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Localization properties of covariant Lyapunov vectors for quasi-one-dimensional hard disks
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The Lyapunov exponent spectrum and covariant Lyapunov vectors are studied for a quasi-one-dimensional
system of hard disks as a function of density and system size. We characterize the system using the angle
distributions between covariant vectors and the localization properties of both Gram-Schmidt and covariant
vectors. At low density there is a kinetic regime that has simple scaling properties for the Lyapunov exponents
and the average localization for part of the spectrum. This regime shows strong localization in a proportion
of the first Gram-Schmidt and covariant vectors and this can be understood as highly localized configurations
dominating the vector. The distribution of angles between neighboring covariant vectors has characteristic shapes
depending upon the difference in vector number, which vary over the continuous region of the spectrum. At
dense gas- or liquid-like densities the behavior of the covariant vectors are quite different. The possibility of
tangencies between different components of the unstable manifold and between the stable and unstable manifolds
is explored but it appears that exact tangencies do not occur for a generic chaotic trajectory.
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I. INTRODUCTION

The study of the Lyapunov vectors of particle systems
generated by the Benettin scheme [1,2]—the so-called Gram-
Schmidt (GS) vectors—is now well advanced for quasi-one-
dimensional systems [3] and two-dimensional systems [4].
The existence of a stepwise structure in the smallest nonzero
Lyapunov exponents is an extensive feature of the Lyapunov
spectrum (the full set of Lyapunov exponents) which has been
well studied [3–6]. For each step in the Lyapunov exponent
spectrum the associated Lyapunov vector has a delocalized
wavelike structure—referred to as a Lyapunov mode—which
is of a particular type; either transverse, longitudinal, or
momentum proportional [7]. These modes are connected to
the slowest macroscopic fluid properties (the dynamically
conserved quantities) or equivalently the transport of mass,
momentum, or energy. Transport of conserved quantities is al-
ways the slowest processes in particle systems thus they relate
to the smallest instabilities or smallest Lyapunov exponents.

The statistical mechanics of chaotic many particle systems
is an illustrative example of a probabilistic treatment of the
global behavior of deterministic microscopic dynamics. A
great deal of effort has been devoted to finding links between
macroscopic fluid quantities, such as transport coefficients,
and chaotic properties of microscopic systems such as the
Lyapunov exponents [8–10]. There have been some significant
successes such as the conjugate pairing rule for the Lyapunov
spectrum in some thermostated systems [11–13] and the fluc-
tuation theorem [14,15] yet there have also been illustrations
of nonchaotic systems with well defined transport properties.

Microscopic particle systems that are models of real fluids
can also be described from a macroscopic viewpoint as a
partial differential equation (PDE). The description begins
with conservation equations and leads to the Navier-Stokes
equations of fluid dynamics. The time evolution of the
macroscopic quantities in the Navier-Stokes equations can
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also be studied as a dynamical system but their phase space
behavior is typically nonchaotic and thus fundamentally
different than the chaotic phase space behavior of the original
particle system. Nonlinear, dissipative, PDEs are frequently
used to study natural phenomena in many areas of physics.
Generic PDEs such as the Kuramoto-Sivashinsky equation and
the complex Ginzberg-Landau equation have trajectories that
are first exponentially attracted to a finite-dimensional inertial
manifold and then settle in to a smooth global attractor. It is
believed that a study of the covariant vectors or modes may
lead to the identification of the inertial manifold [16]. The
role played by the step structure in the Lyapunov spectrum for
PDEs appears to be associated with convergence to the inertial
manifold whereas for particle systems it is associated with the
mechanically conserved quantities of the dynamics. Despite
this difference in phase variables the angle distributions
between covariant Lyapunov modes in both particle systems
and PDEs seem to show some evidence of universal behavior.

The study of the covariant (C) Lyapunov vectors is less
well understood but much progress has been made [16–20].
Covariant Lyapunov vectors [21] follow the physically impor-
tant features of the nonlinear dynamics as they align with the
instantaneous directions of the stable and unstable manifolds.
Thus instantaneous covariant vectors give information about
the angles between various manifolds in the multidimensional
phase space dynamics: either angles between two different
stable manifolds, two different unstable manifolds, or between
stable and unstable manifolds.

In previous studies of the GS Lyapunov vectors an entropy
based localization order parameter [22] was used as a probe of
the structure of the vectors, and some aspects of the structure of
the Gram-Schmidt vectors were obtained. Here we look more
closely at the localization of the covariant vectors on average,
the probability distribution of the localization, and particular
configurations which lead to features in both the distributions
and instantaneous values of the order parameter.

The paper is organized as follows: an introduction to the
method of calculating the covariant Lyapunov vectors; the de-
scription of the QOD model and the GS results for the
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Lyapunov spectrum and the Lyapunov modes; then a brief
mention of the scalar properties of the system. The bulk of
the paper introduces the localization order parameter and
discusses in detail the results which follow: the average
localization, distributions of localization, configurations which
lead to strong localization, instantaneous localization, strong
localization, and the scaling of localization. Next we look
in detail at the angle distributions between all covariant
Lyapunov vectors in the system and discuss the possibilities
of tangencies. We finish with a review of our semianalytic
knowledge of the behavior of the covariant Lyapunov modes
based on an understanding of the dynamics of the GS Lyapunov
modes.

II. COVARIANT LYAPUNOV VECTORS

The Benettin scheme for calculating the Lyapunov spec-
trum consists of time evolving a set of orthogonal basis vectors
g

(j )
n−1 which span the tangent space. Here j is the number of

the basis vector and n − 1 is the step number (or discrete
time). These vectors are periodically reorthogonalized using
the Gram-Schmidt procedure and the exponential growth and
decay rates of each vector give the Lyapunov exponents. This
set of orthogonal vectors are referred to as the Gram-Schmidt
(GS) Lyapunov vectors.

A number of methods for calculating covariant Lyapunov
vectors have recently been proposed [23,24] but the method
we follow here is that due to Ginelli et al. [25]; see also [18]
for more details. Making the normalized Gram-Schmidt vector
g

(j )
n−1, at phase point xn−1, the j th column of the matrix Gn−1,

the forward time evolution in tangent space involves two steps.
First, evolve the system forward in time using the tangent
space dynamics Jn−1 so that g̃

(j )
n = Jn−1g

(j )
n−1, and second,

orthonormalize using a QR decomposition. So in matrix form
the push forward in time is

G̃n = Jn−1Gn−1 (1)

and the QR decomposition is

G̃n = GnRn, (2)

where the columns of Gn are orthogonal.
The j th covariant vector v

(j )
m is contained in the subspace

spanned by the first j GS vectors, so the matrix Vm, which has
covariant vectors as its columns, can be written as

Vm = GmCm, (3)

where Cm is an upper triangular matrix of coefficients. The
time evolution of Vm is constructed from the time evolution of
Gm using Eqs. (1)–(3) so

Vm = G̃mR−1
m Cm = Jm−1Gm−1R

−1
m Cm

= Jm−1Vm−1C
−1
m−1R

−1
m Cm. (4)

The key step is that if we choose C−1
m−1R

−1
m Cm = I , then time

evolution of V becomes covariant as Vm = Jm−1Vm−1 and
C−1

m−1R
−1
m Cm = I implies that the time evolution of the C

matrix is generated backward in time by the R−1 matrices
using

Cm−1 = R−1
m Cm. (5)

x

y

FIG. 1. A schematic diagram of the quasi-one-dimensional
(H,P ) system with hard-wall boundaries in the x direction and
periodic boundaries in the y direction. The shaded disks are within
the QOD system and the unshaded disks are the first periodic images
above and below each particle.

It is usual to normalize the columns of the coefficient matrix
C at each step so that the covariant vectors are unit vectors.

III. QUASI-ONE-DIMENSIONAL SYSTEM

The model we consider consists of N hard disks
(typically 80) in a two-dimensional rectangular space Lx ×
Ly . When Ly < 2σ , where σ is the diameter of the disks, the
space becomes a quasi-one-dimensional (QOD) system [3]
and the hard disks remain ordered in the x direction. For
the system considered here we use Ly = 1.15σ , and scale
Lx according to the density ρ = Nσ 2/(LxLy) with hard-wall
boundary conditions in the x direction and periodic boundary
conditions in the y direction [(H,P ) boundary conditions];
see Fig. 1. For this system the temperature is the kinetic
energy per particle which is set to 1. The 4N -dimensional
phase space vector � = (q,p) consists of all particle positions
q = (q1, . . . ,qN ) and momenta p = (p1, . . . ,pN ) so the time
evolution is composed of two parts: the free flight of particles
between collisions and the change in momentum at collision
[26]. The significant advantage of using the QOD system is that
both the Lyapunov exponents and the Lyapunov modes of the
system can be obtained to high accuracy by standard numerical
schemes with fast convergence rates. The exponents and mode
structure for this system are well known consisting of a zero
subspace (where λ = 0), and a number of transverse (T) and
longitudinal-momentum proportional (LP) modes associated
with the smallest positive and negative exponents [7].

The particle dynamics is symplectic [27] so the Gram-
Schmidt (GS) Lyapunov vectors δ� = (δq,δp)T exhibit a
characteristic structure. If the vector corresponding to the
positive exponent is given by

δ�j =
(

δq

δp

)
, (6)

then the Lyapunov vector for the corresponding conjugate
negative exponent is given by

δ�4N+1−j =
(−δp

δq

)
. (7)

These conjugate relations are obeyed by the GS vectors and
as they imply orthogonality, they do not apply to the covariant
vectors which are in general not orthogonal but follow the
directions of the stable and unstable manifolds. In the mode
space the GS vectors occur in conjugate pairs and the majority
of the dynamics occurs in the subspace spanned by the pair
of conjugate vectors [7,28]. This together with a detailed
knowledge of the tangent space dynamics of GS vectors allows
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us to quantitatively understand the angle distributions between
conjugate covariant modes [29].

IV. LYAPUNOV EXPONENTS AND MODES

It is well known [3,30] that the Lyapunov spectrum for the
QOD system has exponents that appear in steps and associated
with each of these exponents is a Lyapunov vector that is
delocalized and has one of two possible structures, either a
transverse (T) mode or a longitudinal-momentum proportional
(LP) mode (we refer to delocalized Lyapunov vectors as
modes). Occasionally, when the exponents corresponding to a
T mode and a LP are equal (or approximately equal) the modes
mix and become a time dependent linear combination of both
mode forms (we refer to this as mode mixing) [7]. However,
two features of the spectrum remained unexplained: first, the
size of the step region in the exponent spectrum, and second,
the order in which the modes appear for a particular density.
Recent calculations for systems of 100, 150, and 200 particles
suggest that the thermodynamic limit for the spectrum has been
reached at N = 100 and that a fixed fraction of the spectrum
consists of steps (and thus modes) [28]. The order in which the
steps or modes appear can be determined for any density, as
the exponents when plotted as a function of T mode number
or LP mode number are to a good approximation linear [31]
with slopes that depend upon the density, as shown in Fig. 2
for ρ = 0.5. Once the slopes of these lines are determined for
a particular density by reading them off Fig. 3, graphs like
that in Fig. 2 can be constructed and the T and LP exponents
read off. The order of the steps is then determined by simply
ordering the exponents from smallest to largest.

FIG. 2. (Color online) The values of the Lyapunov exponents for
the LP (blue) and T (red) modes of a system of N = 80 hard disks
at a density ρ = 0.5 plotted as a function of mode number. To a very
good approximation the results are linear in mode number for both
types of modes, with in this case a slope of 0.037 654 for T modes
and a slope of 0.031 295 for LP modes.
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FIG. 3. (Color online) The slopes of the linear fits in Fig. 2 for
systems of N = 80 hard disks as a function of density ρ. For the low
density or kinetic region the slope for the LP (blue) and T (red) modes
is almost the same over a large density range suggesting stronger
scaling properties. However, at ρ = 0.3 the slopes cross over so that
the LP mode has the largest slope.

The slopes of the linear fits for the T and LP modes are
shown in Fig. 3 as a function of density for 0.0003 < ρ < 0.8.
We see immediately that for densities below 0.3 the order
of the steps is fixed, first an LP mode then a T mode, and
then that pattern repeats throughout the step region. In fact
this region of densities ρ < 0.1 has already been termed the
kinetic region due to the behavior of the largest exponent and
the localization [22].

The functional form of GS and covariant modes is largely
the same for the modes corresponding to positive exponents
n > 0 but the modes corresponding to negative exponents are
different. The negative covariant vectors are not orthogonal to
their conjugate vectors and therefore there is a well defined
linear combination of modes which they comprise.

A. Lyapunov exponent spectrum

A systematic approach to the study of the Lyapunov
spectrum as a function of density begins by looking for scaling
behavior in the exponents. For the QOD system it is known
that the largest exponent at densities below ρ ∼ 0.1 depends
on the density as αρ ln(βρ) as shown by Krylov [32] and this
has been confirmed in previous simulation studies for the QOD
system [22] and more generally for two-dimensional systems
of disks [33]. As the Lyapunov spectrum for this system
has been studied before we limit our description to features
not previously observed. In Fig. 4, by plotting λ/ρ against
exponent number, we observe that for a large proportion of
the Lyapunov spectrum in the kinetic region, that is, exponent
numbers between ∼40 and 160, Lyapunov exponents scale
with density λ ∝ ρ for the N = 80 disk system. This is
observed in the whole positive half of the spectrum, except
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FIG. 4. (Color online) The scaled Lyapunov spectrum (λ/ρ) for
the positive exponents in the kinetic regime for systems of N = 80
hard disks (that is, densities ranging from ρ = 0.0003 to ρ = 0.03).
The modes occur in the same order throughout this regime, with
an LP mode followed by a T mode. Notice that for all densities
below ρ = 0.1 the values of λn/ρ are the same for exponent numbers
40 � n � 160. In contrast, the scaling is not linear in density for the
first 40 exponents.

for the first ∼40 exponents (for N = 80), and includes all of
the step region where the corresponding Lyapunov vectors are
modes. The proportion of the spectrum composed of steps
and Lyapunov modes appears to remain fixed as the system
size increases [28] so we expect that the scaling of the KS
entropy is dominated by the scaling behavior of the first
40 exponents.

As the largest exponent scales as bρ − aρ ln(ρ) in the ki-
netic region [where a = −α and b = α ln(β)], it is reasonable
to assume that all exponents that are not in the linear region
(that is, 2 to ∼40) will scale in the same way as the largest.
Using the data from Fig. 4 for densities of 0.0003, 0.001, 0.003,
0.01, 0.03, and 0.1 and fitting this to λi = biρ − aiρ ln(ρ), the
coefficients can be found as functions of the exponent number
i. The dependence of the two coefficients on exponent number
is given in Fig. 5 and clearly shows that the coefficient of
the ρ ln ρ term is a maximum at exponent 1 and falls steadily
with increasing exponent number until it become negligible
at approximately exponent number 50. Initially the coefficient
of the linear term is small but it grows to dominate the ρ ln ρ

term around exponent number ∼40. After exponent number
50 the density dependence remains linear and the coefficient
bi decreases as can be inferred from Fig. 4.

V. SCALAR PROPERTIES

The thermodynamic and dynamical behavior of hard disks
in narrow channels has been studied before [34] as a function
of Ly . This system becomes QOD when Ly < 2 and it is found
that the collision frequency and the Lyapunov spectrum scale

FIG. 5. (Color online) The coefficients ai and bi as a function
of exponent number for Lyapunov exponents between 1 and 50 for
systems of N = 80 hard disks. At exponent number 1 the coefficient
of the ρ ln ρ term dominates but near exponent number 40 the linear
term dominates.

strongly with the width of the system Ly . This implies a strong
scaling of both the largest exponent and the KS entropy with
Ly .

If a system of N particles has nt collisions in time t then the
single particle collision frequency is given by ν2 = 2nt/(Nt).
For the QOD system the single particle collision frequency is
directly related to the potential contribution to the pressure as

ν2 = 2(Pv − kT )


p
, (8)

where 
p is the average momentum transfer per collision.
In [34] we see that the single particle collision frequency at a
density of 0.01 changes by a factor of 3 as Ly is varied from 1
to 2, that is, over the range of Ly values that correspond to the
QOD system.

There have been a number of theoretical studies of the KS
entropy per particle of hard-particle systems in two and three
dimensions [35]. In the low density limit the KS entropy is
expected to be linear in the single particle collision frequency
ν2 given by

hKS

N
= ν2A[− ln ρ + B + O(ρ)], (9)

where A and B are constants, and will thus change dramatically
with the width of the QOD system Ly . As the KS entropy
for a hyperbolic system is simply the sum of the positive
Lyapunov exponents its scaling behavior is determined by
the dominant scaling of individual groups of exponents, in
particular the first 40 exponents for a 80-disk system, As
we have only considered one fixed value of Ly = 1.15, we
have not attempted a discussion of the strong scaling of these
properties with Ly .
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VI. LOCALIZATION

A. Order parameter

The contribution of particle i to the j th Lyapunov vector
δ�(j ) can be written as χ

(j )
i = (δq(j )

i )2 + (δp(j )
i )2. By definition

χ
(j )
i is positive and as the Lyapunov vector is normalized,

χ
(j )
i � 1 for each particle. Therefore for each Lyapunov vector

j the set {χ (j )
i } are positive random variables which sum to 1. It

is natural to construct an entropy function for each Lyapunov
vector [22] from the set {χ (j )

i } and this gives a measure of the
delocalization of the Lyapunov vector

W
(j )
N (t) = 1

N
exp

(
−

N∑
i=1

χ
(j )
i ln χ

(j )
i

)
. (10)

This measure W (j )(t) is close to 0 for a highly localized
vector and close to 1 for a strongly delocalized vector. It
gives an instantaneous order parameter for the delocalization
of each vector j and represents the proportion of the N

particles that contribute to the Lyapunov vector. Indeed NW
(j )
N

could be considered the participation number—the number
of contributing particles—which is independent of N if the
vector is strongly localized on a subset of the particles. In this
way it relates more directly to the inverse participation ratio
Y2 [36–38] which is also used as a measure of the number
of effective degrees of freedom. However, no simple exact
relation between NW

(j )
N and Y2 can be given.

In what follows, we will investigate all aspects of the
localization for the QOD system—the average localization
of both GS and covariant vectors, the probability distribution
for the localization, configurations which lead to strong
localization, instantaneous localization, and the connections
between localization and angle distributions.

B. Average localization

The average localization for a QOD system of N = 80
disks at two different densities is given in Fig. 6. One density,
ρ = 0.003, is typical of the kinetic region and the other, ρ =
0.8, is typical of the dense liquid phase. It has been observed
[22] that the localization of the GS vectors as a function of
density generally takes one of two forms: one typical of a
low density kinetic region, and the other typical of a dense
liquid. Strong localization occurs in the kinetic region when the
density is less than 0.1, and here a group of Lyapunov vectors
associated with the largest exponents show small values of
W

(j )
N . Indeed, at very low densities a number of vectors all show

a similar form of strong localization which appears to depend
linearly on the vector number [39] in the localization spectrum.
For the GS vectors the conjugate relation Eq. (7) implies that
the localizations for the two conjugate vectors are identical
and this is indeed what is observed in Fig. 6. The behavior
of the localization for the range of vectors 140 < j < 160
(depending on system size) is associated with the different
localization values for T modes and LP modes. As observed
previously [22], the GS localization spectrum at high density
(ρ = 0.8) is essentially exponential in the vector number and
more delocalized than the covariant vectors which look linear
in the vector number. At low density (ρ = 0.003), as a function

0

0.2

0.4

0.6

0.8

W

0.003

Gram-Schmidt

Covariant

Strong
Localization

Modes

FIG. 6. (Color online) The average localizations W for all vectors
for both the GS (red) and the covariant (blue) vectors of a QOD system
of 80 hard disks at two different densities. In the first figure the density
is ρ = 0.003 and for the second figure the density is ρ = 0.8. There
is clear evidence of strong localization in the low density state for
vector numbers j < 35. In the mode region the localization splits into
two branches: one for the T modes and the other for the LP modes.
Conjugate GS vectors have identical values of W but there are small
differences between the values of W for the same pairs of covariant
vectors at the low density, particularly the first and last group of
vectors (1 � # � 10).

of vector number, the localization is initially linear before
returning to the usual exponential shape. In Fig. 6 we see the
same effect at a density of ρ = 0.003 where both the GS and
covariant localizations depend linearly on the vector number
between 1 and about 35. The randomly dropped brick model
of [39] gives an estimate of the number of most localized
GS vectors that can co-exist and not violate the orthogonality
condition. For 80 disks it is possible to have 40 such vectors but
on average random positioning reduces this to approximately
35. This is in good agreement with the results reported in Fig. 6.

At high density the covariant modes with positive exponents
have similar localizations to those associated with negative
exponents, but at low density there are small differences.
The localization of the Lyapunov vectors associated with
the most negative exponents appears to be different than the
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localizations of the conjugate vectors, suggesting the possibil-
ity of some convergence issues. The Gram-Schmidt vectors,
from which the covariant vectors are calculated, satisfy an
exact conjugate relation for the localization, however, the
linear combinations which make up the covariant vectors
need not. However, the time reversal symmetry of this system
suggests that the localizations for positive and negative vectors
should be the same.

The covariant vectors at low density have a localization
spectrum that is again linear but with smaller slope (almost
constant). For covariant Lyapunov vectors there is no longer
a strict orthogonality constraint so subsequent Lyapunov
vectors can contain a significant component of the first,
second, or higher Lyapunov vectors. Therefore the localization
characteristics of the first covariant vector can influence the
localization of subsequent covariant Lyapunov vectors more
strongly. Even if all component vectors are strongly localized
it does not necessarily follow that the covariant vector is
localized; although the numerical evidence suggests that the
same number of strongly localized vectors occurs in both the
GS basis and the covariant vectors, the covariant ones are on
average more localized than the GS vectors.

The average localization as a function of density shows
that the zero modes and the T and LP modes are only weakly
density dependent. The major feature of the localization
in the continuous part of the spectrum is that the vector
corresponding to the largest exponent becomes more and more
localized with decreasing density or increasing N .

C. Strongly localized configurations

In Fig. 8, for each of the first 35 Lyapunov vectors, there is
clear evidence of an instantaneous localization of W = 2/N =
0.025 which corresponds to a configuration with χ = 0.5 on
two neighboring particles remaining for long periods of time.
The position of the localized pair of particles is not important
but in the transition of the localization from one pair of particles
to another a variety of things can happen. The first possibility
is that the localization on two particles decays from an initial
value of 1/2 to 0 as the localization on a different two particles
increases from 0 to 1/2. This behavior is clear in the first GS
vector (in Fig. 10) between collision numbers 80 and 90 where
there is a plateau value of 4/N as predicted above. There are
other possibilities as we see localization values above 4/N for
short periods which involve more than four particles, and other
smaller blips as the pair of vectors moves one place in either
direction. It is evident that at this time the second covariant
vector is essentially equal to the first GS vector (although it
must contain some small component of the second GS vector).

The most localized configuration is when χ
(j )
i = 0.5 for

both i and i + 1 and is 0 for all the other values of i [see
Fig. 7(a)], then the localization measure is given by W (j )(t) =
2/N . Clearly the vector is localized on only two particles so
that W (j ) follows a strict power law in the number of particles
N , with the power equal to −1. Another possible strongly
localized configuration is a mixture of two of these most
localized vectors [see Fig. 7(b)]. As this is a mixture, we expect
that χ

(j )
i = 1/α for i and i + 1 and for χ

(j )
k = 1/β for k and

k + 1 where β = α/(α − 1). The localization for this mixture
is W (j )(t) = α(α − 1)(1/α−1)/N which has a maximum when

FIG. 7. (Color online) (a) The configuration which gives the
strongest localization W (j ) for the QOD system of hard disks. Here
χ

(j )
i = 0.5 for i = 17 and i = 18 and thus this configuration gives

W (j ) = 2/N . (b) A linear combination of two of the most localized
configurations gives a range of values of localization depending upon
the particular linear combination. If χ

(j )
i = 1/α for i and i + 1 and

χ
(j )
k = 1/β for k and k + 1 the localization depends on the values of

α and β which are not independent. When α = 0, W
(j )
N = 2/N and

when α = β then W (j ) = 4/N .

α = 4. In fact this combination only gives localization values
between 2/N and 4/N .

D. Localization distributions

The localization W
(j )
N (t) is defined at each instant in time so

we can construct a probability distribution for this quantity for
each Lyapunov vector in Figs. 8 and 9. This gives more detailed
information than the average localization 〈W (j )

N 〉 in Fig. 6.

0.0

0.5

1.0 0

50

100

0.0

0.2

0.4

0.6

FIG. 8. (Color online) The probability distribution of the local-
ization W for the covariant vectors of a QOD system of 80 hard disks
in the kinetic regime at a density of ρ = 0.003. The axis labeled 0.0
to 1.0 is the value of the localization, the axis labeled 0 to 127 is
the vector number, and the vertical axis is the probability. The most
probable localization value for the first 35 vectors is the minimum
localization of 2/N . There is also a small cusp at 4/N corresponding
to a linear combination of two most strongly localized configurations.
For vectors larger than 40 the localization distributions are smooth and
very similar to those of higher density systems where the distribution
has a smooth maximum.
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FIG. 9. (Color online) The probability distribution of the local-
ization W for the covariant vectors of a QOD system of 80 hard
disks at a density of ρ = 0.8. The figure is to be compared with the
kinetic region in Fig. 8 but here the vertical scale is one-third smaller.
Otherwise the axis labels are the same as Fig. 8. There is a small
remnant of the most localized configuration in the first few vectors.

In Fig. 8 the distribution of localization for the first 127
Lyapunov vectors at a low density (ρ = 0.003) for a QOD
system of 80 disks is shown. Initially there is a dominant
contribution at the position of the most localized configuration
W = 2/N with a barely visible blip at W = 4/N correspond-
ing to four equal contributions to the set {χi}. However, with
increasing vector number the most localized peak diminishes
apparently linearly and the distribution becomes broad and
smooth. For Gram-Schmidt vectors this most localized con-
tribution occurs only for the first quarter of the expanding
Lyapunov vectors, but for the covariant Lyapunov vectors the
influence of this most localized contribution can contribute to
more vectors as seen in Fig. 8. Therefore the structure of the
most localized configuration plays an even more important role
for the covariant Lyapunov vectors. At high density, see Fig. 9,
there is a remnant of the strong localization configuration
evident but its amplitude is only 1/3 of that at low density
and decays more quickly than linearly with vector number,
and with the scale change in the graph the distribution with a
smooth maximum is more apparent.

E. Instantaneous localization

In Fig. 6 for N = 80, the low density average localization
for the covariant Lyapunov vectors shows an initial strongly
localized region associated with the first 35 Lyapunov vectors.
A similar behavior has been seen previously in the average
localization of the GS vectors and there it was argued that
each of these vectors was dominated by the most localized
configuration in Fig. 7 and the required orthogonality limited
the number of vectors. Here we know that the covariant vectors
are linear combinations of the GS vectors, but that in general
the covariant vectors are more localized than the equivalent
GS vectors. Here we look at the dynamics of the localization
in order to understand this property of the covariant vectors.

1

80

FIG. 10. (Color online) The localization contributions from each
particle χ

(j )
i calculated as a function of collision number for a

selection of the GS vectors of a QOD system of N = 80 hard disks
at low density ρ = 0.003. The upper panels are the values of χ

(j )
i

for each particle for Lyapunov vectors j = 10,20,30 with the lower
panels giving the instantaneous value of the localization for the system
W (t). The vertical axis on the upper panels is the particle number
and on the lower panels is the localization. The horizontal axis is
the collision number for all graphs. The color changes on the upper
panels correspond to levels 0.05,0.15,0.25,0.35, and 0.45 and the
corresponding colors are in order: green, white, blue yellow, orange,
and red. The vector j = 10 is strongly localized and for several
periods its value is 2/N = 0.025, so its configuration corresponds to
Fig. 7. The localization is less strong for vectors j = 20 and j = 30.

In Fig. 10 we show the evolution of the χ
(j )
i for each particle,

from the GS vectors, over 100 collisions and at the same time
the evolution of the localization order parameter W (t). For
vector 10 there are two places where we see the most localized
configuration around 60 and 90 collisions but there are larger
excursions that do not correspond to either of the two strongly
localized configurations. Similarly, for vectors 20 and 30 there
seem to be no most localized configurations and increasingly
larger excursions in WN (t).

In Fig. 11 we show the same time evolution of χ
(j )
i for each

particle, for the covariant vectors, over the same 100 collisions.
Vector 10 is initially localized on two particles for the first ∼10
collisions so W (t) = 2/N = 0.025 and then quickly splits
into two two particle pairs where W (t) ∼ 0.05. This remains
until ∼75 collisions when the localization returns to the value
W (t) = 0.025. The other two vectors 20 and 30 also show short
regions where the strong localization W (t) = 0.025 occurs
but for vector 20, W (t) ∼ 0.05 is more common and then
at vector 30 larger excursions from the two most localized
configurations involving more than four particles are observed.

The time evolution of χ
(j )
i for each particle, for the covariant

vectors at a high density of ρ = 0.8, over 100 collisions shows
that none of the vectors show the strongest localization but
there are periods where the localization is principally on four
particles.

F. Strong localization

To establish asymptotic strong localization in the thermo-
dynamic limit we need to look at the localization as a function
of N . If the system exhibits asymptotic strong localization
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8080

80

1

FIG. 11. (Color online) The localization contributions from each
particle χ

(j )
i calculated as a function of collision number for a

selection of the covariant Lyapunov vectors of a QOD system of
N = 80 hard disks at low density ρ = 0.003. The upper panels are
the values of χ

(j )
i for each particle for covariant Lyapunov vectors

j = 10,20,30 with the lower panels giving the instantaneous value of
the localization for the system W (t). The axes and color changes are
same as in Fig. 10. There is evidence of strong localization in both
j = 10 and j = 20, but for j = 30 the localization is less strong.

then only a finite number of degrees of freedom are involved
and this does not change with system size N . Localization on
only two particles is the most localized configuration possible.
Another common situation is when the localization is confined
to a finite number of particles, strictly less than N . In that case
the entropy in the exponent of Eq. (10) is a constant so the
participation number NW

(j )
N (t) is constant independent of N .

In Fig. 12 we plot the participation number for QOD systems
of N = 20,40,80,160 particles, and the results show that the
participation number is constant in this region confirming the
strong localization of the first 20% of the covariant vectors.

G. Localization scaling

Earlier we saw that in the kinetic regime the Lyapunov
spectrum exhibited a scaling relation with the exponents being
linear in density. Here we see that in the same range of exponent
numbers, that is, 45 to 160 for an 80 disk QOD system, the
average localization is a constant independent of density. The
results are shown in Fig. 13, and the inset in that graph shows
how the initial 45 exponents do change with density.

VII. ANGLE DISTRIBUTIONS

The distribution of angles between covariant Lyapunov
vectors j and j + d is observed to be largely independent of j

but strongly dependent on d (for small d). A simple geometric
argument has been proposed to explain this observation [40].
Imagine placing an initial unit vector randomly directed at the
origin of a high-dimensional space. Placing a second vector at
random can be achieved by choosing a circle of unit radius con-
taining the head of the first vector, and choosing a random point
on this circle as the end point of the second vector. The angle
distribution between these two vectors is uniform. For the third
vector we consider a sphere containing the heads of vectors 1
and 2, and choose a random point on the sphere to be the head of

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N W(20)
N W(40)
N W(80)
N W(160)

N W(N)

x

FIG. 12. (Color online) The participation number N〈W (j )
N 〉 for

the covariant vectors of a QOD system of hard disks as a function of
the number of particles N at low density (ρ = 0.003). The horizontal
axis is a continuous variable constructed from the vector number j

using x = (j − 1/2)/2N . There is evidence of strong localization
in the first 20% of the covariant vectors corresponding to positive
exponents. As the system size is increased the same proportion of
vectors remains strongly localized.

FIG. 13. (Color online) The localization spectrum (W ) for the
positive covariant Lyapunov vectors for systems of 80 hard disks with
densities in the kinetic regime ranging from ρ = 0.0003 to ρ = 0.03.
The curve for 0.0003 is red, 0.001 is blue, 0.003 is green, 0.01 is black,
and 0.03 is brown. Above 140 the modes separate into two branches
and alternate between the values for LP modes then T modes for all
densities, and again the localization of each mode is independent of
the density. For densities below 0.1 the values of W are the same for
vectors in the range 45 � n � 160. The first 50 Lyapunov vectors
show some small systematic variation in localization as evidenced in
the inset. Here the localization becomes smaller with smaller density.
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the third vector. The resulting distribution is ρ(θ13) = sin(θ13).
It follows that the distribution of angles between two vectors
with indices differing by d is ρ(θd ) = sin(d−1)(θd ). Here we
see that this geometric argument works reasonably well at high
densities, but at low densities in the kinetic regime, the angle
distributions are affected by the strong localization of some of
the covariant Lyapunov vectors. Indeed, looking back at the
high density results there still remains a small signature due
to localization in the first few Lyapunov vectors. The angle θij

between a pair of Lyapunov vectors i and j is calculated at each
collision and a distribution function for the angle constructed.
While it is possible to discuss the angle between covariant
vectors on the range [0,π ] it is only meaningful to talk of
angles between Oseledet subspaces in the range [0,π/2] and
so we expect that the angle distribution between covariant
vectors should be symmetric about π/2. All angle distributions
presented here are on the range [0,π ] and many are symmetric
about π/2, but not all of them.

In Fig. 14 we show the angle distributions between nearest
neighbor vectors for a low density state in the kinetic regime
for all pairs of vectors. The probability distribution for the
angle θi,i+1 is at first glance uniform but with noticeable peaks
near parallel (0, π ) and orthogonal (π/2). This system shows
strong localization in the first 40 or so Lyapunov vectors and
the dominant first vector makes a major contribution to all the
subsequent strongly localized vectors. This effect leads to the
peaks for near parallel configurations of nearest neighbor pairs
of vectors for i = 1, . . . ,50 becomes smaller with increasing
i and is absent after about i = 50. The peaks near 0 and π

suggests that pairs of vectors come arbitrarily close, almost
parallel, in both the unstable manifold and the stable manifold
(similar results have been found by [19,24,41]). There is a

FIG. 14. (Color online) The probability distribution for the angle
f (θi,i+1) between nearest neighbor covariant Lyapunov vectors for
a system of 80 QOD hard disks at a density ρ = 0.003. The axis
labeled 0 to 3 is the angle in radians, the axis labeled 0 to 300 is
the vector number, and the vertical axis is the probability. The angle
distributions initially show a strong preference for angles of 0 and
π and a smaller preference for π/2. These preferences decay slowly
with increasing vector number and disappear completely after vector
number 50.

FIG. 15. (Color online) The probability distribution for the angle
θi,i+2 between second nearest neighbor covariant Lyapunov vectors
for a system of 80 QOD hard disks at a density ρ = 0.003. The
axes labels are the same as Fig. 14. Here the initial preference for 0
and π are less strong compared with the preference for π/2. Again
these preferences decay and have disappeared completely after vector
number 60.

similar central orthogonal peak at π/2 which decays very
quickly with increasing i and disappears completely after
i = 25 or 30. While it is clear that a generic chaotic trajectory
cannot develop an exact tangency, there appears to be a
possible intermittency mechanism that inflates the measures
near 0 and π . In the center of Fig. 14 between vectors i = 160
to i = 200, which correspond to the modes, we see a strong
preference for close to orthogonal configurations but also a
lone peak. Apart from this region, Fig. 14 looks remarkably
symmetrical with the distribution of θi,i+1 almost equal to the
distribution for conjugate vector pair θ4N−i,4N−i+1.

In Fig. 15 we show the angle distributions between second
nearest neighbor vectors for a low density state in the kinetic
regime for all of the possible second neighbor pairs. Here we
see similar effects in the distribution due to strong localization
of the covariant Lyapunov vectors. The peaks in the first 50
pairs of vectors at 0 and π are smaller than in Fig. 14 while the
peak at π/2 is a little larger and remains apparent for longer.
There is again evidence of strong structure in the mode region
which is largely orthogonal between second neighbor vectors
but there are two peaks with positions much closer to 0 and π .
Again there is symmetry between conjugate pairs of vectors an-
gles with the distributions for θi,i+1 and θ4N−i,4N−i+1 the same.

As we move from second neighbors to third neighbors,
fourth neighbours, and beyond, the central peak at π/2
increases and the peaks at 0 and π decrease.

In Fig. 16 we give a typical higher density result for the
angle distribution of all 319 nearest neighbor pairs of Lyapunov
vectors θi,i+1 at ρ = 0.8. While the angle distributions are
approximately constant in the continuous part of the spectrum
there are features associated with remnants of the low density
localization of individual vectors present at the beginning
and end of the spectrum, and a preference for orthogonality
for nearest neighbor vectors in the mode region. Otherwise
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FIG. 16. (Color online) The probability distribution f (θi,i+1) for
the angle between nearest neighbor covariant Lyapunov vectors for a
system of 80 QOD hard disks at a density ρ = 0.8. The axes labels
are the same as Fig. 14. The three-dimensional plot of all vector
pairs shows a high degree of symmetry between nearest neighbor
angles corresponding to positive and negative pairs of vectors. Strong
structure is also present in the angles between Lyapunov modes.
Here we show results for pairs i = 1 to 319. At this density the angle
distributions are only approximately constant, and the differences are
associated localization. The distribution is slightly peaked at 0, π/2
and π but this feature disappears as the vector numbers increases
from 1 or decreases from 319.

the distributions show good symmetry for conjugate pairs of
angles θi,i+1 and θ4N−i,4N−i+1.

In Fig. 17 we show the angle distributions θi,i+2 between
second nearest neighbor pairs of vectors in the high density
regime for all pairs of second nearest neighbor vectors. Here

FIG. 17. (Color online) The probability distribution for the angle
θi,i+2 between second nearest neighbor covariant Lyapunov vectors
for a system of 80 QOD hard disks at a density ρ = 0.8. The axes
labels are the same as Fig. 14. At this density the distributions are
very similar except for the first ten or so vectors. This is very similar
to the systematic differences noted in Fig. 16 in the first few vectors.
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0.01

0.1

0 1.585 3.17

f(θ)dθ

θ

0.0003

0.8

0.3

0.03

0.003

FIG. 18. (Color online) The natural logarithm of the probability
distribution for the angle θ1,2 for the first nearest neighbor pair of Lya-
punov vectors for a system of 80 hard disks as a function of density.
At very low density, in the kinetic region, the distribution is sharply
peaked at 0, π/2, and π but as the density increases the peaks become
less sharp and smaller, until at ρ = 0.8 the distribution is almost
constant in angle. Using a logarithmic scale on the vertical axis ac-
centuates the differences between distributions at the lowest densities.

the background distribution is approximately sinusoidal [40]
with deviations for a group of the first and last pairs of vectors,
as well as strong structure in the mode region. The distributions
show the same conjugate symmetry as before.

Figure 18 shows how the distribution for the first nearest
neighbor angle θ1,2 varies with density for an 80 QOD particle
system. At the lowest density of 0.0003 the peaks at 0, π/2 and
π dominate the distribution. Here the most localized configura-
tion of a covariant vector is the dominant effect, so two vectors
which are of most localized type, but supported on different
pairs of particles, are clearly orthogonal and contribute at π/2.
If they are supported on the same pair of particles then this will
lead to parallel or antiparallel situations which contribute to
peaks at 0 and π . The parallel and antiparallel configurations
need to be more closely analyzed as their nature cannot be
assessed on the values of χ

(j )
i alone, but depend on the particle

component contributions which lead to the values of χ
(j )
i .

Also different contributions will occur when the two vectors
share only one particle in common. The distributions change
systematically from low density, where the effects of localized
covariant vectors dominates, to high density where the effects
of localization have almost disappeared.

VIII. TANGENCIES

So far the angle distributions we have considered are the
angles between close neighboring covariant vectors that are
almost always contained in the same manifold, either both
in the unstable manifold or both in the stable manifold. To
consider the possibility of tangencies, which we interpret as
the finite probability of an angle of 0 or π between one vector
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contained in the unstable manifold and one vector contained
in the stable manifold, we consider the distribution of angles
between conjugate covariant vectors i and 4N − i + 1. This
criterion has been proposed as a method to find the smallest
angle between the stable and unstable spaces [18] and probe
the breakdown of hyperbolicity.

In this QOD system we have seen that the smallest angles
between stable and unstable covariant vectors occurs for conju-
gate pairs of vector modes, and typically the first conjugate pair
of modes contains the smallest angle [29]. At high density the
first mode is a conjugate pair of transverse (T) modes while at
low density it is a conjugate pair of LP modes. The distribution
of angles between all conjugate modes at high density is given
in Fig. 19 and we see a clear distinction between the conjugate
angle between modes and between vectors in the continuous
region. There is a clear peak near zero for the first conjugate
pair of T modes which is bounded away from zero and each
subsequent pair of modes gives a different peak, all of which
are closer to π/2. The vectors that are not modes all show very
good orthogonality, strongly peaked at π/2.

At lower density, ρ = 0.003, see Fig. 20, the distribution
between the first conjugate pair of modes (here LP modes)
approaches 0 and π but the distribution goes to zero at both
ends, so again there is no possibility of tangency although
the distribution is no longer strongly bounded away from π .
Indeed the distributions for all pairs of are much broader and
less peaked than at high density. However, here there is a clear
gap and no tangencies are possible as can be seen from Fig. 21.
The vectors in the continuous part of the spectrum all show
strong orthogonality with dominant peaks at π/2.

The angle distributions between the first conjugate LP
modes at lower density (ρ = 0.003) are shown in Fig. 21.

0

1

2

3 0

50

100

150

0.0

0.2

0.4

0.6

FIG. 19. (Color online) The probability distribution for the angle
θi,4N−i+1 between conjugate pairs of vectors at a density of ρ = 0.8
for a system of N = 80 QOD hard disks. Here the axis labeled 1
to 160 is the vector number for the conjugate pair of modes. These
begin at 1 and 2 with the zero modes and increase so that 160 is the
angle between the vectors corresponding to the largest and smallest
exponents. In the mode region there are strong peaks but these are
bounded away from 0 and π . The continuous spectrum vectors all
show the same orthogonality.
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FIG. 20. (Color online) The probability distribution for the angle
θi,4N−i+1 between conjugate pairs of vectors at a density of ρ = 0.003
for a system of N = 80 hard disks. This shows similar systematic
changes with mode number compared with the high density result.
There is a feature in the angle distribution associated with the strongly
localized vectors in the positive and negative halves of the spectrum.

Although these distributions are contained in Fig. 20 as the
results for vectors 3 and 4, we have enlarged the vertical
scale so that it is clear that the distributions are bounded away
from possible tangencies at 0 and π , despite the fact that the
distributions are broad and largest close to these limits.

Previous theoretical studies of the time evolution of a
pair of conjugate modes [26] showed that their dynamics

0
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0.035

0 0.5 1 1.5 2 2.5 3

=0.003

f( )d

LP2
LP1

FIG. 21. (Color online) The probability distribution for the angle
θ between first two conjugate pairs of LP modes at a density of
ρ = 0.003, for a system of 80 hard disks. Notice that the distribution
is bounded away from 0 (or π ) and goes to zero fast enough to avoid
tangencies.
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approximately separates from the dynamics of the whole
tangent space, and can be developed for a pair of T modes
by considering the product of 2 × 2 reduced R matrices that
produce the backward time covariant evolution [29]. These
matrices have the form

R−1
m =

(
ζ−1
m cmζm

0 ζm

)
, (11)

where ζm is the local expansion rate for the mth cycle of free
flight and collision, and cm is related to the free flight time τm

(although usually cm < τm). The cosine of the angle between
these conjugate modes can be written as

cos θi,j = f√
f 2 + 1

, (12)

where the function f depends on the sets of values {ζj } and
{cj } contained in all the Rj matrices along the path. For an
evolution of n − m steps backward from m the function is

f (m,n,{ζj },{cj }) = cn+1 +
m∑

j=n+2

ζ 2
n+1 . . . ζ 2

j−1cj . (13)

In the limit as n → ∞ the vector converges to the covariant
vector and as long as ζj > 1, the angle θi,j is bounded away
from 0 or π . To see the boundedness explicitly as n → ∞
we set ζj = ζ and cj = τ for all j and then f = τ/(1 − ζ−2)
which is finite as long as ζ �= 1. As long as f remains finite
in Eq. (12), then cosine of the angle is bounded away from
1 or −1.

IX. CONCLUSIONS

We have studied the Lyapunov spectrum and vectors, both
GS and covariant, for QOD systems over the full range of
physical densities. The first observation is that the exponents
in the step region depend linearly on the mode number for
both T and LP modes and given the slopes of these linear
dependencies as a function of density, we can predict the order
in which the modes appear, or equivalently the order in which
the steps appear in the spectrum. Next we observe that both the
Lyapunov spectrum and the localization obey simple scaling
relations in the kinetic regime for the same group of vector
numbers—typically numbers 40 to 160 for an 80 particle
system. Here the Lyapunov spectrum is linear in density and
the localization is independent of density. Between covariant
vector 1 and 50 the coefficient of the ρ ln ρ dependence goes
from being the dominant behavior to being zero.

On average the covariant modes are generally significantly
more localized than the GS modes with the exception of the
first covariant vector (which is identical to the first GS vector).
The second and subsequent covariant vectors typically contain
a large contribution from the first vector and this is reflected
in a lower order parameter. This is observed at low density in
the kinetic region and also at high density.

The strongly localized configurations for GS vectors
consisting of a dominant contribution from two neighboring
particles are again apparent and the covariant vectors being
linear combinations of GS vectors show the same feature.
However, the removal of the orthogonality condition in going
from GS to covariant vectors allows one strongly localized
configuration to dominate a whole group of covariant vectors
whereas it can only contribute to one GS vector. This is
evident for the low density average localization where many
of the strongly localized vectors have essentially the same
average localization, and is connected with the instantaneous
localization. There is very clear evidence of asymptotic strong
localization in the kinetic regime for the first 20% vectors of
the covariant spectrum where the participation ratio NW (N )
is independent of system size.

The simple scheme for determining the angle distributions
between neighboring covariant vectors proposed here [ρ(θd ) =
sind−1(θd )] is useful in understanding the underlying behavior
of the distributions but the results are affected by the degree
of localization and this is determined by the density. At low
density, strong localization has a significant effect, however,
there is some strong localization effect at all densities—limited
to the first and last few vectors at high density.

There is no evidence for tangencies in the QOD system.
Indeed, if two vectors become parallel then the matrix Vm

loses rank and the method will fail. This is never observed
for this QOD system in finite time, however, this does not
preclude the possibility of a region where tangencies do occur.
The closest approach to tangency is for the vectors associated
with the first positive and negative modes. Only at low densities
in the kinetic regime do the first vectors approach 0 or π . The
angles between conjugate vectors in the unstable manifold
and the stable manifold show a high degree of orthogonality
suggesting that two manifolds are generally orthogonal.
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Phys. Rev. Lett. 99, 130601 (2007).

[26] T. Chung, D. Truant, and G. P. Morriss, Phys. Rev. E 81, 066208
(2010); 83, 046216 (2011).

[27] R. Abraham and J. Marsden, Foundations of Mechanics
(Benjamin/Cummings, Reading, MA, 1978).

[28] G. P. Morriss and D. Truant, Mol. Simul. 37, 277 (2011).
[29] D. Truant and G. P. Morriss, J. Stat. Mech. (2011) P01014.
[30] J.-P. Eckmann, C. Forster, H. A. Posch, and E. Zabey, J. Stat.

Phys. 118, 813 (2005).
[31] C. Forster, R. Hirschl, H. A. Posch, and W. G. Hoover, Physica

D 187, 294 (2004).
[32] N. S. Krylov, in Works on the Foundations of Statistical

Physics, translated by A. B. Migdal, Ya. G. Sinai, and Yu. L.
Zeeman, Princeton Series in Physics (Princeton University
Press, Princeton, NJ, 1979).

[33] Ch. Dellago, H. A. Posch, and W. G. Hoover, Phys. Rev. E 53,
1485 (1996); Ch. Dellago and H. A. Posch, Physica A 240, 68
(1997).

[34] Ch. Forster, D. Mukamel, and H. A. Posch, Phys. Rev. E 69,
066124 (2004).

[35] H. van Beijeren, J. R. Dorfman, H. A. Posch, and Ch. Dellago,
Phys. Rev. E 56, 5272 (1997); J. R. Dorfman, A. Latz, and H.
van Beijeren, Chaos 8, 444 (1998); H. van Beijeren and J. R.
Dorfman, J. Stat. Phys. 108, 767 (2002); A. S. de Wijn, Phys.
Rev. E 71, 046211 (2005).

[36] P. Manneville, Lect. Notes Phys. 230, 319 (1985).
[37] K. Kaneko, Physica D 23, 436 (1986).
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