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We study the scaling properties of discontinuous maps by analyzing the average value of the squared action
variable I 2. We focus our study on two dynamical regimes separated by the critical value Kc of the control
parameter K: the slow diffusion (K < Kc) and the quasilinear diffusion (K > Kc) regimes. We found that the
scaling of I 2 for discontinuous maps when K � Kc and K � Kc obeys the same scaling laws, in the appropriate
limits, as Chirikov’s standard map in the regimes of weak and strong nonlinearity, respectively. However, due to
the absence of Kolmogorov-Arnold-Moser tori, we observed in both regimes that I 2 ∝ nKβ for n � 1 (n being
the nth iteration of the map) with β ≈ 5/2 when K � Kc and β ≈ 2 for K � Kc.
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I. INTRODUCTION AND MODEL

Chirikov’s standard map (CSM), introduced in Ref. [1], is
an area preserving two-dimensional (2D) map for action and
angle variables (I,θ ):

In+1 = In + Kf (θn),
(1)

θn+1 = θn + In+1, mod − 2π,

where f (θn) = sin(θn) [due to this choice of f (θ ), CSM is
identified as a continuous map]. CSM describes the situation
when nonlinear resonances are equidistant in phase space
which corresponds to a local description of dynamical chaos
[2]. Due to this property various dynamical systems and maps
can be locally reduced to map (1). Thus, CSM describes the
universal and generic behavior of nearly integrable Hamilto-
nian systems with two degrees of freedom having a divided
phase space composed of stochastic motion bounded by
invariant tori [also known as the Kolmogorov-Arnold-Moser
(KAM) scenario] [2].

CSM develops two dynamical regimes separated by the
critical parameter Kc [1–7]. When K < Kc, the regime of
weak nonlinearity, the motion is mainly regular with regions
of stochasticity and I is bounded by KAM surfaces. See, for
example, Fig. 1(a) where we present the Poincaré surface of
section for CSM with K = 0.01. Here, the value of K is
so small that the Poincaré surface of section is equivalent
to the phase portrait of a one-dimensional pendulum. At
K = Kc, the last KAM curve is destroyed and the transition to
global stochasticity takes place. Then, for K > Kc, the regime
of strong nonlinearity, I becomes unbounded and increases
diffusively. See, for example, the Poincaré map of Fig. 1(b)
where a single trajectory has been iterated 3 × 104 times.

Even though CSM describes the universal behavior of area-
preserving continuous maps, another class of Hamiltonian
dynamical systems is represented by the discontinuous map
[8]:

In+1 = In + Kf (θn),
(2)

θn+1 = θn + T In+1, mod − 2π,

where f (θn) = sin(θn)sgn[cos(θn)]. Examples of physical sys-
tems described by discontinuous maps are 2D billiard models,
like the stadium billiard [9,10], and polygonal billiards [11,12].

The origin of the discontinuity in map (2) is the sudden
translations of the action under the system dynamics.

As well as CSM, map (2) is known to have two different
dynamical regimes; however both are diffusive, delimited by
the critical value Kc = 1/T [8]. The regimes K < Kc and
K > Kc are known as slow diffusion and quasilinear diffusion
regimes, respectively. As an example of the dynamics of map
(2), in Fig. 2 we show typical Poincaré surface of sections in
both regimes (for comparison purposes we have used the same
values of K as in Fig. 1 for CSM). On the one hand, as can be
observed by contrasting Figs. 1(a) and 2(a), the main difference
between CSM and map (2) is that for K < Kc the latter does
not show regular behavior. In fact, due to the discontinuities of
f (θ ) in map (2), the KAM theorem is not satisfied and map (2)
does not develop the KAM scenario. Since for any K �= 0 the
dynamics of map (2) is diffusive, a single trajectory can explore
the entire phase space. However, in the slow diffusion regime
the dynamics is far from being stochastic due to the sticking
of trajectories along cantori (fragments of KAM invariant
tori) [see Fig. 2(a)]. On the other hand, for K > Kc map (2)
shows diffusion similar to that of CSM [compare Figs. 1(b)
and 2(b)]. We want to add that independent of the value of
K �= 0, map (2) has five period-one fixed points at I = 0 and
θ = [0,π/2,π,3π/2,2π ].

In particular, in Ref. [13] a scaling analysis of CSM was
performed by studying the average value of I 2 as a function
of K and the nth iteration of the map. There, the following
scaling law was reported:

I 2 ∝ nαKβ, (3)

where α ≈ 2 for K � Kc and small n while α ≈ 1 for K �
Kc and large n, with β ≈ 2 in both cases. The scaling (3) has
also been validated for several dynamical systems represented
by the standard map, such as the Fermi-Ulam model [14–18],
time-dependent potential wells [19], and waveguide billiards
[18,20] among others [21,22].

Since map (2) has the same structure as CSM, a systematic
investigation of the scaling properties of I 2 for discontinuous
maps is undertaken in this paper. For this purpose, here we
study the properties of the map of Eq. (2) by analyzing the
scaling of the average value of the squared action variable I 2

as a function of n, K , and I0. We choose the scaling approach
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FIG. 1. Poincaré surface of section for CSM, Eq. (1), with (a)
K = 0.01 and (b) K = 10. In (a) 20 initial conditions with θ0 = π

and I0 = [−0.5,0.5) were iterated 103 times. In (b) a single initial
condition with θ0 = 3 and I0 = 0.01 was iterated 3 × 104 times.

to I 2 reported in Ref. [13] because of the similarity of maps
(1) and (2). Moreover, since map (2) shows diffusion in both
dynamical regimes (K < Kc and K > Kc), we expect the
scaling (3) to be valid for discontinuous maps when diffusion
is present with scaling exponents α and β to be determined.

II. RESULTS

We compute I 2 for map (2) following two steps [13]:
First we calculate the average squared action over the orbit
associated with the initial condition j as

〈
I 2
n,j

〉 = 1

n + 1

n∑

i=0

I 2
i,j ,

where i refers to the ith iteration of the map. Then, the average
value of I 2 is defined as the average over M independent
realizations of the map (by randomly choosing values of θ0):

I 2(n,K,I0) = 1

M

M∑

j=1

〈
I 2
n,j

〉
. (4)

In the following, without lost of generality, we set T = 1.

A. Slow diffusion regime

In Fig. 3(a) we present I 2 as a function of n in the slow
diffusion regime (K � 1) for several combinations of K and
I0. In fact, I 2 is always an increasing function of n; however
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FIG. 2. Poincaré surface of section for the discontinuous map of
Eq. (2) with (a) K = 0.01 and (b) K = 10. T = 1. A single initial
condition with θ0 = 3 and I0 = 0.01 was iterated 3 × 104 times.

its growth is marginal in some iteration intervals producing
plateaus in the curves I 2 vs n.

For I0 � K , see full symbols in Fig. 3(a), I 2 grows up to
a crossover iteration number n(1)

cr . When n(1)
cr < n < n(2)

cr the
trajectories wander around the period-one fixed points of the
map making the growth of I 2 negligible; that is, I 2 becomes
almost constant. We call this constant I 2

sat. Then, for n > n(2)
cr ,

the trajectories scape from the influence of the period-one fixed
points, and I 2 starts to increase again.

In Fig. 3(a) we also explore the case I0 � K (see open
symbols). During the first few iteration steps, since K is
small as compared to I0, I 2 does not increase significantly
as a function of n; so, I 2 remains approximately equal to
I 2

0 up to a crossover iteration number n(0)
cr . For n > n(0)

cr , I 2

follows the same panorama when increasing n as it does in
the case of I0 � K: it grows up to n(1)

cr , then it becomes
approximately equal to I 2

sat up to n(2)
cr , and finally it grows

again.
Then, based on Fig. 3(a), we postulate the following scaling

relations:

I 2(n,K) ∝ nαKβ (5)

for n < n(1)
cr and n > n(2)

cr , with

n(1)
cr (K) ∝ Kγ1 (6)
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FIG. 3. (a) I 2 as a function of n in the slow diffusion regime (K �
1). Full symbols (open symbols) correspond to I0 � K (I0 � K).
Each curve is the average over 1000 trajectories having initial random
phases in the interval 0 < θ0 < 2π . The dashed lines proportional to
n and n2 are plotted to guide the eye. (b) [(c)] I 2/n2 [I 2/n] as
a function of K for n < n(1)

cr [n > n(2)
cr ]. The dashed line equal to

0.17K2 [0.17K5/2] is the best power-law fit to the data.

and

n(2)
cr (K) ∝ Kγ2 ; (7)

in addition

I 2
sat(K) ∝ Kδ. (8)

Also, from Fig. 3(a), we concluded that n(0)
cr = const. ≈ 215.

Below, we present a detailed analysis that allows us to obtain
the scaling exponents α, β, γ1,2, and δ.

By performing power-law fittings to the growth regimes of
I 2, we determined that α ≈ 2 for n < n(1)

cr and α ≈ 1 when
n > n(2)

cr . See dashed lines in Fig. 3(a). Once we know the
exponents α, we can extract the exponents β. To this end, in
Figs. 3(b) and 3(c), we plot I 2/n2 for n < n(1)

cr and I 2/n for
n > n(2)

cr , respectively, as a function of K . The dashed lines,
equal to 0.17K2 and 0.17K5/2, which are the best power-law
fits to the data, prove that β ≈ 2 for n < n(1)

cr and β ≈ 5/2 when
n > n(2)

cr . In fact, the dependence I 2 ∝ K5/2 for n > n(2)
cr is not

surprising since theoretical results for the saw-tooth map [23]
as well as numerical computations on the stadium map [9]
(both discontinuous maps) show that I 2 ∝ K5/2 when K < Kc

for large n. More precisely, for K < Kc the dynamics of map
(2) is diffusive (after the transient time n(2)

cr ) with diffusion rate
D = D0K

5/2
√

T [8], where D = limn→∞〈I 2(n)〉/n and the
average 〈· · · 〉 is performed over an ensemble of trajectories
with the same initial action I0 and random initial phases θ0.
D0 ≈ 0.4 is the constant that corresponds to the choice of f (θ )
we made here [8].
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FIG. 4. (a) [(b)] n(1)
cr [I 2

sat] as a function of K . The dashed line
equal to 1.1K−1/2 [0.31K] is the best power-law fit to the data. (c)
Scaled curves I 2K−1 as a function of nK1/2 in the slow diffusion
regime (K � 1). Full symbols (open symbols) correspond to I0 � K

(I0 � K). Same data as in Fig. 3. The dashed lines show that I 2 ∝ n2

for n < n(1)
cr while I 2 ∝ n for n > n(2)

cr .

Then, in Figs. 4(a) and 4(b), we show n(1)
cr and I 2

sat as
a function of K , respectively. We computed n(1)

cr as the
intersection of a power-law fitting curve I 2 ∝ n2 for n < n(1)

cr
with the constant curve I 2 = I 2

sat. The dashed lines in Figs. 4(a)
and 4(b) equal to 1.1K−1/2 and 0.31K , respectively, lead to
γ1 ≈ −1/2 and δ ≈ 1. As a consequence of the scalings above,
in Fig. 4(c) we present the scaled curves I 2K−1 as a function
of nK1/2 showing the collapse of I 2

sat and n(1)
cr .

We want to stress that the scaling of I 2 for the discontinuous
map of Eq. (2) in the slow diffusion regime obeys the same
scaling laws as CSM in the regime of weak nonlinearity
(see [13]), except for the appearance of the second crossover
iteration number n(2)

cr . To study the dependence of n(2)
cr on K ,

in the Fig. 5(inset) we plot n(2)
cr vs K . The power-law fitting

of the data leads to γ2 ≈ −3/2 and a proportionality constant
≈1.9. Then, in the main panel of Fig. 5 we show that the curves
I 2/I 2

sat are properly scaled, for n > n(2)
cr , when plotting them as

a function of nK3/2. The behavior I 2 ∝ n for n > n(2)
cr should

be expected in map (2) since here, in contrast to CSM with
K < Kc, the movement is not bounded by KAM tori, and
particles can diffuse along the phase space cylinder without
limit.

B. Quasilinear diffusion regime

In Fig. 6(a) we present I 2 as a function of n in the quasilinear
diffusion regime (K � 1) for several combinations of K

and I0.
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For I0 � K , I 2 grows proportionally to n for all n. See
full symbols in Fig. 6(a). For I0 � K , I 2 as a function of
n is almost constant and approximately equal to I 2

0 up to
a crossover iteration number ncr. Then, when n > ncr, I 2

increases proportionally to n. See open symbols in Fig. 6(a).
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0 for I0 � K .
The dashed line shows that I 2 ∝ n for n > ncr.

This behavior for I 2 is completely equivalent to that for CSM in
the strong nonlinearity regime [13]. That is, the scaling given
in Eq. (3) is valid for n > ncr with α ≈ 1 and β ≈ 2. This
is consistent with the random phase approximation [3] that
predicts, for K > Kc, diffusive motion along the I direction
with a diffusion rate D = K2/2. Moreover, we observed that
the crossover iteration number ncr scales as

ncr(K,I0) ∝ Kγ3I
γ4
0 . (9)

To get the exponents γ3,4 in the scaling relation above in
Figs. 6(b) and 6(c) we plot (i) ncr as a function of I0 for fixed
K , and (ii) ncr as a function of K for fixed I0, respectively.
Using power-law fittings [see Figs. 6(b) and 6(c)], we found
that ncr ∝ K−2I 2

0 with a proportionality constant ≈3. Thus,
we concluded that γ3 ≈ −2 and γ4 ≈ 2. Finally, from scaling
(9), in Fig. 7 we show that all curves I 2I−2

0 as a function of
nK2I−2

0 collapse into a single one.

III. CONCLUSIONS

We have studied the scaling properties of the action variable
I for the discontinuous map of Eq. (2). We focus on the slow
diffusion (K < Kc) and the quasilinear diffusion (K > Kc)

TABLE I. Behavior of I 2 in the slow diffusion (K � 1) and the
quasilinear diffusion (K � 1) regimes. We have found that I 2

sat ≈
0.31K , n(0)

cr ≈ 215, n(1)
cr ≈ 1.1K−1/2, n(2)

cr ≈ 1.9K−3/2, and ncr ≈
3I 2

0 K−2.

K � 1 K � 1 K � 1 K � 1
I0 � K I0 � K I0 � K I0 � K

I 2 ≈ I 2
0 n < n(0)

cr n < ncr

I 2 ∝ n2K2 n < n(1)
cr n(0)

cr < n < n(1)
cr

I 2 ≈ I 2
sat n(1)

cr < n < n(2)
cr n(1)

cr < n < n(2)
cr

I 2 ∝ nK5/2 n > n(2)
cr n > n(2)

cr

I 2 ∝ nK2 n > ncr n > ncr
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regimes, being Kc = 1/T . We found that the scaling of I 2 for
map (2) when K � Kc and K � Kc obey the same scaling
laws as CSM in the regimes of weak and strong nonlinearity
[13], respectively. Except for that in the slow diffusion regime,
due to the absence of KAM tori to bound the motion, I 2 ∝ n for
large enough n. Also, we conclude that the scaling I 2 ∝ nαKβ

applies to discontinuous maps with
(i) α ≈ 2 and β ≈ 2 for K � Kc and small n;

(ii) α ≈ 1 and β ≈ 5/2 for K � Kc and large n; and

(iii) α ≈ 1 and β ≈ 2 for K � Kc and large n.
Our results are summarized in Table I.

ACKNOWLEDGMENTS

This work was partially supported by VIEP-BUAP
(Grants No. MEBJ-EXC10-I and No. SARA-NAT10-I) and
PROMEP (Grants No. 103.5/09/4194 and No. 103.5/10/8442),
Mexico.

[1] B. V. Chirikov, Institute of Nuclear Physics, Novosibirsk, Report
267, 1969 (unpublished) [Engl. Transl.: CERN Transl. 71-40
(1971)].

[2] A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic
Dynamics (Springer-Verlag, New York, 1992).

[3] B. V. Chirikov, Phys. Rep. 52, 263 (1979).
[4] J. M. Greene, J. Math. Phys. 20, 1183 (1979).
[5] R. S. MacKay, Physica D 7, 283 (1983).
[6] R. S. MacKay, J. D. Meiss, and I. C. Percival, Physica D 13, 55

(1984).
[7] R. S. MacKay and I. C. Percival, Comm. Math. Phys. 94, 469

(1985).
[8] F. Borgonovi, Phys. Rev. Lett. 80, 4653 (1998).
[9] F. Borgonovi, G. Casati, and B. Li, Phys. Rev. Lett. 77, 4744

(1996).
[10] G. Casati and T. Prosen, Phys. Rev. E 59, R2516 (1999).
[11] G. Casati and T. Prosen, Phys. Rev. Lett. 85, 4261

(2000).
[12] T. Prosen and M. Znidaric, Phys. Rev. Lett. 87, 114101

(2001).

[13] D. G. Ladeira and J. K. L. da Silva, J. Phys. A: Math. Theor. 40,
11467 (2007).

[14] E. D. Leonel, P. V. E. McClintock, and J. K. L. da Silva, Phys.
Rev. Lett. 93, 014101 (2004).

[15] J. K. L. da Silva, D. G. Ladeira, E. D. Leonel, and P. V. E.
Mcclintock, Braz. J. Phys. 36, 700 (2006).

[16] D. G. Ladeira and J. K. L. da Silva, Phys. Rev. E 73, 026201
(2006).

[17] E. D. Leonel, J. K. L. da Silva, and S. O. Kamphorst, Physica A
331, 435 (2004).

[18] E. D. Leonel, Math. Probl. Eng. 2009, 367921.
[19] E. D. Leonel and P. V. E. Mcclintock, J. Phys. A: Math. Gen. 37,

8949 (2004); Chaos 15, 33701 (2005).
[20] E. D. Leonel, Phys. Rev. Lett. 98, 114102 (2007).
[21] D. G. Ladeira and J. K. L. da Silva, J. Phys. A: Math. Theor. 41,

365101 (2008).
[22] J. A. de Oliveira, R. A. Bizão, and E. D. Leonel, Phys. Rev. E

81, 046212 (2010).
[23] I. Dana, N. W. Murray, and I. C. Percival, Phys. Rev. Lett. 62,

233 (1989).

056212-5

http://dx.doi.org/10.1016/0370-1573(79)90023-1
http://dx.doi.org/10.1063/1.524170
http://dx.doi.org/10.1016/0167-2789(83)90131-8
http://dx.doi.org/10.1016/0167-2789(84)90270-7
http://dx.doi.org/10.1016/0167-2789(84)90270-7
http://dx.doi.org/10.1007/BF01209326
http://dx.doi.org/10.1007/BF01209326
http://dx.doi.org/10.1103/PhysRevLett.80.4653
http://dx.doi.org/10.1103/PhysRevLett.77.4744
http://dx.doi.org/10.1103/PhysRevLett.77.4744
http://dx.doi.org/10.1103/PhysRevE.59.R2516
http://dx.doi.org/10.1103/PhysRevLett.85.4261
http://dx.doi.org/10.1103/PhysRevLett.85.4261
http://dx.doi.org/10.1103/PhysRevLett.87.114101
http://dx.doi.org/10.1103/PhysRevLett.87.114101
http://dx.doi.org/10.1088/1751-8113/40/38/003
http://dx.doi.org/10.1088/1751-8113/40/38/003
http://dx.doi.org/10.1103/PhysRevLett.93.014101
http://dx.doi.org/10.1103/PhysRevLett.93.014101
http://dx.doi.org/10.1590/S0103-97332006000500022
http://dx.doi.org/10.1103/PhysRevE.73.026201
http://dx.doi.org/10.1103/PhysRevE.73.026201
http://dx.doi.org/10.1016/j.physa.2003.09.027
http://dx.doi.org/10.1016/j.physa.2003.09.027
http://dx.doi.org/10.1088/0305-4470/37/38/004
http://dx.doi.org/10.1088/0305-4470/37/38/004
http://dx.doi.org/10.1063/1.1941067
http://dx.doi.org/10.1103/PhysRevLett.98.114102
http://dx.doi.org/10.1088/1751-8113/41/36/365101
http://dx.doi.org/10.1088/1751-8113/41/36/365101
http://dx.doi.org/10.1103/PhysRevE.81.046212
http://dx.doi.org/10.1103/PhysRevE.81.046212
http://dx.doi.org/10.1103/PhysRevLett.62.233
http://dx.doi.org/10.1103/PhysRevLett.62.233

