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We study the origin of attracting phenomena in the ray dynamics of coupled optical microcavities. To this end
we investigate a combined map that is composed of standard and linear map, and a selection rule that defines when
which map has to be used. We find that this system shows attracting dynamics, leading exactly to a quasiattractor,
due to collapse of phase space. For coupled dielectric disks, we derive the corresponding mapping based on
a ray model with deterministic selection rule and study the quasiattractor obtained from it. We also discuss a
generalized Poincaré surface of section at dielectric interfaces.
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I. INTRODUCTION

An attractor in classical dynamics is, colloquially speaking,
a (invariant) set of points to which all trajectories starting
in its neighborhood (more precisely, its basin of attraction)
converge. More precisely, an attractor can be defined as a
closed set A with the following properties [1–3]. First, A is an
invariant set: Any trajectory x(t) that starts in A stays in A for
all time. Second, A attracts an open set of initial conditions:
There is an open set U containing A such that if x(0) ∈ U , then
the distance from x(t) to A tends to zero as t → ∞. This means
that A attracts all trajectories that start sufficiently close to it.
The largest such U is called the basin of attraction of A [4].

The fact that volumes have to be conserved in conservative
systems implies immediately that they display no attracting
regions in phase space [5,6]. However, a quasidissipative
property has been reported in a combined map, namely,
a piecewise smooth area-preserving map which models an
electronic relaxation oscillator with over-voltage protection
[7]. The quasidissipative property eventually converts initial
sets into attracting sets, which was correspondingly referred
to as the formation of a quasiattractor. As a result, this
system behaves partly dissipative (outside the quasiattractor,
i.e., before trajectories have reached the quasiattractor) and
partly conservative (inside the quasiattractor). To the best
of our knowledge, the existence of quasiattractors has been
observed so far only in the piecewise smooth area-preserving
map. In this paper we show that coupled dielectric cavities are
another system class with this property.

Each optical interface is characterized by the splitting of
an incoming ray into transmitted and reflected rays which
is repeated at each reflection point. For optical systems
consisting of more than one dielectric building block such
as the combination of two disks, the ray-splitting dynamics
is especially complicated. A ray model with deterministic
selection rule (RMDS) was proposed [8] to effectively describe
the resulting dynamics. Its justification is underlined by a nice
agreement with wave calculations [8].
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A noticeable and characteristic property of ray dynamics
in the RMDS is that all initial rays eventually arrive in a
certain region of phase space, namely, an island structure
[8]. In other words, attractors occur. Their existence is,
on the one hand, a surprise because the underlying ray
dynamics is Hamiltonian. On the other hand, wave solutions
for the individual resonant modes are precisely localized
on these emerging (quasiattractor) structures, and ray-wave
correspondence is fully established. We shall see in Sec. III
that it is the special structure of the selection rule, namely,
the coupling of different maps, that induces the quasiattracting
features.

In this paper we study the characteristics of quasiattractors
emerging from simple coupled maps in order to gain a
heuristic understanding of attracting phenomena. To this end,
we introduce in Sec. II a toy model, a combination of standard
and linear mappings, that clearly demonstrates the existence
of the quasiattracting phenomenon and its origin. In Sec. III
we apply the insight gained to the optical system consisting
of two dielectric disks and explicitly show the mapping rules
and their relation to the quasiattractor. We use the dependence
of the selection rule on the refractive index of the disks in
order to illustrate the parametric dependence of the emerging
structures. Finally, we summarize our results in Sec. IV.

II. ORIGIN OF QUASIATTRACTING PHENOMENA

A. Case study: Combined standard-linear mapping

In order to understand the appearance of quasiattractors,
we introduce a map that combines the well-known standard
and linear maps as an example of a piecewise smooth
area-preserving map discussed in Refs. [7] as an origin of
quasidissipative behavior. The standard map describes the
motion of the kicked rotor [5], which consists of a free
rotator being periodically kicked. This is a prototype two-
dimensional map commonly used in the study of various
nonlinear phenomena of conservative systems [9,10]. It is
given by

θn+1 = θn + In+1(mod2π ),
(1)

In+1 = In + K sin θn(mod2π ), for (θn,In) /∈ A,
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FIG. 1. (Color online) PSOSs of standard mapping for (a) K =
4.0 and (d) K = 9.0. Different color sets represent those from
different initial points. The PSOS of the combined standard-linear
map; (b, c) for K = 4.0 and (e, f) for K = 9.0. The region A is denoted
as the red solid box in (b). The region B, denoted as the dashed green
box, is chosen as (b, e) (α,β) = (2.5,0.0) and (c) (α,β) = (4.0,2.5).
(f) Forward iterated sets starting from the region A using only the
standard map. Red (gray), green (light gray), and blue (dark gray)
sets represent the first, second, and third iterated sets, respectively.

where θ is the angle of rotation, I is the conjugate momentum,
K is a positive parameter which determines the dynamics of the
map, and A is a subset of phase space introduced in connection
with the selection rule. Equation (1) is the usual standard map
if we exclude the selection rule, i.e., apply the map to all
(θn,In). For K = 0, the momentum is constant and the angle
increases linearly. As K increases, the phase space becomes
increasingly chaotic as can be seen in the Poincaré surface
of sections (PSOSs) in Fig. 1. For K = 4.0 [see Fig. 1(a)],
one (split) island of stability remains, whereas all islands have
disappeared for K = 9.0 [see Fig. 1(d)].

In addition to the standard map we introduce a linear
map with parameters α,β that has to be determined when
(θn,In) ∈ A,

θn+1 = θn + α(mod2π ),

In+1 = In + β(mod2π ), for (θn,In) ∈ A. (2)

B. Origin of the quasiattractor

Each dynamics of standard maps and linear maps have
been well understood for many years, but the dynamics of
the combined map is not the case. The region 0.0 < θn < 2.0
and 0.0 < In < 2.5 is chosen for A, indicated by the red
box in Fig. 1(b). With (α,β) = (2.5,0.0) the region A is
mapped into the region B represented by the dashed box in
Fig. 1(b) via the linear map (2). After some transient time,
for K = 4.0 the initial distribution uniformly prepared over
the whole phase space converges into the island structure as
shown in Fig. 1(b). This behavior can be easily understood
as follows. The points starting from the regions outside the
converging islands eventually reach the regions A due to
ergodicity of chaotic dynamics. Some points of A are mapped
into the islands according to the linear mapping of (2) since the
region B contains the islands. Once the points are put on the

converging islands, they cannot escape from the islands since
it forms an invariant set. If they are not put on the islands, they
chaotically wander again until they are mapped into the islands.
Therefore, the whole phase space converges to the islands as
time goes on so that the islands form a quasiattractor [7].

The structure of the (quasi)attractor depends on where the
region A and B are located. When B is chosen as the dashed box
shown in Fig. 1(c) with (α,β) = (4.0,2.5), the quasiattractor
consists of the chaotic components as well as the islands. The
chaotic part resembles a usual strange attractor of dissipative
systems [11]. Its structure will be discussed in detail below.

For K = 9.0, no stable islands exist in the standard map.
After some transient time, a fractal quasiattractor emerges
for (α,β) = (2.5,0.0) as shown in Fig. 1(e). In order to
understand the detailed structure of the fractal quasiattractor,
let us consider the evolution of the region A only by the
standard map (1). The first, second, and third iterations of the
region A are denoted as red, green, and blue areas in Fig. 1(f),
respectively, which shows a typical stretching and folding
structure of chaotic dynamics. Due to the linear map (2), the
region A cannot follow such an evolution but is compulsorily
mapped into B by (2). It means that the final attracting structure
is likely to lack the areas generated by chaotic evolution of
the region A. In fact, the empty area of Fig. 1(e) looks quite
similar to the collection of the first, second, and third iterations
of the region A shown in Fig. 1(f). Note that this argument is
true only for a short-time evolution. However, the dissipative
nature of our system guarantees that the short-time dynamics
is enough to understand its main feature. This mechanism can
also be applied to Fig. 1(c), although the island part is dealt
with separately.

The fractal quasiattractors shown in Fig. 1(c) and 1(e) form
an invariant set with a nonzero measure, which is called a
fat fractal. As a parameter such as the location of the region
B varies, the fractal quasiattractor loses its stability, and at
the same time the island suddenly becomes an attractor. This
is a typical characteristic of the so-called crisis bifurcation
[12,13]. It is known that forming a quasiattractor the phase
space decreases on average linearly in time rather than
exponentially [14].

III. QUASIATTRACTOR IN COUPLED DIELECTRIC
CAVITIES

The coupled dielectric cavities, schematically shown in
Fig. 2, have a prominent feature [8]; when the ray escapes
from the cavity, it may either go to the infinity or collide
with the other cavity so as to enter it. For the former case
we force the ray to be reflected back into the original cavity
rather than allowing the ray to escape from the system. For
the latter case there exists a finite probability that the ray
can also be reflected from the surface of the other cavity.
However, the ray is then forced to enter the cavity according
to the rules set up in the RMDS. These forced operations
play a role of the linear map (2) in the previous section. This
shows how the RMDS works. Although this model is simple,
it notably possesses the main feature of a quasiattractor that we
introduced in the previous section: The rays forcibly reflected
back into the cavity, otherwise escaping from the cavity, indeed
form quasiattracting islands. Moreover they are shown to be
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FIG. 2. (Color online) Schematic picture of the coupled two disks.
The red (gray) straight lines with arrows represent a typical trajectory
of a ray transmitted from the left (L) to the right (R) disk. Note that
in the left disk φL and θL increases in the counterclockwise direction,
while in the right the opposite is true. For example, in this figure,
φL, φR , θR , and θT

R are positive, and θL and θT
L are negative. RL and

RR is the radius of the left and the right disk, respectively, and D

is the distance between two disks. nL, nR , and n0 are the indices of
refraction of the left disk, the right disk, and the outside, respectively.

directly associated with resonant modes obtained from wave
calculation.

In this section, we provide how the RMDS of two coupled
dielectric disks is related to the coupled standard-linear map
introduced in the previous section. We mostly exploit the
results obtained from the scattering problem of two-disk
hard-wall billiard outside the cavity [15] with Snell’s law to
incorporate the transmission across the cavity boundaries.

A. System, selection rule, and mappings

Two coupled disks schematically shown in Fig. 2 are
described by geometric parameters, RR , RL, and D, which
denote the radius of the right and the left disk and the interdisk
distance, respectively, and by material parameters, namely,
the index of refraction of the right (nR) and the left (nL)
disks. For simplicity we set nR/n0 = nL/n0 ≡ n, with the
index of refraction of the medium outside the cavities n0. The
ray dynamics is traced by using Birkoff coordinate of (φR(L),
θR(L)), where φR(L) and θR(L) denote the azimuthal angle and
the angle of incidence in the right (left) disk, respectively.
Notice that the sign of these angles are defined differently (see
Fig. 2).

The deterministic selection rule [8] is given as follows.
For the sake of convenience, we assume the two disks are
identical, i.e., R ≡ RR = RL, which allows us to find an
analytic formulation of the problem. We will also consider
what happens when two disks are not identical below. First,
if the incident angle θ is larger than the critical angle θc =
arcsin(1/n), rays are totally reflected from the boundary and
thus cannot escape from the disk. Transmission of rays from
one disk to the other is possible only when |θ | < θc. In addition,
the escaped ray can arrive at the other disk only if |φ| < π/2 is
satisfied. As a matter of fact, the precise condition that the ray
can be transmitted from one disk to the other is obtained by
considering a simple geometry [15] and Snell’s law as follows:

arcsin(−1/n) < θ < −θmin for φc < φ < π/2,

−θmax < θ < −θmin for −φc < φ < φc, (3)

−θmax < θ < arcsin(1/n) for −π/2 < φ < −φc,

FIG. 3. (Color online) The PSOSs of the two-disk map (TDM)
for (a) n = 3.3, (b) n = 2.0, (c) n = 1.8, and (d) n = 1.5 with D =
0.1 and RR = RL = 1.0. The right insets of (a)–(c) represent the
corresponding enlarged PSOS of the part of the islands designated by
the green boxes. The left insets represent the trajectories in real space
corresponding to (a)–(c) the torus denoted as the thick red curve in the
islands and (d) the chaotic quasiattractor. The outgoing (also called
region C) and the incoming area are represented as brown (dark gray)
and yellow (light gray) area, respectively. They are symmetric over
φ = 0 and θ = 0 due to the symmetric geometry shown in Fig. 2.

where

φc = arccos

(
2R

2R + D

)
, (4)

θmin = arcsin
[

sin
(
θT

min

)/
n
]
, (5)

θmax = arcsin
[

sin
(
θT

max

)/
n
]
, (6)

with

θT
min = φ + arcsin

(
R sin φ

l

)
− arcsin

(
R

l

)
, (7)

θT
max = φ + arcsin

(
R sin φ

l

)
+ arcsin

(
R

l

)
, (8)

where l =
√

(2R + D)2 + R2 − 2R(2R + D) cos φ. The area
of phase space satisfying the condition (3) is indicated by
brown in Fig. 3 and referred to as the outgoing area (also
called region C). The rays located in the outgoing area of one
cavity are directly mapped into the corresponding area of phase
space of the other cavity, which is called the incoming area
indicated by yellow in Fig. 3. This constitutes the heart of the
selection rule playing an equivalent role of the linear map (2)
in that the outgoing and the incoming areas directly correspond
to the region A and B of the linear map (2), respectively. The
incoming area should form mirror image of the outgoing area
due to the time-reversal symmetry and the reflection symmetry
of the system.

For completeness, we provide the full details of the map.
Let us consider, first, the case that the rays stay within one
of the disks. This is called the inside-disk dynamics, which is
determined by the following simple mapping:

φn+1 = φn + π − 2θn, θn+1 = θn. (9)
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When the ray enters the outgoing area of one disk by satisfying the condition (3), it is transmitted to reach the other
disk. This transmission of the ray from one cavity to the other is described as the mapping

φn+1 = f (φn,θn) = Tφ{φn, arcsin[n sin(θn)]}, θn+1 = g(φn,θn) = arcsin[sin (Tθ {φn, arcsin[n sin(θn)]})/n], (10)

where Tφ and Tθ are given by [15]

φn+1 = Tφ

(
φn,θ

T
n

) = arcsin

[
sin φn + λ

(
φn,θ

T
n

)
R

sin
(
θT
n + φn

)]
,

(11)

θT
n+1 = Tθ

(
φn,θ

T
n

) = arcsin

[
2R + D

R
sin

(
θT
n + φn

) − sin
(
θT
n

)]
,

with

λ(φ,θT ) = (2R + D) cos(θT + φ) − R cos θT −
√

[(2R + D) cos(θT + φ) − R cos θT ]2 − (2R + D)2 + 2R(2R + D) cos φ.

(12)

The map of RMDS is thus summarized: If the condition (3) is
satisfied, Eq. (10) is applied; otherwise, Eq. (9). We call it a
two-disk map (TDM).

B. Quasiattractor in coupled dielectric disks

We obtain PSOS of the TDM after some transient time for
various n and R with D = 0.1 using the uniformly distributed
initial points (φ0,θ0) in the open region, − arcsin(1/n) < θ <

arcsin(1/n), of phase space. Figure 3 shows the PSOSs for
several n with D = 0.1 and RR = RL = 1.0, where the rays
converge into the islands [Fig. 3(a)–3(c)] or the fractal structure
[Fig. 3(d)] so as to form the quasiattractors. They look similar
to those found in the standard-linear map of Sec. II. Figure 4(a)
and 4(b) show the patterns of two resonant modes for n = 2.0
and 1.8, respectively, which are obtained numerically using
the boundary element method [16]. The patterns are localized
on the islands of Fig. 3(b) and 3(c) and closely resemble the
ray trajectories presented in their insets. It clearly shows that
the resonant modes are localized on the quasiattractors.

FIG. 4. Patterns of resonant modes obtained from wave calcula-
tion when (a) n = 2.0 and (b) n = 1.8, which are directly associated
with the islands of Fig. 3(b) and 3(c), respectively.

It is noted that the PSOS obtained here, Fig. 3, is slightly
different from the usual PSOS in that the points are selected
once the ray collides with the boundary irrespective of whether
it is incident to or emerging from the boundary. Usually
the point is chosen only when the ray is either incident
or emerging. This explains why two islands are overlapped
to form the “x” shape in Fig. 3(a). We will discuss this
point below. As n decreases the islands of the quasiattractors
experience bifurcation. First, the island corresponding to the
horizontal bouncing ball-like periodic orbit shown in the left
insets of Fig. 3(a) and 3(b) becomes unstable so as to be split
into the hexagonal shape periodic orbit shown in the left inset
of Fig. 3(c). Second, the hexagonal periodic orbit also loses its
stability to form the fractal quasiattractor as shown in Fig. 3(d).

The islands in Fig. 3(a)–3(c) consist of three parts, namely,
the parts in the outgoing (Ro), the incoming (Ri), and the
reflection region (Rr ) in which all of the ray is totally reflected
in around |φ| = π . The rays starting from Rr on the island
quasiattractor is mapped to those in Ro and consequently to
Ri . This process is repeated, that is, Rr → Ro → Ri → Rr →
Ro → Ri . If time goes backward, outgoing and incoming rays
are exchanged, but the ordering rule is not affected. This means
that the ray dynamics on the islands is reversible in time,
in agreement with the symmetric structures of the islands.
However, in the case of a fractal-chaotic quasiattractor of
Fig. 3(d), the time-reversal symmetry is broken since in general
there can exist two possible origins for the ray inside the
cavity, that is, one from the same cavity by reflection from
the boundary and the other coming from the other cavity
by refraction. As shown in the standard-linear map of the
previous section, here the fractal quasiattractor also contains
empty forbidden regions related to the short-time successive
iterations of outgoing and incoming regions. Figures 5(a) and
5(b) show the first, second, third, and fourth forward iterated
sets according to Eq. (9) from the outgoing and incoming areas,
respectively. Iterated sets of the outgoing area in Fig. 5(a)
produce the white forbidden region in Fig. 3(d), whereas the
iterations of the incoming area clearly leave their trace on the
fractal quasiattractor.

So far we have considered the identical disks, i.e., RR = RL,
but our results can also be applied to the case of RR �= RL.
Figure 6 shows the PSOSs for various n with RR = 1.1RL,
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FIG. 5. (Color online) The first (red/gray), second (green/light
gray), third (blue/dark gray), and fourth (silver/scratched gray)
iterated sets according to Eq. (9) starting from (a) the outgoing (black)
and (b) the incoming area (black).

in which two disks are no longer identical. The PSOS of
the left thus differs from that of the right. In Fig. 6 the
PSOS is taken from the left. D = 0.1 is chosen as before.
The PSOS is calculated by a ray-tracing method considering
RMDS since the analytic expressions of TDM obtained
above is only applicable for the identical disks. For n = 1.8
the quasiattractor of the hexagonal-shape periodic orbit is
observed at RR = RL [Fig. 3(c)] but disappears at RR = 1.1RL

and the fractal quasiattractor takes place [Fig. 6(c)]. If D varies,
the topological structure of the PSOSs and the quasiattractor
are also changed (not shown here). The variations of the
structures in the PSOS depending on system parameters can
also be explained by the stabilities of the periodic orbits
obtained from their monodromy matrices [8,17,18].

C. Ray splitting and generalization of the PSOS at dielectric
interface

The Birkoff coordinate of PSOS of dielectric cavities can be
chosen as one of four possible components: either the incident
or the emerging ray either inside or outside the cavity. As far
as a single cavity is concerned, all components are basically
equal to each other since they are directly interconnected by the
law of reflection and Snell’s law [19,20]. However, in coupled
dielectric cavities, every four components must be separately
taken into account because of more complex ray dynamics
that includes refraction and subsequent reentry into another

FIG. 6. The PSOSs of the asymmetric TDM of RR = 1.1RL

obtained in the left disk. (a) n = 3.3, (b) n = 2.0, (c) n = 1.8, and
(d) n = 1.5 with D = 0.1.

FIG. 7. The generalized PSOSs constructed by considering the
(a, e) incident ray inside, (b, f) emerging ray inside, (c, g) incident
ray outside, and (d, h) emerging ray outside cavities, which is
schematically represented in each inset in the upper row. We choose
n = 2.0 (the upper row) and n = 1.5 (the lower row) with D = 0.1
and RR = RL = 1.0.

component as well as reflection at the dielectric boundary
back into the same component.

We therefore introduce a generalization of the PSOS that
comprises incident and emerging rays inside and outside
cavities. Figure 7(a)–7(d) show the generalized PSOSs of
our ray model for n = 2.0, D = 0.1, and RR = RL = 1.0. As
mentioned above, the PSOS of Fig. 3 was constructed such that
the points are selected once the ray collides with the boundary.
It means that Fig. 3(b) is the combination of Fig. 7(a) and 7(b),
which is the PSOS chosen from the incident and emerging
ray inside the cavity, respectively. Considering the nature of
the coupled two disks, whose ray is either reflected from
or transmitted through the boundary, the appropriate PSOS
should contain both cases. This is the reason why the PSOS
was made in this way. The case of chaotic PSOSs with fractal
quasiattracting structures is shown for n = 1.5, D = 0.1, and
RR = RL = 1.0 in Fig. 7(e)–7(h). Again, Fig. 3(d) is obtained
from merging Fig. 7(e) and 7(f).

These generalized PSOSs are also useful to study ray-wave
correspondence in coupled dielectric cavities since the cor-
responding quasi-eigenmode obtained from wave calculation
can be represented by the generalized Husimi functions,
which also have four possible realizations in the exactly same
manner [21].

IV. SUMMARY

We have studied a quasiattracting phenomenon in coupled
dielectric cavities. Its origin is in the ray-splitting dynamics
modeled as the map based upon RMDS. The key feature of
this map can be understood by considering a simple toy model,
the standard-linear map.
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APPENDIX: MONODROMY MATRIX OF
HEXAGONAL-SHAPED PERIODIC ORBIT

The hexagonal-shaped periodic orbit (HSPO) is described
by 12 successive mappings consisting of 6 translations (4
inside the cavity and 2 outside), 4 refractions across the
boundary, and 2 reflections at φ = π . The monodromy matrix
of the HSPO can then be constructed as multiplication of
the monodromy matrices of each mapping. Note that the
monodromy matrix of 2 reflections is an identity so that it
can be ignored. For R ≡ RR = RL, the incident angle of
the hexagonal periodic orbit is given by θ = arccos(n/2)
when n < 2.0. There is no hexagonal-shaped periodic orbit
if n > 2.0. The monodromy matrices of the translation inside
and outside the cavity are

MI =
(

1 − 2R
cos θ

0 1

)
(A1)

and

MO =
(

−1 − l
R cos 2θ

− l
cos2 2θ

− l
R2 − 2 cos 2θ

R
−1 − l

R cos 2θ

)
, (A2)

respectively, where l = D + 2R(1 − cos 2θ ).

The monodromy matrices of the refraction from inside
to outside and the opposite can be obtained from Snell’s
law:

MB1 =
(

1 0

0 n

)
(A3)

and

MB2 =
(

1 0

0 1
n

)
, (A4)

respectively.
Finally, the monodromy matrix of the hexagonal-shaped

periodic orbit is

M = MIMB2 MOMB1 MIMIMB2 MOMB1 MI. (A5)

The stability of the hexagonal-shaped periodic orbit depends
on the value of TrM. For R = 1.0 and D = 0.1, in the case
of TrM > 2 when n � 1.688, the periodic orbit is linearly
unstable, but in the case of TrM < 2 when n � 1.688, the
periodic orbit is linearly stable.
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