4236/wjm.2011.15027

