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The probabilistic properties of extreme values in multivariate deterministic dynamical systems are analyzed.
It is shown that owing to the intertwining of unstable and stable modes the effect of dynamical complexity
on the extremes tends to be masked, in the sense that the cumulative probability distribution of typical
variables is differentiable and its associated probability density is continuous. Still, there exist combinations of
variables probing the dominant unstable modes displaying singular behavior in the form of nondifferentiability
of the cumulative distributions of extremes on certain sets of phase space points. Analytic evaluations and
extensive numerical simulations are carried out for characteristic examples of Kolmogorov-type systems, for
low-dimensional chaotic flows, and for spatially extended systems.
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I. INTRODUCTION

Extreme events are of great importance in a variety of
contexts of relevance in both fundamental research and
applications, from biological evolution to the breakdown of
a mechanical structure, an earthquake, flooding, or a financial
crisis. Ordinarily, in view of their unexpectedness and high
variability they are considered to be governed by statistical
laws. There exists a powerful statistical theory of extremes,
which in its most familiar version stipulates that the successive
values x0, . . . ,xn−1 of a representative variable x recorded at
equally spaced times are independent identically distributed
variables (i.i.d.r.v.’s), irrespectively of the number and nature
of other variables that may actually be involved in the system
of interest. In the asymptotic limit of infinite observational
window this leads, under suitable linear scaling, to a universal
generalized extreme value distribution (GEV) involving just
three parameters [1].

On the other hand, at a fundamental level of description
natural systems obey to deterministic evolution laws. In many
situations of interest these laws generate complex behaviors
in, for instance, the form of spatiotemporal chaos which
confer to the system nontrivial probabilistic properties such
as ergodicity and mixing. This enables one to construct from
first principles the main quantities of interest in extreme value
theory and to compare with the predictions of the classical
statistical approach.

In a series of papers the present authors and V. Balakrish-
nan analyzed from this standpoint the prototypical class of
deterministic systems amenable to one-dimensional iterative
mappings in the interval and giving rise to quasiperiodic or to
chaotic behaviors [2,3]. They showed that dynamical complex-
ity is reflected at the level of extreme value statistics by the
nondifferentiability of the cumulative probabilities Fn(x) =
Prob(x0 � x, . . . ,xn−1 � x) on a set of points corresponding
to the unstable periodic orbits of the mapping, or in which
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different iterates of the mapping cross each other. As a corol-
lary, the probability density of extremes ρn(x) = dFn(x)/dx

is discontinuous and nonmonotonic. These behaviors are very
different from the ones predicted by classical statistical theory,
in which both Fn(x) and ρn(x) are smooth functions of x.

Typically, iterative mappings in the interval arise when
monitoring the successive intersections of the phase space tra-
jectory of a continuous-time dynamical system on a Poincaré
surface of section. Their merit is to capture in a compact way
the processes of expansion and reinjection, which constitute
the principal ingredients behind the complexity of the dy-
namics. Now, real world systems are as a rule multivariate
continuous-time dynamical systems. Furthermore, their evolu-
tion involves an intricate intertwining between local expansion
and contraction stages [4]. The question thus arises whether the
singular behavior seen in the contracted description afforded
by the one-dimensional mappings generated by the above
mechanisms subsists at the level of the extremes associated
to the individual variables {xi(t)} of such systems or, rather,
it is smoothed out by the process of averaging over all the
remaining variables and the associated unstable and stable
directions. To the observer the role of dynamical complexity
in the extreme value statistics would then be blurred, and
applicability of the classical statistical theory of extremes
would at first sight appear to be legitimate. The objective
of the present work is to investigate the effects arising from
the presence of several coupled variables on extreme value
properties.

The general formulation is presented in Sec. II. Sections III
and IV deal, successively, with discrete and continuous-time
low-dimensional dynamical systems. The case of spatially
extended systems is considered in Sec. V, and the main
conclusions are summarized in Sec. VI.

II. FORMULATION

Let x = {x1, · · · ,xM} be the state of a dynamical system at
a given time. In the presence of deterministic evolution laws,
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the state xt to which x will be transformed after a lapse of time
t will be related to x by the relation

xt = �t(x), (1a)

where �t is a one-valued (not necessarily invertible) function
of x. In a discrete-time system �t is determined by an iterative
mapping � relating the values of xn+1 at a time tn+1 to those
of xn at a previous time tn,

xn+1 = �(xn). (1b)

As noted in the Introduction a typical example is provided by
the successive intersection points of a phase space trajectory
with a Poincaré surface of section. In a continuous-time system
�t represents on the other hand the solution of a set of coupled
first order differential equations for the xi . If the variables {xi}
are monitored at regularly spaced times, t1, t2, . . . ,tn, with
tn − tn−1 = �t , then t = n�t , and in view of the semigroup
property (1a) takes the form

xt+�t = ��t (xt),

which one can write in a form similar to (1b),

xn+1 = g(xn). (1c)

Let {ai}, {bi}, be the upper and lower bounds of the values
of {xi} during their time evolution,

ai � xi � bi, 1 � i � M. (2)

The (cumulative) multivariate probability that in a time
sequence of length n generated by Eqs. (1b) or (1c) all
subsequent values xi,m (i = 1, . . . ,M; m = 0, . . . ,n − 1) are
less than or equal to a certain prescribed set of extreme values
{ui} = u1, . . . ,uM is then

Fn(u1, . . . ,uM )

=
∫ u1

a1

· · ·
∫ uM

aM

dx1 · · · dxMρ(x1, . . . ,xM )

×
n−1∏
m=1

θ
(
u1 − �

(m)
1 ({xi})

) · · · θ(
uM − �

(m)
M ({xi})

)
, (3)

where the superscript (m) denotes the mth iterate, θ is the
Heaviside step function, and ρ is the invariant probability. A
similar relation holds if the mapping � in (1b) is replaced by
g in Eq. (1c).

In most situations of interest in connection with extreme
events, the quantities one is actually monitoring experimen-
tally are not the full set of xi but, rather, a limited number
of them or even more typically quantities {zα} which are
combinations of the xi ,

zα = fα(x1, . . . ,xM ) α = 1, . . . ,A (A � M). (4)

It often happens (as, e.g., in hydrology, where the main z

variable of interest is a river discharge) that the z are linear
combinations of the xi [5],

z =
M∑
i=1

αixi,

M∑
i=1

αi = 1. (5)

Focusing on the extremal properties of z amounts then to
considering the following one-dimensional contraction of

Eq. (3):

Fn(u) =
∫ b1

a1

dx1 · · ·
∫ bM

aM

ρ(x1, . . . ,xM )

×
n−1∏
m=1

θ

(
u −

∑
i

αixi

)

· · · θ
(

u − �(m)

(∑
i

αixi

))
(6)

As a corollary, the invariant probability density ρ(z) of
z is obtained by differentiating the limiting form of (6)
for n = 1,

ρ(z) =
∫ b1

a1

dx1 · · ·
∫ bM

aM

ρ(x1, . . . ,xM )δ

(
z −

∑
i

αixi

)
.

(7)

Notice that in systems involving a single variable x like, e.g.,
iterative mappings in the interval, z is identical to the variable
in question, and Eq. (3) reduces to Eq. (6).

In this paper we are interested in the case where the
dynamics is sufficiently complex to confer to the system
nontrivial ergodic properties associated, e.g., to quasiperi-
odic or to chaotic behaviors. If as it happens typically the
variables xi and zα possess nontrivial projections into the
local unstable, stable, and neutral manifolds, then they will
be locally subjected continuously to expansions, contractions,
and reinjections. The question to be raised is, then, what is the
signature of these processes on the extreme value properties,
in the presence of several coupled variables. At the level of
the multivariate cumulative distribution (3) one might suspect
that, owing to the presence of the step functions, singularities
will subsist along some phase space manifolds. On the other
hand, at the level of the one-dimensional view afforded by
Eq. (6) one expects that integration over all but one privileged
degree of freedom will lead to smoothing, like, e.g., simple
or higher order differentiability. If the monitored variable
is the one subjected to such a smoothing, then one may
wonder whether there still are some variables that bear the
marks of dynamical complexity on extreme values and, if
so, how to access them starting from the full set of original
variables. These questions will be addressed in the subsequent
sections.

III. FULLY DEVELOPED CHAOS IN DISCRETE-TIME
LOW-DIMENSIONAL SYSTEMS

In order to sort out as directly as possible the new features
arising from the coexistence of stable and unstable manifolds
and of the reinjection of trajectories, we consider in this section
the class of K flows, which are highly unstable dynamical
systems in which each phase space point lies at the intersection
of stable and unstable manifolds. A celebrated example of
systems of this kind is the Baker transformation, defined in the
phase space 0 � x � 1, 0 � y � 1 by the two-dimensional
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mapping [6]:

x1 = 2x, y1 = y

2
0 � x <

1

2
,

(8)

x1 = 2x − 1, y1 = y + 1

2

1

2
� x � 1.

Here x and y span thus, respectively, unstable and stable
directions, and the part of the transformation defined by x

in the right half of the unit interval is associated with the
process of reinjection. This system possesses a positive and a
negative Lyapunov exponent equal to σ1 = ln 2, σ2 = − ln 2
and a uniform invariant density ρ(x,y) = 1. Furthermore,
projecting onto the x axis one obtains a closed evolution
equation for x identical to the one-dimensional Bernoulli
mapping. This closure property does not apply to the projection
onto the y axis, since according to (8) the evolution of y

is conditioned according to whether x is in the left or in
the right part of the unit interval. In the sequel we evaluate
successively the bivariate cumulative distribution Fn(u,v) and
its univariate contractions Fn(u), Fn(v) as well as the univariate
cumulative distribution of a z-type variable [Eq. (5)] through
which the roles of the stable and unstable manifolds become
intertwined.

A. The bivariate cumulative distribution of extremes of the
original variables and its one-dimensional contractions

Consider the first nontrivial case of window n = 2. Utilizing
Eqs. (3) and (8) one obtains straightforwardly the following
expressions.

(1) For u < 1
2 :

F2(u,v) =
∫ u

0
dx

∫ v

0
dyθ (u − 2x)θ

(
v − y

2

)
.

Upon introducing the new variables x ′ = 2x, y ′ = y/2 and
changing the integration limits accordingly, one arrives at

F2(u,v) = uv

2
. (9a)

(2) For u > 1
2 :

F2(u,v) =
∫ 1

2

0
dx

∫ v

0
dyθ (u − 2x)θ

(
v − y

2

)

+
∫ u

1
2

dx

∫ v

0
dyθ (u − 2x + 1)θ

(
v − y + 1

2

)
.

The first integral can be handled as in the u < 1/2 case. The
value of the second integral depends on whether v is smaller
or larger than 1/2. This yields

F2(u,v) = uv

2
, u >

1

2
, v <

1

2
, (9b)

F2(u,v) = uv

2
+ (2u − 1)

(
v − 1

2

)
, u >

1

2
, v >

1

2
.

(9c)

To obtain the one-dimensional cumulative distributions of
extremes for x and y we set, respectively, v = 1 and u = 1

in Eqs. (9). We obtain

F2(u) = u

2
, 0 � x � 1

2
,

= 3u − 1

2
,

1

2
< x � 1, (10)

and

F2(v) = v

2
, 0 � y � 1

2
,

= 3v − 1

2
,

1

2
< y � 1. (11)

We conclude that F2(u) and F2(v) are nondifferentiable
at u = 1/2 and v = 1/2, and F2(u,v) is nondifferentiable
along the manifold delimiting the upper right fourth of the
unit square. The corresponding densities, ρ2(u) = dF2/du,
ρ2(v) = dF2/dv and ρ2(u,v) = ∂2F2(u,v)/∂u∂v, possess dis-
continuities on the corresponding values,

ρ2(u) = 1
2 , 0 � u � 1

2 ,

= 3
2 , 1

2 < u � 1, (12a)

ρ2(v) = 1
2 , 0 � v � 1

2 ,

= 3
2 , 1

2 < v � 1, (12b)

ρ2(u,v) = 1
2 , 0 � u � 1

2 , 0 � v � 1 and 1
2 < u � 1,

0 � v � 1
2 ,

= 5
2 , 1

2 < u � 1, 1
2 < v � 1. (12c)

These results are in full agreement with the numerical
evaluation of the different F2 and ρ2 starting from a time series
of x and y generated by the Baker map. They are also in the
same direction as previous results by the present authors [2,3],
owing to the fact that x samples the dynamics along the
unstable manifold and integrates therefore in an explicit way
the role of the dynamical complexity in the properties of the
extremes.

For reference, if x and y were independent uniformly
distributed random variables in the unit interval, the statistical
theory of extremes would lead to the quite different expressions

F2(u,v) = u2v2, ρ2(u,v) = 4uv, F2(u) = u2,
(13)

ρ2(u) = 2u, F2(v) = v2, ρ2(v) = 2v,

all of which are smooth differentiable and monotonic functions
of their arguments.

B. The cumulative distribution of extremes of a linear
combination of the original variables

We next turn to the extreme value properties of a variable
of the type of Eq. (5), which for the Baker map amounts to
sampling the combined effect of the stable and unstable mani-
folds. For illustrative purposes we carry out the calculation in
some detail for the case of α1 = α2 = 1/2, i.e., z = (x + y)/2.

We first evaluate the invariant density of z [Eq. (7)]:

ρ(z) =
∫ 1

0
dx

∫ 1

0
dy δ

(
z − x + y

2

)
,
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or, introducing the variables x ′ = x/2, y ′ = y/2,

ρ(z) = 4
∫ 1

2

0
dx ′θ (z − x ′)θ

(
1

2
− z + x ′

)
.

Using the constraints introduced by the step functions one
obtains

ρ(z) = 4z, z < 1
2 ,

= 4(1 − z), z > 1
2 , (14)

which is to be contrasted with the uniform invariant density of
the original variables.

Consider now the distribution of extremes for window
n = 2. Using Eqs. (6) and (8) one has

F2 =
∫ 1

2

0
dx

∫ 1

0
dy θ

(
u − x + y

2

)
θ

(
u − 2x + y

2

2

)

+
∫ 1

1
2

dx

∫ 1

0
dy θ

(
u − x + y

2

)
θ

(
u − 2x−1+ y+1

2

2

)
.

(15)

Actually it is more informative to evaluate the density
ρ2(u) associated to F2, ρ2(u) = dF2(u)/du. This quantity
is the sum of four terms in each of which one of the
step functions appearing in Eq. (15) is replaced by a delta
function. Introducing the same change of variables as in
the calculation leading to Eq. (14), performing the delta
function and evaluating the remaining parts by introducing
the constraints imposed by the Heaviside function one arrives
after a rather laborious calculation to the result

ρ2(u) = 8u

3
, 0 � u � 1

4
,

= 16u − 2

3
,

1

4
< u � 1

2
,

= 10 − 8u

3
,

1

2
< u � 3

4
,

= 16(1 − u)

3
,

3

4
< u � 1. (16)

Figures 1(a) and 1(b) depict this quantity along with the
invariant density ρ(z) associated to the monitored variable
(x + y)/2. Both results are indistinguishable from those of
a numerical evaluation starting from the time series of the
original variables x and y. The point is that, contrary to the
extreme value densities of the original variables displayed
in Eqs. (12), the density of extreme values of the variable
z = (x + y)/2 for window n = 2 possesses no discontinuity.
Alternatively, the corresponding cumulative probability is
now a (once-) differentiable function [Fig. 1(c)]. Clearly,
this smoothing arises from the intertwining of the actions of
the unstable and stable manifolds on the variable z, just as
speculated in the end of Sec. II. Still, distribution (16) remains
different from the distribution corresponding to the classical
statistical theory, also depicted in Fig. 1(a) (dashed line):

ρ2,cl(u) = 4
∫ 1

0
dx

∫ 1

0
dy xy δ

(
u − x + y

2

)
.

(a)

(b)

(c)

FIG. 1. Probability density of extremes associated to the variable
[α1x + (1 − α1)y] of system (8) with α1 = 0.5 and for a time window
n = 2 (full line) (a); associated invariant probability density (b); and
cumulative probability with n = 2 (c); as obtained analytically and
numerically using 2 × 106 realizations. Dashed line in (a) stands for
an i.i.d.r.v. process.

Notice that the invariant density of z in Fig. 1(b) is iden-
tical to that obtained from the classical statistical theory
of i.i.d.r.v.’s.

Figures 2(a) and 2(b) depict the numerically evaluated
ρ2(u) for two cases where the weights α corresponding to
the x direction in expression (5) are α1 = 0.05 (or 0.95) and
α1 = 0.1 (or 0.9). Again, the discontinuities in Eq. (12) are
smoothed out, although the overall shape is less smooth than
that of ρ2 depicted in Fig. 1(a) for α1 = 1/2, being a succession
of plateau-like parts joined by lines of high slopes. Further-
more, the number of points of nondifferentiability increases
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(a) (b)

FIG. 2. As in Fig. 1(a) (full line) but for α1 = 0.05 (a); and α1 = 0.1(b); as obtained numerically.

with respect to Fig. 1(a). Analytic evaluations, though more
involved, remain feasible. They are indistinguishable from the
numerically obtained results and show that the discontinuities
present in Eqs. (12) actually arise only in the limit α1 = 0
or α1 = 1: a mixing, however unbalanced, of the stable and
unstable directions suffices to transform ρ2(u) from a dis-
continuous to a continuous nondifferentiable function. These
trends persist in the case of observational windows larger
than 2.

IV. CONTINUOUS-TIME LOW-DIMENSIONAL
DYNAMICAL SYSTEMS

Typically, multivariate dynamical systems generating com-
plex behavior are not of the K-flow type. Their evolution
is, rather, a combination of unstable and stable motions, of
stretchings, contractions, and foldings whose rates and phase
space locations are distributed in a highly intricate way [4]. As
a result the extreme value properties of a generic state variable
are more likely to resemble those associated to Eq. (6), i.e., be
smoother than those of variables borne by an unstable manifold
or a trace thereof on a Poincaré surface of section. In this
section we analyze the extreme value properties of this class
of systems, focusing on continuous-time dynamical systems
for which the deviations from K-type flows are the most
marked. Furthermore, we limit ourselves to low-dimensional
systems, where the detection of cross-over effects is
easier.

A. The Lorenz model

We consider the classic Lorenz equations [7]:

dx

dt
= σ (−x + y),

dy

dt
= rx − y − xz, (17)

dz

dt
= xy − bz.

As is well known, for parameter values σ = 10, b = 8/3, and
r = 28 Eqs. (17) generate a chaotic attractor. The trajectories
on this attractor are organized to a large extent by the
two-dimensional stable and the one-dimensional unstable

manifolds of the trivial fixed point x = y = z = 0, and by
the one-dimensional stable and the two-dimensional unstable
manifolds of the two nontrivial fixed points x± = y± =
±√

b(r − 1), z = r − 1 [8]. As a result the model variables x,
y, z are complex combinations of stable and unstable motions.
Following the comments made in the previous section and
the results summarized in Fig. 1(a) one is thus led to expect
that their extreme value probabilistic properties should be free
of some (if not all) of the singularities identified earlier as
the principal signature of the deterministic character of the
dynamics.

This expectation is confirmed by Fig. 3(a), showing the
cumulative distribution of extremes u of the variable z for
time windows 0.05 (dashed line) and 0.75 (full line) time
units. The latter window is close to the mean time of switching
of the trajectories in their spiral motion around (x+, y+, z) and
(x−, y−, z). Both shapes are reminiscent of those of classical
statistical theory.

Interestingly, under the same conditions the situation
appears to be more involved as far as the extremes v of
variable x is concerned, as depicted in Fig. 3(b). As can be
seen, while F is practically smoothed out for window 0.05 it
displays a more intricate, “nonclassical” structure for window
0.75. This suggests that to capture the role of the instability
of motion in extreme value properties one needs to monitor
an appropriate observable (here x, or y) sampled over time
intervals of the order of the time where the effects of the
instability show up through, e.g., the stretching and subsequent
folding of the trajectories. Notice [Figs. 3(c) and 3(d)] that
for window 0.75 the density of extrema of z appears smooth
and unimodal, whereas that of x is bimodal and possesses
a clearly distinguishable discontinuity for x values around
zero.

As is well known, plotting in the Lorenz system the
n + 1st maximum of z versus the nth one gives rise to
an everywhere unstable unimodal cusplike map possessing
a smooth unimodal invariant density [Figs. 4(a) and 4(b)].
Figures 4(c) and 4(d) depict the cumulative probability of
extremes u associated to this dynamical system and its
corresponding density for window n = 2. We observe a very
clear-cut signature of the underlying deterministic dynamics
in the form of nondifferentiability of F2 and discontinuity of
ρ2. The reason why the mapping of Fig. 4(a) captures this
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(a) (b)

(c) (d)

FIG. 3. (a)–(b) Cumulative distribution of extremes of variable z and x, respectively, associated to model (17) for time windows 0.05 and
0.75 time units. (c)–(d) Their associated probability densities as obtained numerically using 2 × 106 realizations.

phenomenon is similar to that concerning variable x in Fig. 3,
namely, that the choice of time unit in the mapping, of the order
of the mean time between the maxima of z, is such that the
effects of the instability are allowed to show up in an explicit
manner.

B. The Rössler model

The Rössler model [9]

dx

dt
= −y − z,

dy

dt
= x + ay, (18)

dz

dt
= bx − cz + xz,

for a = 0.38, b = 0.30, c = 4.5 provides a nice example of
chaotic dynamics organized around a single fixed point (0,
0, 0). Linear stability analysis around this point leads to a
pair of complex conjugate eigenvalues λ1,2 ≈ 0.15 ± i0.98
and a single real eigenvalue λ3 ≈ −4.4 of the Jacobian. These
eigenvalues are associated to a two-dimensional unstable
manifold close to the (x,y) plane and a one-dimensional stable
one close to the z axis. Because of this, and in view of our
previous results, one expects that the extreme value behavior
of x and y will tend to be smoothed out more than that of z,
which should be more intricate. This is confirmed by Fig. 5,

where the cumulative distributions of extremes of the variables
x and z are shown for a window of six time units. This window
corresponds to the rightmost maximum of the probability
density of reinjection times, which happens to be bimodal.
Notice that for a small window, of, e.g., one or two time units,
the behavior of both distributions is, at least qualitatively,
close to the distributions of classical statistical theory (not
shown). Figures 6(a) and 6(b) depict the probability densities
corresponding to the distributions of Fig. 5. While they both
present discontinuities those of ρ6(u) reflect the “nonclassical”
feature that there is a substantial part of probability mass
that remains in the region of values of z far from the upper
bound of its domain of variation. This behavior arises from the
intermittent character of the evolution of z (see also Ref. [2]),
characterized by slow stages of gradual increase interrupted
by rapid reinjections toward low values.

V. SPATIALLY EXTENDED SYSTEMS

The results reported in the preceding sections suggest that
in a typical system comprising a large number of variables, the
smoothing of the singularities of the extreme value properties,
the signature of the complexity and of the deterministic charac-
ter of the dynamics should become increasingly pronounced.
In this section we address this point for a representative class of
dynamical systems involving many variables, namely, spatially
extended systems.
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(a) (b)

(c)

(d)

FIG. 4. Next amplitude plot of the maximum of variable z [Eqs. (17)] (a); associated invariant probability density (b); cumulative distribution
of extremes (c); and probability density of extremes (d) for a time window n = 2 time units. Number of realizations as in Fig. 3.

Consider a discrete one-dimensional lattice of M spatially
coupled elements each described by a continuous variable
xn(j ), where n is a discrete time and j is the lattice point.
Let f (x) be a function describing the local dynamics and D

the coupling constant between a cell located on j with its first
neighbors j ± 1. The evolution of xn(j ) is then given by the

FIG. 5. Cumulative distribution of the extreme values of variables
x and z [Eqs. (18)] for a time window of six time units. Number of
realizations as in Fig. 3.

set of M coupled equations

xn+1(j ) = f (xn(j )) + D

2
[g(xn(j + 1)) + g(xn(j − 1))

− 2g(xn(j ))], (19)

where g is the coupling function. In the sequel we will adopt
the choice g = f frequently made in the literature [10], choose
an even number of cells and write Eqs. (19) as

xn+1(j ) = (1 − D)f (xn(j )) + D

2
[f (xn(j + 1))

+ f (xn(j − 1))],

1 � j � M. (20a)

Unless otherwise specified, periodic boundary conditions will
be used throughout, and the domain of variation of x and f (x)
will be limited to the interval [a,b],

xn(j ) = xn(j + M), a � x � b, a � f (x) � b.

(20b)

Equations (20) are meant to be prototypical, encompassing
large classes of dynamical systems giving rise to complex
nonlinear behaviors. In this sense the function f (x) describing
the local dynamics is, typically, a one-dimensional endomor-
phism, as obtained by mapping an underlying continuous-time
dynamics on a Poincaré surface of section and by subsequently
projecting this mapping along the most unstable direction
of the motion. The choice of nearest-neighbor coupling is
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(a) (b)

FIG. 6. As in Fig. 5 but for the probability density of extremes for variable z (a); and x (b).

motivated by the fact that most of the continuous time models
representing real-world physico-chemical systems are in the
form of partial differential equations involving the nabla or the
Laplace operators, which, once discretized in space, couple
any given point to its first neighbors only.

In spatially extended systems it is often useful to expand
the variables in series of linearly independent functions

incorporating symmetries and boundary conditions. Arguing
in terms of the expansion coefficients, the modes, rather than
the original variables, allows one then to capture collective
properties that would otherwise remain blurred, especially
if eventually the essence of the dynamics turned out to be
borne by a limited number of modes. In view of the boundary
conditions adopted a Fourier expansion appears to be the most

(a) (b)

(c)

FIG. 7. Probability densities of extremes and their associated cumulative distributions as obtained from system (20) with a = 2, M = 100,
D = 0.01 (full lines), D = 0.4 (dashed lines) and time window n = 2. (a)–(b) individual variable density and cumulative distributions. (c)–(d)
Cumulative distributions of the slowest varying Fourier mode a(0) and the fastest space varying one a(49), respectively. Upper abscissa in
(d) refers to the range of variation of a(49). Number of realizations 105.
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adequate one in this context,

an(k) = 1

M

M∑
j=1

{
cos

(
2π

M
kj

)
+ i sin

(
2π

M
kj

)}
xn(j ),

(21)
k = 0, . . . ,M − 1.

Among the different ak , a(0) and a(M/2) are real and
correspond to the space average and to the fastest space-
varying combination of the x(j ), respectively,

an(0) = 1

M

∑
j

xn(j ),

an

(
M

2

)
= 1

M

∑
j

cos(πj )xn(j )

= 1

M
{−x(1) + x(2) − x(3) + · · ·}, (22)

All other modes are complex conjugate, with a(k) = a∗(M −
k). Notice that a(0) and a(M/2) are the only modes containing
combinations of all the variables present.

In the following we analyze the extreme value properties of
the original variables [Eqs. (20)] and of their Fourier modes
[Eqs. (21)–(22)] for the representative case of coupled logistic
maps,

f (xn) = 1 − ax2
n, −1 � xn � 1, (23)

with a = 2 corresponding to the regime of fully developed
chaos for the single map in the absence of spatial coupling.
The state diagram of this system for M = 100 coupled maps
has been investigated in detail by Kaneko [10]. He showed
that for a = 2 and for a wide range of couplings D the
behavior can be qualified as “fully developed turbulent” in
the sense that it displays a pronounced local chaos with a
rapid decay of spatial correlations, with the exception of a
narrow band of coupling values where more ordered structures
are observed. In what follows we inquire on the role of the
coupling on the extreme value properties in the fully turbulent
region.

The probability density of extremes for the first nontrivial
window n = 2, ρ2(u) and its associated cumulative distribution
F2(u) are depicted in Figs. 7(a) and 7(b) in the cases of
weak (D = 0.01, full lines) and strong (D = 0.4, dashed
lines) couplings. As can be seen the structure of the weak
coupling case is quite fragmented and close to the fully
discontinuous (for ρ2) and nondifferentiable (for F2) shapes
arising in a single map in the absence of coupling. In contrast,
in the strong coupling case both ρ2 and F2 appear quite
smooth. As a matter of fact even for D = 0.01 there is no
discontinuity in ρ2 (and nondifferentiability in F2) in the strict
sense, the latter being the case only in the limit of the single
map in the absence of coupling. We here have a situation
analogous to that on Sec. III to the extent that a coupling,
however weak, induces a number of negative Lyapunov
exponents and hence the intertwining of unstable and stable
manifolds.

In contrast to the foregoing the cumulative distribution of
extremes associated to the Fourier modes a(0) and a(M/2)
is smooth in both the weak and the strong coupling cases, as
shown in Figs. 7(c) and 7(d). This behavior can be explained

qualitatively by noticing that both modes can be viewed
as sums of weakly correlated random variables and should
therefore on these grounds be essentially controlled by the
central limit theorem.

VI. CONCLUSIONS

Classical statistical approach enjoys a great popularity and
success in a wide range of extreme value problems arising in
nature, technology, and society. This is due to the fact that
cumulative probability distributions of extremes as reconsti-
tuted from the observations seem to display sufficiently strong
smoothness properties to be legitimately fitted by appropriate
parametrizations of GEV-type distributions.

Real world systems involve as a rule a large number of
variables and obey to deterministic evolution laws giving
rise to complex behaviors. The guiding idea behind the
present work has been twofold. First, that in the presence
of several variables the effect of dynamical complexity on the
probabilistic properties of extreme values tends to be masked
by the intertwining between locally ongoing expansions,
contractions, and reinjections in phase space. Second, that
behind the apparent smoothness of the resulting probability
distributions there exists an “organizing center” in the form
of an appropriate combination of the variables probing the
dominant unstable modes, which display singularities in, e.g.,
the form of nondifferentiability of the cumulative distributions
of extremes on certain sets of phase space points. We have
shown on a number of representative systems both analytically
and by numerical simulations how these singularities are
gradually smoothed out depending on the nature and on the
number of variables involved. As it turns out smoothing is
typically reflected by the regain of continuity on the probability
density of extremes or of differentiability of the associated
cumulative probability, but as a rule higher order singularities
are bound to subsist.

In addition to their interest in the fundamental understand-
ing of the origin of extreme value distributions in determin-
istic systems, our results have some potentially important
applications. We suggest that smooth-looking extreme value
distributions deduced from the data may actually contain
higher order singularities inherited from their deterministic
character and thus belong to a class of functions different
from the GEV distributions. These differences should be more
apparent for the probability distributions of certain privileged
types of variables, and for not too long observational windows.
Furthermore, quantities of operational interest for prediction
purposes like, e.g., the return times of extremes [11] might
prove to be more appropriate for revealing these differences. It
would undoubtedly be interesting to conduct data analyses in
this perspective and reassess the validity of some time-honored
conclusions on the nature and the prediction of extreme
events.
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[1] P. Embrechts, P. Küppelberg, and T. Mikosch, Modelling
Extremal Events (Springer, Berlin, 1999).

[2] V. Balakrishnan, C. Nicolis, and G. Nicolis, J. Stat. Phys. 80,
307 (1995).

[3] C. Nicolis, V. Balakrishnan, and G. Nicolis, Phys. Rev. Lett. 97,
210602 (2006).

[4] E. Ott, Chaos in Dynamical Systems (Cambridge University
Press, Cambridge, 1993).

[5] R. L. Bras and I. Rodriguez-Iturbe, Random Functions and
Hydrology (Dover, New York, 1985).

[6] V. Arnold and A. Avez, Ergodic Problems of Classical Mechan-
ics (Benjamin, New York, 1968).

[7] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
[8] C. Sparrow, The Lorenz Equations (Springer, Berlin,

1982).
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