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Emergence of a limit cycle for swimming microorganisms in a vortical flow of a viscoelastic fluid

A. M. Ardekani and E. Gore
Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
(Received 17 December 2011; revised manuscript received 26 March 2012; published 22 May 2012)

We propose that the rheological properties of background fluid play an important role in the interaction
of microorganisms with the flow field. The viscoelastic-induced migration of microorganisms in a vortical
flow leads to the emergence of a limit cycle. The shape and formation rate of patterns depend on motility,
vorticity strength, and rheological properties of the background fluid. Given the inherent viscoelasticity of
exopolysaccharides secreted by microorganisms, our results can suggest new mechanisms leading to the vital
behavior of microorganisms such as bacterial aggregation and biofilm formation.
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I. INTRODUCTION

Bacterial aggregation has several implications; it can lead
to pathogen colonization and development of diseases and
epidemics [1] and formation of biofilms [2]. It also affects
ecological processes in aquatic environments such as devel-
opment of patches of dissolved organic matter [3], nutrient
turnover [4], and distribution of biomass in the ocean [5].
In marine environments, high concentrations of bacteria are
present inside transparent exopolymer particles (TEPs) [6],
referred to as oceanic gel [7]. TEP presence is essential for
the formation of diatom aggregates, the so-called “marine
snow particles,” that contribute to fluxes of carbon into the
deep ocean [8]. In addition, TEPs play an important role in
the biofilm initiation and fouling during membrane filtration
processes (e.g., nanofilteration or reverse osmosis) [9]. Despite
these widespread implications of the viscoelasticity of the
microorganisms’ habitats, their underlying hydrodynamics on
the aggregation of bacteria and microorganisms are poorly
understood at present.

Recent small-amplitude results of Taylor’s infinite swim-
ming sheet [10] suggest that viscoelasticity hinders locomo-
tion [11]. On the other hand, an infinite swimming sheet
in a Brinkmann fluid and two fluid gels shows increased
swimming velocities [12,13]. Both swimming velocity and
mechanical efficiency are increased with viscoelasticity for a
free finite sheet swimmer with large tail undulations. The peak
corresponds to the relaxation time of the fluid matching the
stroke frequency of the swimmer and is associated with regions
of highly stressed fluid near the undulating tail [14]. In the case
of a spherical squirmer in a complex fluid, the swimming
velocity is found to be smaller than that in a Newtonian
fluid, but the swimming efficiency increases with the liquid
relaxation time [15]. Although propulsion of microorganisms
in complex fluids has recently gained significant interest,
other than the recent work on stability of suspension of
microorganisms in a viscoelastic fluid [16], current studies
have considered only the role of background fluid rheology
on the propulsion of a single organism in stagnant flows
(e.g., Refs. [11–13]). Therefore, more studies are required to
understand the effect of non-Newtonian fluid properties on
the interaction of microorganisms with the background flow.
In this paper we investigate the role of viscoelastic-induced
migration of microorganisms in the presence of a vortical flow.

Recent experiments show that the presence of bacteria-
produced extracellular polymeric substances (EPSs) made of
polysaccharides and proteins lead to aggregation of bacteria
in curved microchannels under laminar flow regime and
subsequently the formation of filamentous biofilm streamers
[17]. Biofilm barriers are also developed in porous media to
reduce the porosity, permeability, and mass transport in deep
porous geological sites by several orders of magnitude and
prevent leakage of CO2 [18]. Inherently, vortical structures and
secondary flows are present in porous media despite inertialess
flows [19]. Control of the growth of biofilm in porous media
and diagnostic microfluidic devices can be achieved with the
knowledge of the background vortical flow and its effects on
bacterial aggregation. We demonstrate that viscoelasticity of
the background fluid in the presence of a vortical flow leads to
the emergence of a limit cycle for swimming microorganisms
that causes their aggregation. Aggregation patterns can be
formed by various mechanisms such as gyrotaxis [5], density-
dependent motility [20], and beating synchronization due to
hydrodynamic interaction between microorganisms [21]. Here
we report a novel mechanism for microorganisms’ pattern
formation mediated by viscoelasticity of the background fluid.

II. MODEL

In order to quantify motion of microorganisms in the
presence of flow, we proceed with a mathematical model
to describe spatiotemporal evolution of the orientation and
trajectory of each microorganism [22]

dp
dt

= 1

2
ω × p + γ 2 − 1

γ 2 + 1
p · E · [I − pp], (1)

dxp

dt
= Vsp + u(xp), (2)

where each microorganism is modeled as a prolate spheroid of
aspect ratio γ , swimming with a constant velocity, Vs , along
direction p. In these equations t is time, ω the background
vorticity, u the background velocity field, xp the particle
position vector, E = (∇u + ∇uT )/2 the rate of strain tensor,
and I the identity tensor. The orientation of elongated particles
is affected by shear. Elongated spheroids undergo periodic
rotation depending on their aspect ratio, called the Jeffery
orbit [23], which is described by Eq. (1). The above equations
have been widely used to model self-propulsion of particles
and phytoplankton (e.g., Refs. [5,22,24]). Microorganisms
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swimming in extracellular polymeric substances are subjected
to lateral migration across streamlines due to viscoelasticity
of EPSs, which is not captured in Eqs. (1) and (2). Lat-
eral migration in non-Newtonian fluids occurs due to the
normal stress coefficients. These nonlinear elastic properties
of complex fluids can lead to flow phenomena in contrast
with their counterpart in Newtonian fluids. Rod climbing
effects [25], elastic instabilities in inertialess flows [26],
and microstructure formation in concentrated suspensions of
particles of polymeric liquids [27–29] are examples where
normal stress difference can significantly affect the flow. For
a simple shear flow ux = γ̇ y, first and second normal stress
differences are defined as N1 = σxx − σyy = ψ1γ̇

2 and N2 =
σyy − σzz = ψ2γ̇

2, where γ̇ is the magnitude of shear rate
and ψ1,ψ2 are the first and second normal stress coefficients,
which are zero for Newtonian fluids. For polymeric liquids,
the first normal stress coefficient is positive, but the second
normal stress coefficient is negative. The lateral cross-stream
migration velocity can be described as a function of first and
second normal stress coefficients. The second-order fluid is
perhaps the simplest model to use for explicit analysis of
normal and extensional stresses and has been widely used
for analysis of particle motion in viscoelastic fluids [30,31].
The stress tensor for a second-order fluid can be written as

T = −pI + η0A1 − 1
2ψ1A2 + (ψ1 + ψ2)A2

1, (3)

where η0 is zero shear viscosity; A1 = ∇u + ∇uT is twice the
strain rate tensor and

A2 = ∂A1

∂t
+ (u · ∇)A1 + A1∇u + ∇uT A1. (4)

The undisturbed flow field can be locally expanded around
location xp in a Taylor series as

u(x) = α(xp) + E(xp) · (x − xp)

+χ (xp) : (x − xp)(x − xp) + h.o.t. (5)

Here we can assume that the presence of microorganisms
does not modify the background flow field since the size
of the microorganisms [O(1–10) μm] is much smaller than
the length scale corresponding to the vortical structures in
the background flow field. In addition, velocity fluctuations
produced by microorganisms’ collective behavior are on the
order of O(10–100 μm/s) and are much smaller than the
background velocity field. Chan and Leal [32] described
viscoelasticity-induced lateral migration velocity VE of a
sphere of radius a in a second-order fluid of general quadratic
flow described by Eq. (5) as

VE = a2 ψ1 + ψ2

η0

{
5

18
(5 + 13ε1)E : ξ

+ 1

27
(1 + 11ε1)ε : (E · θ ) + 1

3
(1 + 3ε1)E · τ

}
, (6)

where ε1 = − 1
2 (1 + ψ2/ψ1)−1 and in component notation

ξijk = 1
6 (χijk + χikj + χkij + χkji + χjik + χjki)

− 1
15 (χimmδjk + χjmmδik + χkmmδij ), (7)

θij = εimnχnmj + εjmnχnmi, and τi = χimm, (8)

where ε is the permutation tensor also known as the Levi-Civita
tensor. The second normal stress coefficient ψ2 is usually
much smaller than ψ1, and we neglect it in our analysis. The
migration velocity of an ellipsoid in a simple shear flow of a
second-order fluid is the same as for a sphere [33]. However,
detailed numerical simulation of the nonlinear equations is
needed to calculate the lateral viscoelastic-induced migration
velocity of an ellipsoid in an inhomogeneous background flow
(e.g., quadratic flow).

Next, we justify the use of Eq. (1) for non-Newtonian
fluids. A transversely isotropic particle in a simple shear
flow of a Newtonian fluid rotates indefinitely on one of an
infinite, one-parameter family of Jeffery orbits [30]. There is no
preferred orbit due to the “indeterminacy” of the Stokes’s flow
solution. Non-Newtonian behavior of EPS, however, breaks
the symmetry [30]. Nonspherical axisymmetric particles in
viscoelastic fluids show steady drift to a preferred orbit that
depends on the particle aspect ratio. Slender prolate particles
drift to the orbit in which the axis of rotation is parallel to the
undisturbed vorticity vector [30,33]. The rate of drift, however,
depends on the magnitude of the rheological parameter,
(ψ1 + ψ2)γ̇ (1 + 2ε1)/η0, as well as the detailed geometry of
the particles. For spherical particles, the rate of rotation of
particles in a non-Newtonian fluid remains the same as the one
in a Newtonian fluid ( 1

2ω × p) independent of the value of the
second normal stress coefficient. Thus, the rate of orbit drift is
nonzero for elongated ellipsoids only in a fluid that exhibits a
nonzero second normal stress, which is usually small. It should
be noted that the orbit drift is different from viscoelastic-
induced migration of particles across streamlines, which is
described by Eqs. (6)–(8) and occurs for both spherical
and elongated objects in any viscoelastic fluids. In reality
microorganisms may not be transversely isotropic. In that case,
Eq. (1) should be modified to address the role of anisotropy
of the microorganism on the Jeffrey orbit. However, detailed
numerical calculation of the nonlinear equations is needed to
explore the effect of viscoelasticity of the background fluid on
the orbit drift of nontransversely isotropic particles, which is
outside the scope of this paper.

Based on the discussion above, orientation and trajectory of
each microorganism in the extracellular matrix can be written
in dimensionless form as

dp
dt̃

= 1

2
ω̃ × p + γ 2 − 1

γ 2 + 1
p · Ẽ · [I − pp], (9)

dx̃p

dt̃
= φp + ũ(x̃p) + ṼE, (10)

where ∼ refers to the dimensionless variables. Here length and
vorticity are scaled by L and ω0, the representative length scale
and vorticity scale of the background flow field, respectively.
φ is the dimensionless swimming velocity, φ = Vs/Lω0.

III. RESULTS AND DISCUSSION

In order to examine the role of rheological properties
of the background fluid in a vortical flow, we consider
a steady incompressible laminar flow field of a Taylor-
Green vortex (TGV). The TGV flow, which consists of
an array of counterrotating vortices, is given as u =
ω0[− cos mx sin mz/2,0, sin mx cos mz/2]. Here ω0 is the
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FIG. 1. (Color online) Viscosity and first normal stress coefficient
are calculated for EPSs of Pseudomonas aeruginosa biofilm using
Cox-Merz [36] and Laun’s [37,38] rules for the data provided by
Wloka et al. [34].

maximum vorticity and L is taken to be L = 1/m. Using
TGV as the background velocity field, the migration velocity
in dimensionless form can be written as

ṼE = −0.194ã2 Wi sin x̃ sin z̃

⎛
⎝ cos x̃ sin z̃

0
sin x̃ cos z̃

⎞
⎠ , (11)

where Wi = λω0 is the Weissenberg number and λ = ψ1/2η0

the relaxation time of the liquid. Wloka et al. [34] measured
rheological properties of extracellular polymeric substances
for Pseudomonas aeruginosa biofilm. They reported con-
centration of dissolved polymer chains as 1.12 g/L with
average molecular weight of 2 370 000 g/mol and measured
relaxation time of 17 ms. The volume fraction of bacteria
within the biofilm is less than 0.2, and elasticity of the biofilm
is essentially determined by the rheological properties of
EPSs (shown in Fig. 1) [35]. TEPs assemble to form gels
sparsely distributed in the bulk of the ocean, but they can
be locally found in higher concentrations (e.g., in diatoms
blooms, or at the entrance of filtration membranes, where
they lead to biofilm initiation [9]). The use of a second-order
fluid is the first step toward understanding the interaction of
microorganisms and flow field in background fluids that obey
a more complicated constitutive relation. In a second-order
fluid, the viscosity and normal stress coefficients are constant,
whereas viscosity and normal stress coefficients are shear
thinning for EPSs of Pseudomonas aeruginosa biofilm as
shown in Fig. 1. The basic mechanism explained in this
paper is due to the presence of the normal stress difference,
which is also present in real polymeric fluids and extracellular
polymeric substances. However, in order to quantitatively
predict the rate of pattern formation for shear-thinning fluids,
one needs to use other constitutive equations such as Giesekus
or FENE-P models where fully nonlinear computational fluid
dynamics calculations will be necessary. The results presented
in this manuscript are quantitatively correct in the limit
of low Weissenberg number but only provide a qualitative
understanding in the limit of very large Weissenberg number.

The size and magnitude of vortex structure in different
applications are given as L ∼ O(mm), ω0 ∼ O(10−4–0.1 s−1)
in the ocean and L ∼ O(10–100 μm), ω0 ∼ O(1–100 s−1)
near a small swimming organism, L ∼ O(1–1000 μm) and
ω0 ∼ O(1–1000 s−1) in porous media, near membranes
exposed to biofouling (e.g., nanofilteration or reverse osmosis)
or diagnostic microfluidic devices. For ã ∼ 0.01–1 and Wi ∼
0.1–100, the coefficient of lateral migration will be of order
β = 0.194ã2 Wi ∼ O(2 × 10−6–20) where β is defined as
β = 0.194ã2 Wi.

The autonomous nonlinear dynamic system described by
Eqs. (9)–(11) is numerically solved for 400 microorganisms
using an explicit second-order time discritization scheme to ra-
tionalize the role of swimming velocity, background vorticity,
and rheological properties of the background fluid. Each mi-
croorganism is initialized in space with random initial position
and orientation. However, as time evolves, microorganisms
orbit in a limit cycle and eventually steady patterns emerge
in the presence of viscoelasticity (see Supplemental Material
movie 1 in Ref. [39]). Figures 2(a)–2(h) shows microorgan-
isms’ pattern formation for different values of swimming
velocity φ and fluid viscoelasticity β. Viscoelasticity of the
background fluid leads to migration of microorganisms toward
region of low shear rate ( ˜̇γ =

√
2Ẽ : Ẽ), which comes to

balance with the motility of microorganisms at a particular
radius leading to rotation of microorganisms on a periodic
orbit. As microorganisms’ motility increases, they have a
stronger tendency to move on a straight line rather than as
a passive tracer. This leads to formation of square shaped
orbits [Figs. 2(f)–2(h) and Supplemental Material movie 2
in Ref. [39]] rather than circular orbits [(Figs. 2(b)–2(d) and
Supplemental Material movie 1 in Ref. [39]]. The dynamical
system describing microorganisms’ trajectory and evolution
Eqs. (9)–(11) has a limit cycle whose average radius 〈R̃〉
depends on motility of the microorganisms and viscoelasticity
of the medium [Fig. 2(i)]. Note that 〈〉 represents time average
over a cycle. The angle θ is a measure of microorganism’s
orientation angle relative to the polar angle ϕ and is positive in
a counterclockwise direction [see Fig. 2(j)]. Microorganisms
are oriented in a tangential direction as they rotate on the limit
cycle for small values of β (〈θ〉 → −π/2) but oriented along
radial direction as β increases [Fig. 2(j)]. For large values of β,
the dimensionless radius of the limit cycle is much smaller than
unity, and an analytical expression for it can be obtained after
psuedo-linearization of Eqs. (9) and (10) around x̃ = 0, z̃ = 0:

〈 ˙̃R〉 = −β

4
〈R̃〉3 + φ cos〈θ〉, (12)

where θ is a periodic function of ϕ, Fourier expansion of
which can be written as θ = 〈θ〉 + A cos(4ϕ + B) + h.o.t.
When microorganisms are moving on the limit cycle, 〈 ˙̃R〉 = 0
and consequently, 〈R̃〉 = (4φ cos〈θ〉/β)1/3. This solution is
also confirmed by numerical analysis shown in Fig. 2(i),
where the radius of the limit cycle decays as β−1/3 and
increases as φ1/3 in the limit of large β. Aggregation rate of
microorganisms is also controlled by their motility, strength of
the vortical flow, and viscoelasticity of the background fluid.
As shown in Fig. 3, aggregation rate increases with both φ and
β. The higher the motility of microorganisms and the more
viscoelastic the background fluid, the faster the limit cycle
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FIG. 2. (Color online) (a)–(h) Spatial distribution of microorganisms in Taylor-Green vortex of a viscoelastic fluid at γ = 1 for different
values of motility and viscoelasticity. The contours show the magnitude of shear rate tensor ˜̇γ =

√
2Ẽ : Ẽ = | sin x̃ sin z̃|, and arrows represent

velocity vectors for the background fluid. The size of the Taylor-Green cell is π × π , and dots represent bacteria. (i) Radius of the pattern and
(j) orientation of microorganisms as a function of the dimensionless swimming velocity and viscoelasticity of the background fluid are plotted.
The schematic shown in (j) illustrate polar angle and the microorganism’s orientation angle, where origin O is located at the center of the TGV
cell.

emerges. As microorganism’s orbit approaches the limit cycle,
the difference between 〈R̃〉 and average radius of the limit
cycle ε becomes small compared to 〈R̃〉. Using Eq. (12) for

β

ag
gr

eg
at

io
n

tim
e

10-2 100 102

102

104 φ = 0.01

φ = 0.001

slope=-1/3

slope=-1

FIG. 3. (Color online) Aggregation time at which 〈R̃〉 reaches
90% of its steady value.

large values of β, it can be easily shown that dε/dt ∝ β1/3. For
small values of β, the radius of limit cycle is independent of
β, and Eqs. (10) and (11) can be used to show that dε/dt ∝ β.

IV. CONCLUDING REMARKS

In this paper we analyze dilute suspension of noninteracting
microorganisms and show that they trap within a vortex cell
due to viscoelasticity of the background fluid. Particle trapping
within the vortices driven by shear-induced migration has
been reported in the literature [40]. Shear-induced migration
velocity of a particle in a vortex scales as Ush ∼ γ̇ a2φv/L

where φv is the volume fraction of particles [41]. The ratio
of shear-induced migration velocity relative to viscoelasticity-
induced migration for microorganisms within a Taylor-Green
vortex can be estimated as Ush/VE ∼ φv/Wi, which is small
for bacteria suspensions and biofilms and is neglected in
this analysis. The fundamental mechanism discussed in this
paper, leading to the emergence of the limit cycle and
eventually aggregation of microorganisms, is independent of
their concentration. In fact, a single microorganism started
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at a random position and orientation will eventually rotate
on a limit cycle as time passes. This is due to the fact that
viscoelastic-induced migration, which leads to their motion
to regions of low shear, balances with their motility, which
acts as an opposing mechanism leading to their dispersion.
The interaction of microorganisms with each other and their
collective behavior can be neglected in this work since
the microorganism concentration is low and the fluctuations
generated by microorganisms are smaller than the background
flow field.

Equations (1) and (2) for spherical self-propelled particles
(γ = 1) do not predict any aggregation since the trace of
Jacobian of Eqs. (1) and (2) is zero (due to incompressibility
condition). Thus, “according to Liouville’s theorem, there
can be no contraction in phase space volume” [24] and no
limit cycle occurs for spherical microorganisms in Newtonian
fluids. On the other hand, considering viscoelasticity of the
background fluid leads to motion of microorganisms on

periodic orbits within a single vortex cell. These results await
and invite experimental verification with natural or artificial
swimmers [42]. The mechanism proposed here suggests that
patches of bacteria and microorganisms form in the presence
of vorticity due to elastic properties of extracellular polymers
and can be used to generate large enough concentrations of
microorganisms required for detection procedures. Detection
of microorganisms such as bacteria is important in medical
diagnosis, microbiological analysis of food, and water and
environmental samples.
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