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in narrow confinements
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We investigate a dynamical interplay between interfacial electrokinetics and a combined dissipative and elastic
behavior of flow through narrow confinements, in analogy with spatiotemporal hydrodynamics of porous media.
In particular, we investigate the effects of streaming potential on the pertinent dynamic responses, by choosing
a Maxwell fluid model for representing the consequent electro-hydrodynamic characteristics. We transform the
pertinent governing equation to the frequency domain, so that a dynamic generalization of Darcy’s law in the
presence of streaming potential effects can be effectively realized. We show that the frequencies corresponding
to local maxima in the dynamic permeability also correspond to local maxima in the induced streaming potential.
We also bring out the effects of Stern layer conductivity on the dynamic permeability. Our analytical estimates
do reveal that serious overestimations in the commonly portrayed notion of massive amplifications of dynamic
permeability at resonating frequencies may be possible, if interactions between spontaneous electrochemical
interfacial phenomena and pulsating pressure-gradient-driven viscoelastic transport are trivially ignored.
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I. INTRODUCTION

Many physical problems involve the response of a fluid
against an applied frequency-dependent pressure gradient.
An elegant way of characterizing such frequency-dependent
processes, in analogy with flow through porous media,
may be realized through a frequency-dependent permeability
function, also known as dynamic permeability [1–4], which in
essence is a permeability parameter associated with a dynamic
generalization of Darcy’s law in a transformed frequency
domain. Based on the consideration of this function, it has
been reported in the literature that by exploiting a complicated
interplay of the effects of elasticity and dynamically evolving
dissipative characteristics of a viscoelastic fluid, it may be
possible to realize dramatic enhancements in the dynamic
permeability at certain frequencies [1–12], bearing far-ranging
consequences both from scientific as well as technological
perspectives. While arriving at the above inferences on “dra-
matic” enhancement in the dynamic responses of a viscoelastic
fluid flowing through a conduit, however, any possibilities of
intricate interactions between interfacial electromechanics and
response of a fluid to a frequency-dependent pressure gradient
have grossly been ignored. In reality, on the other hand,
small-scale fluidic pathways are often faceted by the formation
of a charged layer adhering to the substrate walls, eventually
giving rise to the formation of an electrical double layer (EDL).
Fundamentally, the EDL [13–16] refers to two parallel layers
of charge surrounding a solid substrate. The first layer consists
of surface charges that are directly adsorbed on the solid
substrate. The second layer involves ions that are attracted
to the surface charge via Coulombic interactions, electrically
screening the first layer. This second layer, also known as
the diffuse part of the EDL, is composed of mobile ions that
are subjected to the combined influences of electrostatic and
thermal interactions. As a consequence of EDL formation,
there occurs a preferential release of counterions (i.e., ions
bearing charges opposite in sign to that of the surface charges)
to the interfacial fluid, consistent with the competing effects
of Coulombic and entropic interactions. Notably, these effects
may spontaneously manifest even in the absence of any

external electrical field. Further, in the presence of a driving
pressure gradient, the excess counterions in the EDL may get
advected to the downstream end of the fluidic confinement.
This, in turn, induces a back electrical potential, also known
as streaming potential [13,14], which tends to oppose the
pressure-driven fluidic transport, i.e., the very cause to which
it is due. As a consequence, there appears to be an enhanced
resistance against fluid motion, which is traditionally known
as the electroviscous effect. Such electroviscous effects may
bear several nontrivial implications, in particular, for cases
in which the characteristic constitutive behavior of the fluid
deviates from Newtonian characteristics.

A wide gamut of literature has been reported on electroki-
netic interactions involving non-Newtonian fluids in narrow
confinements [17–32]. Afonso et al. [17] have derived ana-
lytical solutions for combined electro-osmotic and pressure-
driven flows of viscoelastic fluids in microchannels. For
their analysis, they have considered the Phan-Thien Tanner
(PTT) and finitely extensible nonlinear elastic and Peterlin
(FENE-P) models. Berli et al. [18] have addressed the issue of
wall-adjacent depletion layers occurring in the flows of non-
Newtonian fluids, especially those involving macromolecules
such as polymer solutions. They have derived and shown
the validity of Onsager force-flux relations, under these
conditions. Das and Chakraborty [19] have derived analytical
solutions for the electro-osmotic transport of non-Newtonian
fluids in rectangular microchannels, and have presented a case
study for the transport of blood in which the relative size of the
channel width to the red blood cell (RBC) plays a crucial role
toward dictating the flow characteristics. Dhinakaran et al. [20]
have investigated the electro-osmotic flows for viscoelastic
fluids considering the PTT model, taking the nonlinearity of the
Poisson-Boltzmann equation aptly into account. Graham and
Jones [21] have discussed the behavior of spherical particles in
a flow of power-law fluids. Hadigol et al. [22] have numerically
obtained the pressure rise due to the electro-osmotic flow of
power-law fluids in slit channels. Olivares et al. [23] have
investigated the flow of polymer solutions by considering the
effect of wall depletion. Park and Lee [24] have discussed the
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flow of viscoelastic fluids in straight microchannels and have
shown the presence of secondary flows for the pressure-driven
transport of viscoelastic fluids and the effect of an enhanced
volume flow rate on the dispersion of the solutes. Vasu and
De [25] have discussed the electroviscous effects for the flow
of power-law fluids in slit microchannels. Zhao and Yang
[26] have derived analytical solutions for the Smoluchowski
velocity in the case of arbitrary surface potential. In their work,
Zhao and Yang [27] have considered the flow of power-law
fluids in microchannels in the presence of electrokinetic
effects. Zhao et al. [28] have discussed the mathematical
derivation for electro-osmotic velocity fields of viscoelastic
fluids in rectangular microchannels. Zimmerman et al. [29]
have numerically solved for the electro-osmotic flow of
Carreau fluids in the T junction of a microchannel, by making
use of a simplified slip model at the wall. Tang et al. [30] have
used lattice Boltzmann simulations to solve for the potential
and velocity distribution in electro-osmotically driven flow
fields of power-law fluids. Akgul and Pakdemirli [31] have
compared the approximate and numerical solutions of velocity
fields corresponding to electro-osmotic flows of third grade
fluids in microparallel plates. Zhao and Yang [32] have derived
analytical solutions for the electro-osmotic velocity profiles
of Oldroyd-B-type fluid and have extended their analysis
to special cases of Newtonian fluid and second grade fluid.
However, a common consensus that can be arrived at from the
literature reported above is that any kind of interconnection
between interfacial electromechanics and possibilities in giant
amplifications of dynamic permeabilities of viscoelastic fluids
in narrow confinements has so far been grossly overlooked.

In the present study, we investigate the implications of
streaming potential toward altering dynamic permeabilities of
Maxwell fluids in narrow confinements subjected to interfacial
electromechanical interactions. The concerned analysis is
essentially centered around a competition between dissipative,
electrokinetic, and elastic effects. Our studies do reveal that
frequencies corresponding to local maxima in the dynamic
permeabilities also corroborate corresponding local maxima
in the streaming potential. Accordingly, any phenomenal
enhancements in the dynamical response at such resonating
frequencies, as postulated in earlier reported literature, may
tend to get arrested to a significant extent. Following this up,
our results infer that serious overestimations with regard to
predictions on augmentations in the dynamic permeability may
be incurred, in case interfacial electrokinetic interactions are
not aptly taken into consideration, disregarding the absence of
any external electrical field. We also delineate the role of Stern
layer (effectively, an immobilized ionic layer at the fluid-solid
interface) conductivity on the underlying electrohydrodynamic
mechanisms.

II. FREQUENCY-DEPENDENT PERMEABILITY IN THE
PRESENCE OF STREAMING POTENTIAL EFFECTS

We consider the flow of a linearized Maxwell fluid often
considered to mimic common biophysical fluids such as blood
(for example, see Refs. [33,34]) in a parallel plate microchan-
nel configuration (with channel height of 2H), subjected
to an oscillatory driving pressure gradient, but without the
application of any external electric field. An electrical field,

however, is spontaneously induced, as attributable to intricate
electromechanical interactions in the narrow confinement. A
comprehensive assessment of the electrical potential distribu-
tion in the EDL is central to the understanding of the concerned
fluid dynamic implications. Hence, we first briefly describe the
pertinent EDL phenomenon.

A. Potential distribution within the EDL

The potential distribution (ψ) in the EDL is coupled with
the charge density distribution (ρe) in the same through the
Poisson equation, as given by Refs. [13,14]

∇2ψ = −ρe/ε, (1a)

where

ρe = e(z+n+ + z−n−). (1b)

Here e is the protonic charge, z+ and z− represent the valency
of positively and negatively charged species, respectively; n+
and n− represent the ionic number densities of the positive
and negative species, respectively. Under nonoverlapped EDL
conditions, negligible ionic advection as compared to ionic
diffusion in the wall-transverse direction, and idealization of
the ionic species as point charges, the ionic number densities
can be expressed by the Boltzmann distribution, which is given
as [13,14]

n± = n0 exp(−z±eψ/kBT ). (2)

The substitution of Eqs. (1b) and (2) in Eq. (1a) leads to the
following equation describing the potential distribution in the
EDL for a z:z symmetric electrolyte:

d2ψ

dy2
= 2zen0

ε
sinh

(
zeψ

KBT

)
, (3)

where y is the coordinate direction normal to the confining
boundaries, and λ =

√
εkBT /2z2e2n0 is a characteristic length

scale of the EDL (also known as Debye length); the bulk
ionic number concentration being taken as n0. Equation (3) is
subject to the following boundary conditions: aty = 0, ψ =
ζ (zeta potential) and aty = H, dψ/dy = 0. Equation (3)
can be solved analytically to yield the following EDL potential
description:

ψ̄ = 4

ζ̄
tanh−1

[
tanh

(
ζ̄

4

)
exp

( −ȳ

λ/H

)]
for 0 � ȳ � 1,

(4a)

where ψ̄ = ψ/ζ,ζ̄ = zeζ/KBT , and ȳ = y/H . There are
several subtle and interesting issues that lead toward the deriva-
tion of the above solution (for details, see Refs. [13,35–40]).
Important considerations concerning the above are provided
in the form of Appendix A in our paper, for the sake of
completeness.

As a further simplification, for “low” zeta potentials
(typically <25 mV in magnitude, in practice), Eq. (4a) can be
linearized (classically known as Debye-Hückel linearization;
see Ref. [13]) to get a simpler solution of the form of:

ψ̄ =
cosh

(
ȳ−1
λ/H

)
cosh

(
H
λ

) . (4b)
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B. Fluid dynamics and dynamic permeability

We consider flow in the geometry defined previously. The
pertinent equation of motion is the momentum equation (5),
which considers the effect of the added body force due to the
induced streaming potential field, despite no application of
any external electrical field, as [41–49]

ρ
∂v
∂t

= −∇p + ∇ · τ + ρeE. (5)

Here ρ is the fluid density, v is the fluid velocity vector, ρe

is the net ionic charge density, p represents the pressure,
E is the induced electric field due to streaming potential
effects, and τ is the viscous stress tensor. It is important to
mention in this context that the aim here has been to study
an unsteady flow field subjected to an oscillatory forcing
mechanism, under the situation that convective terms in
the Navier Stokes equation can be neglected, based on the
considerations of an unidirectional and incompressible flow
(so that ∂u/∂x = 0 and v = 0); for details, please see Ref. [50].
This consideration is similar to that involved in solving the
Stokes second problem in classical fluid mechanics, in which
only the temporal component of the acceleration is considered
(for example, see Refs. [4,36,45]). Such analysis is common
in cases in which the forcing function is periodic in nature and
the flow has reached a fully developed steady state, which
leads to a natural dropping of the convective acceleration
terms.

For representing the viscoelastic behavior, we make use of
the linear form of the Maxwell model, given as [51]

tm
∂τ

∂t
= η∇v − τ , (6)

where tm represents the relaxation time, and η is the viscosity.
This model shows Newtonian behavior in the limiting case as
the relaxation time tends to 0.

We proceed to solve the scalar component of Eq. (5) along
the axial (X) direction, by substituting Eq. (6) in Eq. (5),
substituting ρe from Eq. (1b), and making use of the solution
for ψ [Eq. (4)], to get

ρ
∂u

∂t
= −∂p

∂x
+ η∇2u − tmρ

∂2u

∂t2

− tm
∂

∂t

(
∂p

∂x

)
+ tmρe

∂E

∂t
+ ρeE. (7)

Taking Fourier transform of Eq. (7), we get

d2U

dy2
+ U

(
iρω + ρω2tm

η

)

= 1

η

∂P

∂x
(1 − iωtm) + εẼ

η

d2ψ

dy2
(1 − iωtm) . (8)

Equation (8) is subjected to the following boundary conditions:
y = 0, U = 0 (no slip); y = H, dU/dy = 0 (symmetry). In
Eq. (8), U, P, and Ẽ represent the respective transformed
quantities.

For representing the solution of Eq. (8) in a normal-
ized form, we consider the following dimensionless param-
eters: ȳ = y/H , ω∗ = ωtm, β2 = ρ(ω∗2 + iω∗)/ηtm, U ∗ =
U/[(∂P/∂x)H 2/η], Ē = Ẽ/[(∂P/∂x)H 2/εζ ], ω̄ = iωtm +
ω2t2

m, and α = ρH 2/ηtm. The dimensionless parameter α can
be identified as the inverse of the Deborah number [4], which
is the ratio of the viscous time scale (tv = ρH 2/η) to the
relaxation time (tm). Based on these normalization parameters,
the transformed dimensionless velocity field, in a compact
analytical form, may be described as

U ∗ =
(

1 − iω∗

αω̄

) (
1 − cos[

√
αω̄(1 − ȳ)]

cos(
√

αω̄H )

)
+ Ē

1 − iω∗

ζ̄
(

λ
H

)2√
αω̄

[
− cos(

√
αω̄ȳ)

∫ ȳ

0
sinh(ψ̄ ζ̄ ) sin(

√
αω̄ȳ)dȳ

+ sin(
√

αω̄ȳ)
∫ ȳ

0
sinh(ψ̄ ζ̄ ) cos(

√
αω̄ȳ)dȳ − sin(

√
αω̄ȳ) tan(

√
αω̄)

∫ 1

0
sinh(ψ̄ ζ̄ ) sin(

√
αω̄ȳ)dȳ

− sin(
√

αω̄ȳ)
∫ 1

0
sinh(ψ̄ ζ̄ ) cos(

√
αω̄ȳ)dȳ

]
. (9a)

For details of obtaining the above solution, please refer to Appendix B. Equation (9a) can be further simplified using the
Debye-Hückel linearization, to yield

U ∗ =
(

1 − iω∗

αω̄

) (
1 − cos[

√
αω̄(1 − ȳ)]

cos(
√

αω̄ȳ)

)
+ Ē(1 − iω∗)

[1 + αω̄(λ/H )2]

(
cosh

(
ȳ−1
λ/H

)
cosh

(
H
λ

) − cos[
√

αω̄(ȳ − 1)]

cos(
√

αω̄)

)
. (9b)

The dynamic permeability is traditionally defined as 〈U 〉 = −K(ω) [(∂P/∂x) /η]. Further, we can define a nondimensional
dynamic permeability as K∗ = −K/H 2, so that 〈U ∗〉 = K∗. Thus, the dimensionless dynamic permeability can be found out by
taking a spatial average of the velocity obtained from Eq. (9a) or (9b).

It is important to mention here that Eqs. (9a) and (9b) are not yet mathematically closed, since the streaming potential appears
to be a yet undetermined parameter, which in turn strongly depends on the velocity field itself. The pertinent closure relationship
is provided by an overall electroneutrality constraint, as described subsequently.
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C. Overall electroneutrality constraint

Since there is no externally applied electric field, the
streaming current (due to the net advection of ions) must
be counterbalanced by the net conduction (electromigration)
current over each channel section, so as to preserve electroneu-
trality, i.e., net zero current in the channel at any instant. The
net current, in turn, can be written as

Inet = Istream + Icond + IDu = 0, (10)

where Istream = ∫ H

0 ze(n+ − n−)u dy is the streaming current,

Icond = ∫ H

0 (z2e2E/f )(n+ + n−)dy is the conduction current
through the “mobile” fluid layers, and IDu = σstE is the
conduction current through the “immobilized” Stern layer;
f being the ionic friction coefficient (assumed to be the

same for the cationic and anionic species, for simplicity).
Normalized with respect to a reference streaming current
Is,ref = −2z2e2n0UrefHζ/KBT , the electroneutrality condi-
tion given by Eq. (10) essentially implicates∫ 1

0
U ∗ sinh(ψ̄ ζ̄ )

ζ̄
dȳ + J Ē

∫ 1

0
cosh(ζ̄ ψ̄)dȳ + J Du Ē = 0,

(11)

where J = Ic,ref/Is,ref and Ic,ref = 2z2e2Erefn0Hf . Here
Eref = Urefη/εζ and the Dukhin number is defined as Du =
σst/Hσbulk, where σbulk = 2n0z

2e2/f is the bulk ionic con-
ductivity. Thus, from Eq. (11) we get

I1 + ĒI2 + JI3Ē + J Du Ē = 0. (12)

The various integrals appearing in Eq. (12) are given by

I1 =
∫ 1

0

(
1 − iω∗

αω̄

) (
1 − cos[

√
αω̄(1 − ȳ)]

cos(
√

αω̄)

)
sinh(ψ̄ ζ̄ )

ζ̄
dȳ,

I2 = 1 − iω∗

ζ̄ 2
(

λ
H

)2√
αω̄

∫ 1

0

[
− cos(

√
αω̄ȳ)

∫ ȳ

0
sinh(ψ̄ ζ̄ ) sin(

√
αω̄ȳ)dȳ + sin(

√
αω̄ȳ)

∫ ȳ

0
sinh(ψ̄ ζ̄ ) cos(

√
αω̄ȳ)dȳ

− sin(
√

αω̄ȳ) tan(
√

αω̄)
∫ 1

0
sinh(ψ̄ ζ̄ ) sin(

√
αω̄ȳ)dȳ − sin(

√
αω̄ȳ)

∫ 1

0
sinh(ψ̄ ζ̄ ) cos(

√
αω̄ȳ)dȳ

]
sinh(ψ̄ ζ̄ )

ζ̄
dȳ.

Upon linearization, the above integrals can be simplified as

I1 =
∫ 1

0

(
1 − iω∗

αω̄

) (
1 − cos[

√
αω̄(1 − ȳ)]

cos(
√

αω̄)

)
ψ̄ dȳ,

I2 =
∫ 1

0

(1 − iω∗)

[1 + αω̄(λ/H )2]

(
cosh

(
ȳ−1
λ/H

)
cosh

(
H
λ

) − cos[
√

αω̄(ȳ − 1)]

cos(
√

αω̄)

)
ψ̄ dȳ,

whereas

I3 =
∫ 1

0
cosh(ζ̄ ψ̄)dȳ.

From Eq. (12) we get

Ē = −I1

I2 + J (I3 + Du)
. (13)

In the form of Eq. (13), we have obtained an expression for
the streaming potential by making use of the electroneutrality
criterion, which can act as a necessary closure to the present
formalism. Equation (13) can now be substituted in Eq. (9a)
or (9b) to find the velocity profile, so as to obtain the dynamic
permeability.

III. RESULTS AND DISCUSSIONS

At this stage, it is imperative to reiterate that a focal
theme of the present work is to bring out the implications
of interfacial electrokinetics toward altering the dynamic
response of viscoelastic fluids in narrow confinements. Toward
assessing the underlying consequences, it may be appropriate

if we first look into the characteristic responses in terms of the
streaming potential development in the frequency domain, as
a function of relevant controlling parameters. In an effort to
embed elements of practicality into the corresponding physical
features, we consider the flow of human blood sample, for
which ρ ∼ 103 kg m−3, η = 10−3–10−2 Pa s (for shear rate in
the region of ∼102–103s−1 with hematocrit ∼30% at 18 ◦C)
and H ∼ 10−6 m, tm ∼ 10−2 s [4] so that α ∼ 10−4, which
is a typical inverse Deborah number for most biofluids. To
cover a wider range of fluids, we further consider tm ∼
10−2 s to 10−4 s, which lead to α ∼ 10−2 to 10−4. Further,
we take the dimensionless parameter J [please refer to its
definition in the discussion following Eq. (11)], which rep-
resents the ratio of the characteristic estimates of conduction
current and streaming current, to be −10, considering ionic
diameter ∼1 Å, ζ = −25 mV, and a valency of 1. We also
consider the Dukhin number to vary from 0 to 10 [52],
considering reported data. We characterize the deviation
from classical Newtonian behavior by invoking the Deborah
number. As the relaxation time tends to 0, one approaches
the classical Newtonian behavior. Thus, small relaxation
times are fair indicators of small perturbation of the fluid
characteristics from Newtonian behavior. Smaller inverse
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Deborah numbers, interestingly, are implicators of larger
relaxation times, signifying large deviations from Newtonian
behavior.

Figure 1(a) depicts the variation of the dimensionless
induced streaming potential field (Ē) as a function of dimen-
sionless frequency (ω∗) for different inverse Deborah numbers.
We observe that for lower values of α, the magnitude of
the streaming potential at the resonant frequency increases.
Also, the dimensionless frequency at which the resonance
occurs increases with decreasing value of α. Importantly,
characteristics mimicking close-to-Newtonian behavior are
manifested in terms of small relaxation times, implicating large
values of α. It can be clearly seen that when the fluid is New-
tonian, the behavior is dissipative for all frequencies. Since
the dissipative behavior of the system is more prominently
manifested as the value of α increases, the corresponding
streaming current (essentially an advective current of ions)
at resonating frequency also weakens. This in turn leads to a
reduced conduction current, which in turn is reflected by the
reduced induced streaming potential field.

Figure 1(b) depicts the variation of dimensionless streaming
potential field (Ē) as a function of the dimensionless frequency
(ω∗), for different Dukhin numbers (Du). Physically, the
Dukhin number is a measure of the ratio of the Stern layer
conductivity to the bulk conductivity. Hence, a larger Dukhin
number would indicate larger Stern layer conductivity as
compared to that of the bulk fluid [52], in which case the
conduction current through the Stern layer would be more
proportionately enhanced than that through the bulk fluid.
The presence of the Stern layer, therefore, in effect, leads
to a decreased Ē because of the fact that as the conductance
increases, the required electric potential necessary to balance
out the streaming current decreases. Larger Stern layer
conductivity, accordingly, would lead to a decreased amount of
conduction current through the bulk. Bulk conduction current
is in a direction opposite to the flow and hence leads to
enhanced effective viscous resistances. When the conduction
current in the bulk decreases (may be attributed to large
electrical conductivities of the Stern layer), the electroviscous
resistance decreases and hence the flow behaves as if there
are no streaming potential effects. As a consequence, as the
Dukhin number increases, the magnitude of Ē decreases.
Interestingly, the resonant frequency appears to be higher for
lower values of the Dukhin number. This may be attributed to
the fact that a lack of stern layer conductivity leads to a larger
induced electric field, which in turn increases the contribution
of the electrical term to the velocity field, implicating a larger
damping term in the elastic system and hence a shift toward
larger resonant frequency.

Figure 1(c) depicts the variation of dimensionless streaming
potential field (Ē) as a function of the dimensionless frequency
(ω∗), for different channel width to Debye length ratios
(H/λ). A larger value of H/λ is representative of the fact
that the channel width is much larger than the characteristic
EDL thickness. This, in effect, would signify decreased
contributions from the EDL toward dictating the bulk advective
transport of surplus counterions, considering the fact that the
EDL effects remain essentially confined in a region in close
proximity of the channel walls. Thus, larger H/λ values would
imply weakened strengths of the induced streaming potential
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FIG. 1. (Color online) Variation of the dimensionless induced
streaming potential field (Ē) as a function of dimensionless frequency
(ω∗), for (a) different values of the inverse of Deborah numbers (other
parameters are Du = 0, ζ̄ = −1, and H/λ = 5); (b) different Dukhin
numbers (Du) (other parameters are H/λ = 5, ζ̄ = −1, and α =
10−4); (c) different channel width to Debye length ratios (H/λ) (other
parameters are Du = 0, ζ̄ = −1, and α = 10−4); and (d) different di-
mensionless zeta potentials (other parameters are Du = 0, H/λ = 5,

and α = 10−4).
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field. Interestingly, in addition, the presence of streaming
potential effects can be considered as a source of dissipation in
an elastic system. Accordingly, for a more dissipative system
(characterized by lower values of H/λ), we realize resonance
at a higher frequency as compared to that in a less dissipative
system.

Figure 1(d) depicts the variation of dimensionless induced
streaming potential field (Ē) as a function of the dimensionless
frequency (ω∗), for different dimensionless values of the
zeta potential. As the magnitude of ζ̄ increases, it is seen
that the contribution of the pressure gradient term, i.e., I1,
increases. However, the contribution of the electrical term to
the streaming current, i.e., I2, increases by a larger extent.
Thus from Eq. (13) it is seen that the magnitude of the
induced streaming potential field decreases, as attributable
to a relatively large enhancement in contribution from the
electrical term. As a consequence, for higher magnitudes of
zeta potential, we obtain a lower strength of the induced
electrical field at the resonant frequencies.

Having looked into the streaming potential characteristics,
we next attempt to address the following question: “How do
electrokinetic effects influence the dynamical response of the
fluidic system ?”. In an effort to do so, we compare dynamic
permeability characteristics in the presence and in the absence
of interfacial electrokinetic interactions. Figure 2(a) depicts
the variation of the dimensionless dynamic permeability (K∗)
as a function of dimensionless frequency (ω∗), for different
values of α. Physically the dynamic permeability is a measure
of the volume flow rate for a given cross section. It can be seen
that typically for low values of α (higher relaxation time), we
may potentially get dramatic augmentations in the dynamic
permeability at resonant frequencies, neglecting electrokinetic
interactions. However, the presence of interfacial electroki-
netic effects leads to an effective attenuation of the dynamic
permeability at these resonating frequencies. We observe that
this attenuation is more severe as the value of α is progressively
reduced. We also observe that the first occurrence of resonance
shifts to a higher frequency zone as the relaxation time
increases (signifying lower values of α). A larger relaxation
time is effectively an indicator of more prominent deviation
from Newtonian behavior, with augmented elastic nature of the
fluidic system, thereby implying a larger resonating frequency.
In contrast to this, as the relaxation time decreases (large values
of α), it can be clearly seen that the dissipative characteristics
of the system appear to be significantly more prominent, so that
the value of the dynamic permeability at the resonant frequency
decreases and the resonating frequency shifts to the low
frequency limits. In the limit as the fluid becomes Newtonian,
there are no resonance peaks and the behavior is completely
dissipative. Importantly, an induced streaming field leads
the establishment of a resistive back electromotive forcing
parameter, leading to augmented dissipative characteristics
of the system, over and above the intrinsic constitutive
resistive behavior of the fluid as attributable to its viscous
nature. This is primarily influenced by the occurrence of the
conduction current being transported through the bulk fluid.
Such enhanced dissipative characteristics of the system tend
to dampen out amplifications in the dynamical response to
a considerable extent, typically at resonating frequencies (at
which the streaming potential also attains its peak strength),
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FIG. 2. (Color online) (a)–(d) Variation of the dimensionless
induced streaming potential field (Ē) as a function of dimensionless
frequency (ω∗), for (a) different values of the inverse of Deborah
numbers (other parameters are Du = 0, ζ̄ = −1, and H/λ = 5);
insets A, B, and C show magnified portions of the first resonant
peaks for different inverse Deborah numbers; (b) different Dukhin
numbers (Du) (other parameters are H/λ = 5, ζ̄ = −1, and α =
10−4); (c) different channel width to Debye length ratios (H/λ)
(other parameters are Du = 0, ζ̄ = −1, and α = 10−4); (d) different
dimensionless ζ potentials (other parameters are Du = 0, H/λ = 5,

and α = 10−4). The dynamic permeabilities are compared for the
cases in which the electrokinetic effects are neglected with the cases
in which electrokinetic effects are taken into account.
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so that an otherwise dramatic augmentation in the dynamic
permeability value at the resonating frequency gets dampened
out to a considerable extent.

Figure 2(b) depicts the variation of the dimensionless
dynamic permeability (K∗) as a function of dimensionless
frequency (ω∗), for different values of the Dukhin number
(signifying the relative magnitude of Stern layer conductivity
with respect to bulk conductivity). As discussed in the context
of Fig. 1(b), the Stern layer conductivity acts so as to oppose
the establishment of a large streaming potential gradient,
so that additional dissipative effects in the fluidic system
due to electrokinetic interactions tend to get arrested to a
noticeable extent. Thus, the least net amplification in the
dynamic permeability at resonance is seen when the Stern
layer does not conduct. It is important to reiterate in this
context that the lack of Stern layer conductivity represents the
case in which the streaming current is entirely balanced out
by the conduction current through the bulk. As the Stern layer
conductivity increases, the contribution of electrokinetic inter-
actions to the velocity field decreases, due to attenuation in the
induced electric field. This leads to shifting of the resonating
frequencies nearer to the resonating point corresponding to the
case in which electrokinetic effects are neglected.

Figure 2(c) depicts the variation of the dimensionless
dynamic permeability (K∗) as a function of dimensionless
frequency (ω∗), for different values of H/λ. It can be
seen that for larger H/λ, we obtain dynamic permeability
characteristics that are reminiscent of the situation in which
electrokinetic effects are neglected. For smaller H/λ ratios,
on the other hand, more significant electrokinetic effects
are felt [please see Fig. 1(c) along with its explanation],
as attributable to more prominent protrusion of interfacial
electrochemical effects (manifested in terms of differences
in number densities between the counterions and the coions)
into the bulk as a consequence of relatively thicker EDLs.
Accordingly, channels with lower H/λ ratios are inherently
more electrodissipative, resulting in stronger attenuations in
the augmentation in the dynamic permeability at resonance. In
addition, the frequency at which this resonating phenomenon
occurs tends to shift to the higher side of the resonance
frequency, reminiscent of the case in which electrokinetic
effects are neglected.

Figure 2(d) depicts the variation of the dimensionless
dynamic permeability (K∗) as a function of dimensionless
frequency (ω∗), for different dimensionless zeta potentials (ζ̄ ).
From Fig. 1(d) it can be seen the dimensionless streaming
potential field decreases as the ζ̄ increases. Physically, the
dimensionless permeability is related to the volume flow
rate for a given cross section. When the amplification in the
induced potential field decreases, it directly affects the velocity
field in the sense that the contribution of the electroresistive
component to the velocity field weakens. As a result the
enhanced viscosity attributable due to the conduction current
also decreases; which ultimately leads to a larger dynamic
permeability.

Figure 3 depicts the variation in the maximum value of the
dynamic permeability (K∗

max) and the frequency at which the
maxima occurs (ω∗

max) as a function of inverse Deborah number
(α), for the cases where electrokinetic effects are neglected as
well as for the cases in which electrokinetic effects are taken

FIG. 3. (Color online) Variation in the maximum value of the
dynamic permeability (K∗

max) and the frequency at which the
maximum of the dynamic permeability occurs (ω∗

max), as a function of
the inverse Deborah number (α) for the cases in which electrokinetic
effects are neglected and in which the electrokinetic effects are taken
into account. Other parameters are ζ̄ = −1, Du = 0, and H/λ = 5.
The magnified portion A (see the bottom panel) shows the variation in
the frequency at which the maxima in dynamic permeability occurs.

into account. It may be inferred that when the relaxation time of
the fluid is large (smaller value of α), perceptible amplification
in the dynamic permeability occurs at resonance, in case
electrokinetic effects are negligible. The extent of this amplifi-
cation drops down gradually as we move toward a higher value
of α. Electrokinetic interactions, however, tend to attenuate the
amplification in the dynamic permeability, for reasons as men-
tioned earlier. Further, the resonating frequency shifts toward
higher values on consideration of interfacial electrokinetic
interactions, which appears to be a progressively prominent
feature as the relaxation time of the fluid increases. However,
interestingly, as the relaxation time decreases, the resonances
for both cases tend to occur at nearly the same frequency.
In addition, we observe that as the relaxation time decreases
further, there is a critical inverse Deborah number (αcr) beyond
which the behavior at resonance becomes fully dissipative
(i.e., K∗ < 1). The characteristics for different H/λ, Du,
and ζ̄ follow similar trends, and are not presented here for
brevity.
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IV. POSSIBLE CONNECTIONS WITH EXPERIMENTS
AND PRACTICAL CONSIDERATIONS

It may be stated here that the primary aim of the present
work is to extend the electrokinetics-independent theoretical
considerations on the dynamic permeability of viscoelastic
fluids, as reported by previous researchers [4], by taking
into account electrokinetic effects pertinent to narrow fluidic
confinements, under the influence of EDL phenomena. In
that perspective, the scope of the present paper is purely
theoretical in nature, with a vision of obtaining analytical
solutions to depict the role of streaming potential toward
dictating the dynamic permeability of viscoelastic fluids in a
microconfined environment. Having said that, we have also
looked into relevant literature on experimental studies on
the dynamic permeability of viscoelastic fluids. However, the
experiments that have been reported in this context so far have
been executed in conduit with characteristic length scales over
which electrokinetic effects are not important (for example,
see Refs. [53,54]). Hence, the experimental studies reported
in the literature so far do not represent scalewise appropriate
frameworks for testing the significance of the present findings,
although the validity of the present solution is reflected from
its analytical nature by itself.

Despite the nonexistence of any reported experimental
study that might have acted as a basis toward assessing the
predictive capabilities of our work, theoretical findings from
the present study may act as precursors to new experiments
that may be conducted to probe the implications of elec-
trokinetic effects toward altering the dynamic permeability
of viscoelastic fluids in narrow confinements. The concerned
experimental setup may be designed by following the study of
Castrejón-Pita et al. [53], in which the oscillating movement
required to have a time-periodic pressure gradient is realized
with a piston-cylinder arrangement that is driven by a motor
of variable frequency. Alternatively, peristaltic pumps that are
typical to several microfluidic applications may be employed
for that purpose. The characteristic length scale of the
fluidic channel may be designed to be in the tune of a few
micrometers, so that EDL effects may turn out to be significant.
Viscoelastic fluids such as cetyltrimethylammonium bromide
(CTAB), which are known to ionize silica (thus leading to the
formation of EDL; see [54]), may be employed as working
fluids for this purpose. The electrochemical and rheological
characteristics of this solution may be altered judiciously
by adding different amounts of sodium salicylate (NaSal).
With such a system, widely varying zeta potentials may
be obtained; for example, for a 15 mM CTAB solution,
a variation in salt concentration from 10 to 200 mM may
result in zeta potential variations from 50 mV to −10 mV,
which is a considerable experimental regime [55]. The flow
velocities may be obtained by using a microscopic particle
image velocimetry (micro-PIV) technique, and the analytically
obtained velocity variations may be compared with experimen-
tally obtained data. The same results may be compared with
analytical solutions that are obtained without any electroki-
netic considerations, in an effort to bring out the attenuating
effects of streaming potential toward arresting any dra-
matic amplifications in the dynamic permeability at resonant
frequencies.

Various substrates have been referred to in the literature,
considering the distinctive roles played by their wettability
characteristics toward dictating their physicochemical inter-
actions with the ionic solution mentioned as above. For
hydrophilic substrates (such as silica), the adsorption of ionic
surfactants is generally perceived to be initially triggered by
electrostatic attraction between head groups and the oppositely
charged surface of the substrate, followed by aggregation of
surfactants around the initial adsorbates with an increase in
concentration [54]. As a consequence, the surface electric field
is first reduced due to charge neutralization, and subsequently
reversed due to surfactant aggregation. On the other hand,
for hydrophobic substrates (for example, pyrolitic graphite), a
lower density adsorbed layer is oriented with surfactant tails
parallel to the substrate plane [54], as triggered by a strong
hydrophobic interaction between the tails and the substrate.
For more details on the substrate characteristics and their
interaction mechanisms with the CTAB solution, one may refer
to the studies of Manne et al. [54].

V. CONCLUSIONS

In this study, we have illustrated the implications of
interfacial interactions toward altering the dynamic responses
of viscoelastic fluids in narrow confinements. A subtle aspect
of such considerations lies in the fact that in many such
scenarios, electrokinetic effects, originating out of sponta-
neous interfacial electrochemical interactions, are trivially
neglected based on the consideration that no external electric
field acts on the system. Our studies, however, have revealed
that such electrokinetic interactions, manifested through the
establishment of a streaming potential field, may alter not
only the characteristics of dynamic response at the resonating
frequencies, but also the values of corresponding resonating
frequencies. Such alterations, in effect, are achieved by
intricate interactions between the elastic and dissipative effects
prevailing in the system, as realized through a viscoelatic
rheology of the transported fluid and electroviscous effects
intrinsic to pressure-driven transport in narrow confinements.
For describing our results, we have chosen property values
consistent with typical biological fluids, so as to impart
practical relevance to this work in the context of biomi-
crofluidics. The central result from our study is the fact
that substantial attenuations in otherwise portrayed dramatic
amplifications in dynamic responses of viscoelastic fluids
may occur at the resonating frequencies, as attributable
to interfacial electrokinetic interactions. In addition, our
analytical investigations have revealed that the resonating
frequencies themselves are likely to shift to higher values
under the influence of streaming potential. Such differences
in the dynamical response characteristics with and without
interfacial electrokinetic interactions, however, tend to get
reduced as the rheology of the fluid approaches Newtonian
behavior, characterized by short relaxation times. We have
also delineated the implications of the Stern layer conductivity,
channel height to Debye length ratio, and the zeta potential on
the pertinent characteristics.

It is also important to mention that the practical implications
of the outcome of the present investigation may be far ranging,
beyond the biomicrofluidic applications portrayed earlier. For
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instance, one may refer to narrow fluidic devices acting as
pulsating mass flow controllers [41,56]. Their frequency-
dependent mass flow rate characteristics, in effect, depend
heavily on the interactions between pressure-driven flow
and a back electro-osmotic flow generated due to intricate
interfacial electrokinetic interactions. Erroneous overestimates
in possible amplifications in dynamic responses at resonating
frequencies because of neglecting interfacial electrokinetic
interactions may not only embed serious anomalies in their
underlying design principle, but may also lead to critical
malfunctioning of the devices thus conceptualized. Inferences
from the present study may act as valuable pointers in arriving
at a more precise and physically consistent design basis for
devices with such functionalities.

APPENDIX A: DERIVATION OF EQ. (4a)

Equation (3) is a second order nonlinear ordinary differ-
ential equation, and hence would ideally require only two
boundary conditions, namely, ψ = ζ at y = 0 (zeta potential
at the wall) and dψ/dy = 0 at y = H (symmetry at the
centerline).

In an effort to outline the solution procedure, we first
nondimensionalize Eq. (3), in the form

d2ψ̄

dȳ2
= H 2

λ2

1

ζ̄
sinh(ψ̄ ζ̄ ),

where ψ̄ = ψ/ζ, ζ̄ = zeζ/KBT , and ȳ = y/H . Multiplying
both sides by 2(dψ̄/dȳ), rescaling ψ̄ ζ̄ = ψ̃ , and integrating
both sides, we get(

dψ̃

dy

)2

= 2

(λ/H )2 [cosh(ψ̃)] + C,

where C is an arbitrary, independent constant of integration.
In order to evaluate C, one may, in addition, consider a value

of ψ at y = H , which we denote as ψc. While the choice of ψc

can be mathematically arbitrary, the physics of EDL formation
essentially implicates that ψc is effectively zero without EDL
overlap (for details, see [13,15,35–40]). Interestingly, from a
pure mathematical perspective, it has also been discussed by
Berg and Ladipo [35] that “this third condition does not lead
to an overdetermined problem.” As such, the problem posed
is gauge invariant and this kind of choice is possible because
one can write

n0 exp

(−zeψ

KBT

)
= n0 exp

(−zeψc

KBT

)
exp

(−ze (ψ − ψc)

KBT

)

= n∗
0 exp

(−ze (ψ − ψc)

KBT

)
,

say, where n∗
0 = n0 exp (−zeψc/KBT ). Following Berg and

Ladipo [35], it may further be mentioned that one way of
interpreting the situation is to consider n0 to be an eigenvalue of
the nonlinear Poisson-Boltzmann equation, subject to the two
fundamental boundary conditions and an additional constraint
on the centerline potential (without EDL overlap, the centerline
behaves like a “far stream” that does not feel the charging effect
of the wall, so that ψc = 0). It may further be mentioned in this
context that under overlapped EDL conditions, the value of ψc

may turn out to be nonzero, but the same can be specified from

further constraints on the electrochemical reaction equilibria
involved—there is a large volume of literature on this aspect,
but we simply do not address those considerations here because
our study does not address the cases with EDL overlap.

With the above considerations for determining the constant
of integration C, it follows that C = −2[cosh(ψ̃c)/(λ/H )2],
so that one may write(

dψ̃

dy

)2

=
(

2 sinh(ψ̃/2)

(λ/H )

)2

−
(

2 sinh(ψ̃c/2)

(λ/H )

)2

.

Considering the case without involving EDL overlap (ψc = 0),
it follows from the above that(

dψ̃

dy

)
= −

(
2 sinh(ψ̃/2)

(λ/H )

)
.

Notably, the negative square root has been taken here to
accommodate the fact that the EDL potential decays to zero
away from the wall. Separating variables in the above and
setting tanh(ψ̃/4) = α, one gets

dα

α
= − dȳ

λ/H
.

Integrating the above, it follows that

ln

(
tanh(ψ̃/4)

tanh(ψ̃ȳ=0/4)

)
= − ȳ

λ/H
,

so that

tanh(ψ̄ ζ̄ /4) = tanh(ζ̄ /4) exp

( −y

λ/H

)
.

Notably, the above solution [Eq. (4a) in our paper] is identical
to Eq. (8.58) of the seminal textbook of Bruus [40].

APPENDIX B: DERIVATION OF EQ. (9a)

The governing differential equation for the velocity field
reads [please see Eq. (8)]

d2U

dy2
+ U

(
iρω + ρω2tm

η

)

= 1

η

∂P

∂x
(1 − iωtm) + εẼζ

ηλ2/H 2

sinh(ψ̄ ζ̄ )

ζ̄
(1 − iωtm) .

Introducing the following dimensionless parameters: ȳ =
y/H, ω∗ = ωtm, β2 = ρ(ω∗2 + iω∗)/ηtm, U ∗ = U/(∂P/∂x)
H 2/η, Ē = Ẽ/(∂P/∂x)H 2/εζ , ω̄ = iωtm + ω2t2

m, and α =
ρH 2/ηtm, we obtain

d2U ∗

dȳ2
+ U ∗β2H 2 = (1 − iωtm) + Ē

sinh(ψ̄ ζ̄ )

(λ/H )2ζ̄
(1 − iωtm).

For the dimensionless pressure term, i.e., the first term on
the right-hand side, the particular integral is given by

1 − iω∗

β2H 2
.

For the electrical term (the second term in the right-hand
side), the particular integral is found out using the variation
of parameter method. The particular integral can be written in
the form of

U ∗
p = a1u1 + a2u2,
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where u1 = cos(βHȳ), u2 = sin(βHȳ), and

U ∗
p = a1 cos(βHȳ) + a2 sin(βHȳ).

The Wronksian for this system is

W =
∣∣∣∣u1 u2

u′
1 u′

2

∣∣∣∣ =
∣∣∣∣ cos(βHȳ) sin(βHȳ)
−βH sin(βHȳ) βH cos(βHȳ)

∣∣∣∣
= (βH ).

The unknown parameters are given by

a1 =
∫ ȳ

0

−f

W
u2 dȳ; a2 =

∫ ȳ

0

f

W
u1 dȳ,

where

f = Ē
1 − iωtm

λ2

H 2 ζ̄
sinh(ψ̄ ζ̄ ).

Thus we obtain

a1 =
∫ ȳ

0
−Ē

1 − iωtm

βH λ2

H 2 ζ̄
sinh(ψ̄ ζ̄ ) sin(βHȳ)dȳ,

a2 =
∫ ȳ

0
Ē

1 − iωtm

βH λ2

H 2 ζ̄
sinh(ψ̄ ζ̄ ) cos(βHȳ)dȳ.

Hence the solution can be written as

U ∗ = C1 cos(βHȳ) + C2 sin(βHȳ) + 1 − iωtm

β2H 2

+ Ē
1 − iωtm

βH λ2

H 2 ζ̄

[
−cos(βHȳ)

∫ ȳ

0
sinh(ψ̄ ζ̄ ) sin(βHȳ)dȳ + sin(βHȳ)

∫ ȳ

0
sinh(ψ̄ ζ̄ ) cos(βHȳ)dȳ

]
.

Enforcing the no slip boundary condition at the wall, i.e., y = 0, we get

C1 = −1 − iωtm

β2H 2
.

Enforcing the symmetry boundary condition at the wall, i.e., dU ∗/dȳ = 0, we get (noting that ψ̄ = 0 at ȳ = 1)

−C1 sin(βH ) + C2 cos(βH ) + Ē
1 − iωtm

βH λ2

H 2 ζ̄

[
sin(βH )

∫ 1

0
sinh(ψ̄ ζ̄ ) sin(βHȳ)dȳ + cos(βH )

∫ 1

0
sinh(ψ̄ ζ̄ ) cos(βHȳ)dȳ

]
= 0,

C2 = C1
sin (βH )

cos (βH )
+ Ē

1 − iωtm

βH λ2

H 2 ζ̄

[
− tan (βH )

∫ 1

0
sinh(ψ̄ ζ̄ ) sin(βHȳ)dȳ −

∫ 1

0
sinh(ψ̄ ζ̄ ) cos(βHȳ)dȳ

]
.

Thus the velocity profile obtained on substitution of the respective constants is given by

U ∗ =
(

1 − iω∗

αω̄

)(
1 − cos[

√
αω̄(1 − ȳ)]

cos(
√

αω̄)

)
+ Ē

1 − iω∗

ζ̄
(

λ
H

)2 √
αω̄

[
−cos(

√
αω̄ȳ)

∫ ȳ

0
sinh(ψ̄ ζ̄ ) sin(

√
αω̄ȳ)dȳ

+ sin(
√

αω̄ȳ)
∫ ȳ

0
sinh(ψ̄ ζ̄ ) cos(

√
αω̄ȳ)dȳ − sin(

√
αω̄ȳ) tan(

√
αω̄)

∫ 1

0
sinh(ψ̄ ζ̄ ) sin(

√
αω̄ȳ)dȳ

− sin(
√

αω̄ȳ)
∫ 1

0
sinh(ψ̄ ζ̄ ) cos(

√
αω̄ȳ)dȳ

]
.
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