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Localized modulation of rotating waves in Taylor-Couette flow
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We report the results of an experimental study on the multiplicity of states in Taylor-Couette flow as a result of
axial localization of azimuthally rotating waves. Localized states have been found to appear hysteretically from
time-dependent Taylor-Couette flow at Reynolds numbers significantly above the onset of wavy Taylor vortices.
These localized states have the shape of a modulated rotating wave and differ significantly from global modulated
wavy Taylor vortex states in their spatial characteristics. Axial localization of rotating waves is accompanied
with a significant increase in size of the underlying pair of Taylor vortices. Our work reveals that localization
provides a mechanism for the appearance of multiple time-dependent states in Taylor-Couette flow.
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I. INTRODUCTION

The multiplicity of states, i.e., the coexistence of states for
the same values of external control parameters in nonlinear
systems, is important for the organization of complexity in
many fluid flows [1–9], such as, e.g., in Taylor-Couette flows
[10,11]. Multiple states can appear from symmetry-breaking
bifurcations and are involved in organizing complex dynamics,
e.g., from homoclinic or heteroclinic bifurcations [12,13].
More recently, multiple states have also been found to appear
from subcritical bifurcations accompanied with so-called
homoclinic snaking [14–16]; i.e., each of the bifurcation
branches is related to a spatially localized state.

Studies on organizing principles of complexity in fluid
flows are well suited in simple flow geometries [17,18] which
leave the basic flow invariant under certain symmetries, such
as in Taylor-Couette flow [19–21]. This hydrodynamic system
consists of a viscous fluid in the gap between an inner and an
outer cylinder. Physical realizations of the Taylor-Couette flow
are confined in the axial direction, e.g., by nonrotating rigid
end walls, and are in that case invariant under axial reflections
and azimuthal rotations (see, e.g., [22]).

For stationary outer cylinders axisymmetric Taylor cells
appear smoothly from basic laminar flow for similar Reynolds
numbers as the critical Reynolds number Rec of the centrifugal
instability in circular Couette flow [23]. Multiple bifurcation
points related to steady axisymmetric states with different
numbers of cells [11] and the appearance of anomalous modes
[24], as well as symmetry-breaking pitchfork bifurcations
[25], give rise to a considerably high multiplicity of steady
axisymmetric states in Taylor-Couette flow even for moderate
values of Reynolds number and aspect ratios [11].

At higher Re axisymmetric Taylor vortices become unstable
via a Hopf bifurcation toward rotating waves [26–36]. For a
radius ratio η = 0.5, which is used in this study, four different
types of rotating waves have been observed, i.e., the small-jet
mode, the antijet mode, the wavy mode, and the core mode [36].
The small-jet mode has also been labeled as wavy outflow
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boundary [19,35] and subharmonic mode [34] since the oscil-
lation amplitude is localized in the outward jets and adjacent
outward jets oscillate in antiphase; i.e., the flow is axially
subharmonic with respect to the period of Taylor vortices
(assuming translational invariance). Bifurcations from rotating
waves toward quasiperiodic [36–42] or axially asymmetric
[43] flow states are essential in more complex bifurcation
sequences and the transition to disordered Taylor-Couette
flow [20–22,43,44].

While rotating and modulated rotating wave states in
Taylor-Couette flow are generically global states, i.e., they
correspond to states having a discrete translational symmetry
in an idealized translational invariant system [19], there have
been observations of flow states with axially localized dy-
namics in Taylor-Couette flow. Pfister reported on a localized,
quasiperiodic state in Taylor-Couette flow where a certain type
of a rotating wave occurs axially localized only within single
vortex pairs [45]. Dynamics on T 3 tori accompanied with these
states have also been investigated [46]. Baxter and Andereck
presented observations on axially localized dynamical do-
mains in Taylor-Couette flow [47]. Recently, multiple localized
states have been found in counter-rotating Taylor-Couette flow
below the centrifugal instability of circular Couette flow. Those
states are steady and axisymmetric and their multiplicity has
been related to the homoclinic snaking mechanics [48].

In this article, we present the results of an experimental
study on the multiplicity of time-dependent flow states as a
result of axial localization of rotating waves. The modulated
rotating wave flow, originally found by Pfister [45], involves an
axially localized large-jet mode, i.e., an axially harmonic wavy
outflow boundary flow (assuming translational invariance),
accompanied with a global small-jet mode. These states appear
over a wide range of aspect ratio � at higher Reynolds
numbers and result in a considerable high multiplicity of
time-dependent states in Taylor-Couette flow.

II. EXPERIMENTAL SETUP

The experimental setup consists of a rotating inner and
a nonrotating outer cylinder. The rotating inner cylinder
is machined from stainless steel having a radius of r1 =
(12.50 ± 0.01) mm, while the stationary outer cylinder is
made from optically polished glass with a radius of r2 =
(25.00 ± 0.01) mm. This results in a gap width d = r2 − r1 =
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12.50 ± 0.02 mm and a radius ratio η = r1/r2 = 0.5 which is
held fixed for all measurements. At top and bottom the fluid
is confined by solid end walls which are held fixed in the
laboratory frame. The distance between these walls defines
the axial height L of the flow which is adjustable within
an accuracy of 0.01 mm. The measurements were performed
with two different Taylor-Couette apparatus in order to ensure
that the observed phenomena do not result from experimental
imperfections. Such imperfections are generally unavoidable,
though the technical specifications of both apparatus are
identical except for the maximal adjustable axial length, i.e.,
Lmax = 210 mm for the shorter and Lmax = 640 mm for the
longer apparatus.

Control parameters are the aspect ratio � = L/d and the
Reynolds number, which is Re = 2πf dr1

ν
with f denoting the

rotation frequency of the inner cylinder. With a phase-locked
loop control an accuracy of �f

f
∝ 10−4 in the short-term and

�f

f
∝ 10−7 in the long-term average is achieved. As a working

fluid within the gap between the two concentric cylinders a
silicone oil with a kinematic viscosity ν = (10.9 ± 0.1) cSt is
used. The uncertainty of ±0.1 cSt refers to the measurement
of the absolute value of kinematic viscosity. The accuracy of ν

during a measurement is primarily determined by the temper-
ature variation of the fluid that is thermostatically controlled to
(21.00 ± 0.01) ◦C. This yields �ν = ∂ν

∂T
|21.00 ◦C �T ≈ 0.0025

cSt. Though the uncertainty in the absolute value of ν intro-
duces an uncertainty of �Reabs

Re ∝ 10−2 in the absolute value
of Re the variation in Reynolds number with time is within
�Re
Re ∝ 10−4 during a measurement. This variation determines

the resolution in Re that is achieved in the experiment.
For flow visualization purposes, aluminum flakes with a

length of 80 μm are added to the fluid. These measurements are
performed by monitoring the system with a charge-coupled-
device camera in front of the cylinder recording the luminosity
along a narrow axial stripe. The spatiotemporal behavior of the
flow is then represented by successive stripes for each time step
at a constant ϕ position leading to continuous space-time plots.

Additionally, we utilize laser doppler velocimetry (LDV)
for measurements of the radial (u) and axial (w) velocity
locally at a certain position (r,z,ϕ) within the flow domain.
The measurements in this article have always been performed
at a fixed radial and azimuthal position (r,ϕ) and either
at a fixed axial position z or while simultaneously axially
moving the LDV at a constant speed wLDV within the time
t ; i.e., each data point represents a certain time t referring
to a distinct axial position z(t). The corresponding evaluation
algorithm is based on the occurring Doppler shift using a
bandpass filter that allows us to study the spatiotemporal
behavior of stationary and oscillatory flow. In particular the
(narrow) bandpass filtering of the so-called axial scans allows
to decompose the (spatial) time series into stationary pattern
and axially traveling waves, e.g., axisymmetric Ekman vortices
and nonaxisymmetric spiral vortices (see [49] for details).

III. RESULTS

A. Flow state with a localized rotating wave

In Fig. 1 space-time plots which are the result of flow
visualization measurements of time-dependent flow states are
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FIG. 1. Space-time plot obtained from flow visualization of (a)
a small-jet state and (b) a localized large-jet state 12LJ4 with N =
12 vortices at � = 11 for Re = 420 and 1100, respectively. Due to
the alignment of suspended aluminum flakes the inflow and outflow
boundaries appear almost dark in these visualizations while vertically
aligned flakes in up- and downward flow reflect incoming light. The
wavy structure of the outward flow in the bulk vortex pairs can be seen
in both (a) and (b) while inflow boundaries are (almost) stationary.
The fourth outflow boundary (from bottom) in (b) exhibits a localized
modulation having a very large amplitude.

depicted. While in Fig. 1(a) a space-time plot of a global
small-jet state is shown, a flow state having a large oscillation
amplitude localized in a single Taylor vortex pair (here within
the fourth vortex pair from bottom) is depicted in Fig. 1(b).
The measurement was performed at (a) Re = 420 and
(b) Re = 1100, respectively, from states having N = 12
vortices at � = 11. This Re is well above the critical one
for the onset of rotating waves at this aspect ratio. The
flow visualization technique used here represents radially and
axially dominated flow as dark and light zones, respectively.
Therefore the dark horizontal lines in Fig. 1 result from
(almost) stationary inflow boundaries between Taylor vortex
pairs. The outflow boundary is also represented by a dark area,
but this can be seen to be wavy in Fig. 1 for all cell pairs (the
amplitude at the end cells pairs is much smaller than the one
in the bulk). These flow states therefore belong to the type of
wavy outflow boundary or jet mode.
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In order to characterize localized flow states it is useful to
add an index corresponding to the localized oscillatory cell
pairs to the label of the mode. Time-dependent flow states are
therefore labeled by N (label)i , where N reflects the number of
cells, (label) is an abbreviation, e.g., for small jet (SJ) or large
jet (LJ), and the index i represents the binary coded position
of the oscillation of the specific mode in an outflow boundary
within the vortex column. Counting from top to bottom, a 1
reflects an oscillatory cell pair with respect to a mode given
by (label) while the absence of such oscillation is indicated
by 0. The flow state shown in Fig. 1 has only a single cell
pair oscillating in a large-jet mode located in the fourth cell
pair from below. Since the Ekman vortex pairs are (almost)
stationary and three bulk pairs are oscillating in the global
small-jet mode, the flow state illustrated in Fig. 1(b) is labeled
by 12LJ000100 or in decimal representation 12LJ4.

A close inspection of the axial phases and oscillation
frequencies confirms that the flow state is a combination of
a small-jet mode and a large-jet mode. The rotation speeds
of both types, i.e., the small-jet mode and the large-jet mode,
have been previously investigated for the global states and
are found to have an almost fixed ratio to the rotation of
the inner cylinder ωi . For the small-jet mode this ratio is
within ω/ωi = 0.46–0.52 and for the large-jet mode ω/ωi =
0.54–0.60 [36]. The wave speeds observed here for both modes
within the localized states are slightly below these values.
For instance, at � = 11.07 and Re ≈ 900 both modes have
values comparable to the lower limit given in [36], i.e., 0.453
and 0.537, respectively. These values reduce monotonically to
0.433 and 0.533, respectively, at Re ≈ 1200 and only show a
weak dependence on the aspect ratio.

In order to analyze the localization in the spatial am-
plitude distributions within a time-dependent flow state a
decomposition method based on bandpass filtering of the
(Doppler-shifted) spectrum and on Hilbert transform is applied
to the axial scans using LDV (see, e.g., [49] for details of
the method). Figure 2(a) depicts an axial scan, i.e., a time
series u(r = 2 mm,ϕ,vscant,t), of a localized large-jet state
measured at � = 11.1 and Re = 1250. The broadening results
from the speed of the LDV, vscan, which is adjusted in a way
that it is much slower than the typical time scale of the slowest
time-dependent mode. Note that the oscillations in the axial
scan are not resolved on the scale used in Fig. 2 (and also in
the following representations of axial scans). The broadening
also reflects the amplitude of an oscillation and therefore
an axial scan can be considered as a reasonable estimate of
an axial amplitude distribution of a mode. Within the axial
scan depicted in Fig. 2 the axisymmetric (m = 0) component
obtained for a decomposition analysis is added as a white line.
The flow state depicted in Fig. 2 is the reflection symmetric
conjugate state 12LJ8 to the state 12LJ4 visualized in Fig. 1(b).

The spatial amplitude distribution of a large-jet and a small-
jet mode is illustrated in Fig. 2(b). Here, the localization of the
large-jet mode [dark gray (online: blue) line] with an amplitude
maximum within a single vortex pair and a strong decay in
amplitude away from that pair is clearly visible. Moreover,
the amplitude of the small-jet mode almost vanishes within
this vortex pair and grows away from that pair; i.e., a hole is
formed in the amplitude distribution of the small-jet mode. At a
sufficient axial distance from the localized large-jet mode, e.g.,
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FIG. 2. (Color online) (a) Axial scan of a localized large-jet state
12LJ8, i.e., the reflection symmetric conjugates state to 12LJ4 depicted
in Fig. 1, at Re = 1250 and � = 11.1 obtained from (slow) axial
movement of the LDV from top (z = L) to bottom (z = 0) while
simultaneously measuring the radial velocity u at 2 mm from the
inner cylinder, i.e., u(r = 2 mm,ϕ,vscant,t) with scan velocity vscan.
(b) Mode amplitudes of the small jet in light gray (red) and the large
jet in dark gray (blue) obtained from the Hilbert transform of the
(Doppler-shifted) band-pass filtered spectrum. Localization of the
large-jet mode and the hole of the small-jet mode is clearly visible.

here in the most upper bulk vortex pair, the flow is dominated
by the underlying small-jet mode.

Localization in the axial cell size (corresponding to the axial
wave number) distribution is analyzed by LDV measurements.
Therefore the size of cell pairs is measured from the axial
position of the inflow boundaries. A mean of the radial
position of the streamline with a zero axial velocity component
provides an accurate measure for an inflow boundary. It
is therefore measured at seven different radial positions,
r = [1,2,3,9,10,11,12] mm, from the inner cylinder by a
comparison of the measured frequencies with the frequency
shift of the LDV. In Fig. 3 the cell size distribution of a localized
large-jet state 12LJ4 (∗,λx,1−6) and of the reflection symmetric
conjugate state 12LJ8(o,λ1−6,x) at � = 11.53 is depicted. It
can be seen that the size of the cell pairs and their conjugate
ones are almost identical. A localized large-jet mode within a
cell pair results in a significant increase in the axial cell size
of that pair. In particular these pairs are larger than the bulk
pairs where the small-jet mode is dominating. Note that an
interaction of the rotating wave and the underlying cell pair
has also been found for wavy Taylor vortex flow [50,51]. The
localized increase in cell pair size due to the large-jet mode
is accompanied with a decrease in the size of the Ekman cell
pairs. The dependence of the cell size distribution from Re
reveals a correspondence between the localized cell pair of
large-jet mode and the Ekman cell pairs. Growth (or decay)
in size with Re is limited to those pairs. The remaining bulk
pairs do not change significantly in size with Re and are only
shifted in axial position.

Axial scans of five different eight-cell flows are depicted
in Fig. 4. The axial velocity w was for each measurement
recorded at a radial distance of 9 mm from the inner cylinder.
The small-jet mode appears only in the global state 8SJ6; i.e.,
except for the Ekman cell pairs the bulk pairs only oscillate
in the small-jet mode. Such a global state also exists for the
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FIG. 3. (Color online) Cell pair size distribution of 12LJ4

(∗,λx,1−6) and 12LJ8 (©,λ1−6,x) at � = 11.53 (cell pair size λ is
labeled in ascending order from bottom to top). Cell pairs with
large-jet waves [dark gray (blue) line] are significantly larger than
bulk pairs (black line). End pairs [light gray (red) line] and cell pairs
oscillating localized in the large-jet mode [dark gray (blue) line] have
a size dependence on Re.

large-jet mode. This eight-cell state is labeled 8LJ6 and is
represented by the axial scan in Fig. 4. Axial scans of two
states with localized large-jet modes, i.e., 8LJ2 and 8LJ4, can
also be seen in Fig. 4. Both are conjugate states with respect
to the axial reflection symmetry. Since end cells have not been
found to oscillate in large-jet mode, only these two localized
large-jet states exist in an eight-cell flow. Therefore the flow
states as represented in Fig. 4 can be considered as a complete
set of large-jet states. Note that for flow states having less
than four outward jets, i.e., eight-cell, the large-jet mode is not
found to exist as a localized mode.
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FIG. 4. Axial scans w(r = 9 mm,ϕ,vscant,t) from five different
flow states with eight cells (from top to bottom): steady Taylor vortex
flow (TVF), global small-jet state 8SJ6, global large-jet state 8LJ6,
localized large-jet state 8LJ4, and its conjugate state 8LJ2 with respect
to reflection symmetry.
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FIG. 5. (Color online) Stability diagram of large-jet states with
eight cells: transition to the global large-jet state 8LJ6 (+, black line)
and vice versa [dotted dark gray (blue) line], transition to the localized
large-jet states 8LJ2,4 [•, light gray (green) line] and vice versa (◦,
solid black line), and (dashed black line) the onset of rotating wave
8SJ6 and antijet mode from steady Taylor vortex flow below and
above � = 7.7, respectively.

B. Stability of axially localized states

A part of the eight-cell flow stability diagram is depicted in
Fig. 5, where the aspect ratio � is restricted to 6 � � � 8;
i.e., the cells are compressed with respect to the critical
wavelength of Taylor cells in an axially periodic system. A
time-dependent instability of Taylor vortex flow (TVF) within
this regime results in the appearance of a rotating wave [36];
i.e., the small-jet state 8SJ6 is represented in Fig. 4 (above
� � 7.7 a so-called antijet state or wavy inflow boundary
[19]). The Hopf bifurcation toward the rotating waves in
Taylor vortex flow is indicated in Fig. 5 as a dashed line.
Axisymmetric instabilities of the rotating wave 8SJ6, such as
the steady symmetry-breaking and the bifurcation behavior of
the very-low-frequency mode [36,43,44], are omitted in Fig. 5
for reasons of clarity.

Increasing Re quasistatically above the black lines (+) or
light gray (online: green) lines (•), the basic time-dependent
flow, that consists of a small-jet mode and axisymmetric
dynamics, undergoes a transition toward the global state 8LJ6

or one of the localized 8LJ2,4 states, respectively. While the
global state retains the axial reflection symmetry, it is broken
at the onset of a localized state. Both global and localized
states appear with a finite amplitude from this hysteretic
transition. The dash-dotted dark gray (online: blue) line
indicates the region of existence of the global state 8LJ6 below
its onset, while the black line (◦) represents the lower stability
border of both localized states 8LJ2,4. Within the experimental
accuracy the stability borders of the localized states are
identical.
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FIG. 6. Axial scans w(r = 9 mm,ϕ,vscant,t) obtained from localized large-jet states and the global large-jet state with N = 12 cells.
Large-jet states are either (a) asymmetric or (b) symmetric with respect to the axial reflection symmetry.

C. Multiplicity of localized states

Since the large-jet mode is only found to oscillate localized
in the outward jet of a cell pair within the bulk of the flow, i.e.,
not within an Ekman cell pair, the number of possible localized
states, as described above, is restricted to two in an eight-
cell (four-jet) flow. The possible number of localized states
increases significantly as the number of underlying Taylor
cells is greater than eight. For instance, at a twelve-cell flow
(six outward jets) the possible number of localized states is 14
(if no oscillation within an Ekman cell pair is assumed and the
global state is omitted). The experimentally observed localized
large-jet states (and the global large-jet state) are illustrated in
Fig. 6. It can be seen that all possible localized states having
just a single cell pair oscillating in large-jet mode but not all
of the possible localized states with more than one large-jet
oscillation have also been observed.

It is apparent from Fig. 6 that both types of localized
large-jet states either breaking or retaining the axial reflection
symmetry have been observed. Therefore, in contrast to the
eight-cell flow, localization is not necessarily accompanied
with the breaking of the reflection symmetry for the twelve-cell
flow. Note that for each localized large-jet state the conjugate
state with respect to reflection symmetry has also been
observed.

For N = 12 the onset of the small-jet mode from Taylor
cells occurs for almost the same critical Re as for N = 8 [36].
The stability border of the global small-jet state 12SJ30 (and the
antijet state for larger aspect ratios) is indicated as a dashed
black line in the stability diagram in Fig. 7. Increasing Re
from the small-jet state results in a transition to different
large-jet states. The basic time-dependent state from which
the transition occurs consists of the small-jet mode and ax-
isymmetric dynamics [36,43,44]. The bifurcation behavior of
the axisymmetric time-dependent flow is omitted for reasons
of clarity in Fig. 7 (as in Fig. 5 for eight-cell flow). Depending
on the aspect ratio either the global large-jet state 12LJ30 or
one of the localized states 12LJ4,8,10,18,20,22,26 occurs from this
transition. In particular not all possible states have been found
to occur from the basic time-dependent state by a quasistatical

increase of Re. However, those states, i.e., 12LJ2,16, can be
reached by sudden starts from a lower Reynolds number, i.e.,
by imposing a strong perturbation to the basic time-dependent
flow or in a transition from one of the other localized states.

It can be seen from Fig. 7 that for N = 12 the localized
large-jet states occur in a similar parameter regime of aspect
ratio (normalized to N ) and Re as the localized states with
eight cells. The lower stability curve of 12LJ4,8, i.e., localized
states having a single large-jet oscillation in one of the midcell
pairs, is represented in Fig. 7 by ◦ (black line). The stability
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FIG. 7. (Color online) Stability diagram of the large-jet states
with twelve cells: transition to global large-jet 12LJ30 (+, black line)
and to localized large-jet states 12LJ22,26 (�, black line), 12LJ10,18,20

[�, dark gray (blue) line], and 12LJ4,8 [•, light gray (green) line]; lower
stability boundary of localized large-jet states 12LJ4,8 (◦, black line);
and onset of rotating waves (small-jet state 12SJ30 and for � > 11.6
antijet state) in a steady Taylor vortex flow (dashed black line).
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FIG. 8. (a) Lower stability border of localized large-jet states
12LJ18 and 12LJ2,16. Stability boundary of localized large-jet states (b)
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time dependence in a Taylor vortex flow and lower stability boundary
of localized large-jet 12LJ4,8 are added for comparison (dotted lines).

borders of both conjugate localized states have also been found
to be identical within our accuracy.

The stability regime of the other localized large-jet states
with N = 12 is depicted in Fig. 8. For comparison the onset of
time dependence in Taylor vortex flow as well as the stability
border of 12LJ4,8 is added in each plot. In Fig. 8(a) the lower
stability border of the localized large-jet states 12LJ2,16, i.e.,
the other type of state having only a single oscillating outward
jet in large-jet mode, is depicted. The border is located slightly
below the critical Reynolds number of 12LJ4,8 but disappears
already at larger values of � (the stability border has been
traced only to Re ≈ 1000 to illustrate the principle behavior).
The lower stability curve of the symmetric state 12LJ18 has
a similar shape to the one of 12LJ4,8 over the entire regime
of aspect ratio but it is systematically shifted toward lower
Reynolds numbers. The upper stability curve of the localized
states 12LJ2,4,8,12,18 is above 1100 � Re � 1200 for all aspect
ratios we investigated and therefore just the lower part of the
curve is depicted in Figs. 7 and 8(a) for these states. For Re
above those values the flow typically becomes disordered and
will not be discussed here.

The stability regime of the localized large-jet states
12LJ10,20,22,26 is depicted in Figs. 8(b) and 8(c). These localized
states still form a torus of small-jet mode and large-jet mode
at the upper stability border and the stability regime forms a

850 900 950 1000 1050 1100

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

Re

λ 
(u

ni
ts

 o
f d

)

(a)

λ
1

λ
2

λ
3

λ
4

λ
5

λ
6

800 820 840 860 880 900 920 940 960 980 1000

1.7

1.75

1.8

1.85

1.9

1.95

2

Re

λ 
(u

ni
ts

 o
f d

)

(b)

λ
1

λ
2

λ
3

λ
4

λ
5

λ
6

750 800 850 900 950 1000 1050

1.7

1.75

1.8

1.85

1.9

1.95

2

Re

λ 
(u

ni
ts

 o
f d

)

(c)

λ
1

λ
2

λ
3

λ
4

λ
5

λ
6

FIG. 9. (Color online) Distribution of the cell pair size λ for (a)
12LJ4, (b) 12LJ18, and (c) 12LJ10 at � = 10.92 (labeled in ascending
order from bottom to top). Cell pairs oscillating in large-jet mode [∗,
dark gray (blue) line] are significantly larger than bulk pairs (×, black
line). End pairs λ1,6 [◦, light gray (red) line] and localized large-jet
cell pairs vary significantly in size with Re.

closed patch within the parameter space (Re,�). The patch for
the states with three localized oscillations [12LJ22,26, Fig. 8(c)]
exists at lower Re compared to the patch with two [12LJ10,20,
Fig. 8(b)]. Localized states with more numbers of oscillations
are found to be stable toward lower Re in general. It can
be seen, however, that there exists a large parameter regime
of coexistence of the localized states and therefore a high
multiplicity of states that results for localization of rotating
waves within the outward jets.
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FIG. 10. Selection of localized large-jet states with N = 18
cells represented by axial scans. Both symmetric (18LJ68,146) and
asymmetric (18LJ8,16,34,36) states have been observed for comparable
Re and aspect ratios �.

D. Spatial distribution of cell size

An oscillation in the large-jet mode influences the size of
the underlying cell pair significantly. The cell size distribution
of three different localized large-jet states with N = 12 at
� = 10.92 is therefore plotted as a function of Re in Fig. 7. The
size of cell pairs is determined from the mean axial position of
the inflow boundaries estimated from measurements at seven
different radial positions, r = [1,2,3,9,10,11,12] mm. Cell
pairs oscillating in large-jet mode have a larger size than the
other cell pairs in general. This increased size of such cell pairs
can be seen in Fig. 9(a) for 12LJ4, i.e., a state having a single
cell pair oscillating in large-jet mode. Qualitatively the same
behavior is found for flow states having two of those pairs,
i.e., for the symmetric localized state 12LJ18 that is depicted
in Fig. 9(b) and the asymmetric state 12LJ10 in Fig. 9(c). The
difference in size between cell pairs oscillating in large-jet cell
mode and the other pairs is in general the largest at the lower
stability boundary and decreases approximately linearly with
increasing Re. The decrease in size of cell pairs with large-jet
oscillation is accompanied with an increase in size mainly of
the end cell pair while the pairs oscillating in small-jet mode
are typically much less influenced. Those pairs are shifted in
their axial position. Only for 12LJ18 the size of the cell pair in
between the two localized large-jet oscillations increases with
Re while one of the end pairs decreases in size. Note that the

end cell pairs are typically larger than bulk pairs for Taylor
vortex flow at a comparable aspect ratio [43]. It should be
further noted that the wave speeds within the asymmetric and
the symmetric state 12LJ10 and 12LJ18 are identical but both
differ from the wave speed of 12LJ4.

E. Localized states in larger systems

The multiplicity of states is significantly higher if the
number of cell pairs (outward jets) is increased from four
to six, i.e., from N = 8 to 12 cells. While only a single type
of localized state has been found for N = 8, the number of
different types observed for N = 12 has increased to six.
The actual number of different states is even higher since the
mirror images of each asymmetric state also exist. It can be
expected that the number of possible localized states increases
drastically for flows having an even larger number of cell pairs.
In Fig. 10 axial scans from a selection of localized large-jet
states for N = 18 are depicted. Those localized states, either
symmetric or asymmetric, appear for comparable Reynolds
numbers and aspect ratios (if normalized to the number of
cells) as in smaller systems. Therefore it can be seen that flow
states with axially localized rotating waves are also stable in
systems with a larger spatial extent and therefore result in a
high multiplicity of states.

IV. CONCLUSION

We have reported on a experimental investigation on
localized time-dependent states in Taylor-Couette flow which
exist well above the onset of time dependence. Localized states
appear hysteretically from symmetry-breaking and symmetry-
increasing transitions with respect to axial reflection symme-
try. While the existence of localized time-dependent states
in Taylor-Couette flow is known due to the work of Pfister
[45] and Baxter and Andereck [47], we explicitly show that
localization results in a high multiplicity of time-dependent
states having the form of a modulated rotating wave. Further-
more, axial localizations of rotating waves are found to be
accompanied with a significant increase in cell size while the
size of Ekman cells decreases. The presence of axial end walls
is therefore of relevance for these localized states.

Our work reveals that localization of rotating waves
provides a mechanism for a high multiplicity of states in non-
axisymmetric Taylor-Couette flow. Since the multiplicity of
states has been proven to be crucial for the organization of the
complexity in axisymmetric Taylor-Couette flow [11,22,25],
the multiple time-dependent states investigated here may also
be expected to be involved in the organization of complex
dynamics in this flow system.
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