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Characterizing topological transitions in a Turing-pattern-forming reaction-diffusion system
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Turing structures appear naturally and they are demonstrated under different spatial configurations such as
stripes and spots as well as mixed states. The traditional tool to characterize these patterns is the Fourier
transformation, which accounts for the spatial wavelength, but it fails to discriminate among different spatial
configurations or mixed states. In this paper, we propose a parameter that clearly differentiates the different
spatial configurations. As an application, we considered the transitions induced by an external forcing in a
reaction-diffusion system although the results are straightforwardly extended to different problems with similar
topologies. The method was also successfully tested on a temporally evolving pattern.
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I. INTRODUCTION

Turing instability [1] has been proposed to understand and
reproduce pattern formation mechanisms underlying a great
variety of structures in nature [2–4]. Turing structures are
stationary patterns that may appear when propagating chemical
waves [5] are combined with diffusive effects. Over the past
few decades, several authors [6–9] have shown that Turing
instability represents a good mechanism to understand pattern
formation from a physicochemical point of view.

In general, two-dimensional Turing patterns may sponta-
neously appear under three completely different spatial con-
figurations, namely hexagonal arrangement of spots, stripes (or
labyrinthine configuration), and reverse hexagons. A summary
of these patterns is shown in Fig. 1. Note that it is possible to
consider direct (white) or reverse (black) stripes depending
on whether the background is black or white, respectively
(see Fig. 1). Turing structures have been thoroughly studied
in different reaction-diffusion systems, such as the chlorite-
dioxide-iodine-malonic acid (CDIMA) reaction [10–13] and
the Belousov-Zhabotinsky reaction confined to water-in-oil
aerosol AOT microemulsions (BZ-AOT) [14–16]. In an at-
tempt to reproduce forcing effects on patterns in nature, Turing
patterns are frequently studied in the presence of external
perturbations [17–23].

The usual approach to describe and characterize such
complex spatial structures is the two-dimensional Fourier
transform, which provides useful information (length scales or
orientation order) in cases of regular structures. However, this
technique is unable to differentiate the topology of black spots
from that of white spots [as shown in the insets in Figs. 1(a)
and 1(d)], providing only information about the length scale
by the wave number. Moreover, the Fourier transform clearly
fails to identify mixed states as we show in Figs. 1(b) and
1(c). This problem becomes more crucial when the pattern is
endowed with dynamics and spontaneously transits from one
type to another [24,25]. In this latest case, there is a necessity
to implement a parameter that straightforwardly characterizes
the transitions.

In order to easily distinguish among different Turing
structures, we introduce in this paper a set of quantitative
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morphological measures that describe the geometrical and
topological properties of Turing patterns, i.e., area, boundary
length, cluster numbering, connectivity, and so on. Some
of these morphological measures are defined as Minkowski
functionals [26–28], which are well known in mathematical
morphology [29] and in image analysis [30]. These measures
have been already applied in other physical systems where
spatial patterns play an important role, such as the description
of microemulsions [31], the scale distribution of galaxies in
the universe [32], and percolation in porous media [33], to
mention just a few. We analyze the meaning of these measures
within our context and define a single parameter that contains
all topological relevant information for our patterns. It allows
us to discriminate all the different patterns exhibited by the
system as well as to identify the transitions that may undergo.

This paper is organized as follows. In Sec. II we intro-
duce the reaction-diffusion model that is used in the paper.
Section III describes in detail the morphological measures. The
results of the morphological analysis applied to our system are
presented in Sec. IV. Section V presents the conclusions and
discussion.

II. NUMERICAL SIMULATIONS

A. Model

To exemplify and illustrate the meaning of the functionals
described in this paper we considered the patterns obtained
from the simulations as described below.

A theoretical model [34] that is commonly accepted to
describe the formation of Turing patterns in a chemical system
(BZ-AOT reaction [35–37]) is the two-variable Oregonator-
like model,
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where c1 and c2 are parameters related to the concentrations
of the main species competing in the pattern formation
mechanism known as the activator and inhibitor, respectively,
and D1, D2 are their corresponding diffusion coefficients. The
parameters f , m, q, ε1, and ε depend on the reaction rates and
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FIG. 1. Numerical simulation of Turing patterns modeled by Eqs. (1) and (2), including different forcing by using Eqs. (4) and (5). The
parameters of the model were kept constant: f = 1.2, m = 190, q = 0.001, ε1 = 0.01, ε = 0.01, and d0 = 0.01. The computational domain
consists in a two-dimensional mesh of 300 × 300 grid points, with a spatial step of 0.1 s.u. (space units). We integrate using a fully explicit
three-level algorithm with a temporal step of 0.001 t.u. (time units). (a) Hexagonal pattern (white spots) in the absence of forcing (� = 0). (b)
Direct labyrinthine structure (white stripes) at � = 0.008. (c) Reverse labyrinthine structure (black stripes) at � = 0.025. (d) Reverse hexagons
(black spots) at � = 0.045. (e) Dependence of the Turing wavelength, obtained by using the Fourier transform, as a function of the control
parameter �. Regions I (� = 0–0.0025), II (� = 0.0025–0.01), III (� = 0.01–0.03), and IV (� = 0.03–0.045) correspond with white spots,
white stripes, black stripes, and black spots, respectively.

they appear as a result of applying the mass action law on the
chemical equations and a posteriori dimensionless analysis
[38] (appropriated values to model the BZ-AOT system are
f = 1.2, m = 190, q = 0.001, ε1 = 0.01, and ε = 0.01).

The main example considered in this paper is given
by Eqs. (1) and (2) under external perturbation. Here we
considered a case previously discussed elsewhere that ba-
sically modulates the gravity periodically. As discussed in
Refs. [35,39] the effect of this external forcing results in a
modification of the effective diffusion coefficient [40] for the
different species involved as follows:

D1,2 = D0
1,2(β,m1,2)

3
√

3
(3 + βm1,2ω

2A2)3/2, (3)

where D0
1,2 are the diffusion coefficients of the free particles,

m1,2 are the masses of the two species involved, ω and A

are the frequency and amplitude of the harmonic forcing, and
β = 1/KBT , where KB is the Boltzmann constant. Taking
into account that m1 = Km2, with K ∼ 1000 [34,35], we can
obtain a more compact expression,

d ≡ D1

D2
= d0

(
1 + K − 1

1 + 3
�

)3/2

, (4)

where d0 is the ratio between the diffusion coefficients in
the absence of forcing and � is a non-dimensional factor
proportional to the perturbation defined by

� = βm2ω
2A2, (5)

which plays the role of a control parameter in our case.

B. Simulations

In order to obtain the different patterns, we solve the
reaction-diffusion Eqs. (1) and (2) with the modified diffusion
coefficients obtained through Eqs. (3) and (4). We consider
d0 = 0.01 (with D1 = 1) as the ratio between the diffusion
coefficients in the free-of-forcing case. As initial conditions
we considered random noise and zero flux boundary
conditions. We integrate the equations using a fully explicit
three-level Du Fort-Frankel scheme [41] with a spatial step of
0.1 s.u. (space units).

Depending on the control parameter �, the system was able
to experience transitions from one type of pattern to another. In
Fig. 1 we present the four representative cases where variations
of the control parameter induce different arrangements of
Turing structures. In particular, region I (� = 0–0.0025)
shows a hexagonal Turing pattern in the absence of forcing
[Fig. 1(a)] and region II (� = 0.0025–0.01) exhibits a labyrinth
structure [Fig. 1(b)]. By smoothly increasing the forcing, from
� = 0.01–0.03 (region III), the labyrinth is more connected,
until the white pattern dominates over the black background
[Fig. 1(c)]. From this point of view these patterns obtained
in region III can be considered as a reverse labyrinth. Higher
values of the forcing (� = 0.03–0.045) show reverse hexagons
(region IV), as shown in Fig. 1(d). For values of forcing larger
than � = 0.045, the system undergoes a Hopf bifurcation and
becomes oscillatory. By analyzing the fast Fourier transform
we observed that the transition from white spots to reverse
labyrinthine shows a large decrease in the wavelength, in
contrast with the smooth changes observed in the black
hexagonal spots regime, as can be observed in Fig. 1(e).

C. Obtaining the discrete image

In order to analyze the different parameters that may be
suitable to morphologically characterize our patterns, we need

056205-2



CHARACTERIZING TOPOLOGICAL TRANSITIONS IN A . . . PHYSICAL REVIEW E 85, 056205 (2012)

to transform the grayscale images from simulations into black-
and-white discrete images. This step uses the Otsu algorithm
[42] that considers as white pixels, nw, those with a gray level
larger than one established value, ρ, usually taken at full width
at half maximum (FWHM) of the gray scale, and the rest of
the pixels are considered black pixels, nb. It is important to
note that, if ρ is equal to the maximum (minimum) of the gray
level, all pixels are considered black (white), according to this
algorithm.

Figure 2 shows an example illustrating the preceding
procedure. We take a portion of the black-spots pattern from
Fig. 1(d) (in gray scale) and then apply the Otsu algorithm.

FIG. 2. (Color online) Transformation of a gray scale image into
a discrete image. (a) Gray scale image corresponding with a portion
(80 × 80 pixels) of the black spots shown in Fig. 1(d). (b) 3D
representation of the gray scale image with the plane corresponding at
FWHM to make the binarization of the image. (c) Resulting discrete
image, with the black and white pixels configuration.

The result is plotted in three dimensions in Fig. 2(b), where
we fix the plane corresponding with the FWHM. The result is
a discrete image as shown in Fig. 2(c), basically composed of
white and black pixels.

III. MORPHOLOGICAL MEASURES

In the previous section, we considered a mechanism able
to modify the type of Turing pattern depending on a control
parameter �. We now are going to study these transitions from
a morphological point of view. In this regard, we introduce a
set of morphological measures to analyze the Turing patterns,
some of which belong to the Minkowski functionals [26].
These measures are able to characterize the geometry and
topology of the black-and-white discrete images.

The first measure to describe the black-and-white pattern
morphology is the area, Aw; this is the number of white pixels,
nw, in the discrete image. Note that knowing nw directly yields
the total number of black pixels by nb = N − nw, where N is
the total number of pixels (in our example N = 300 × 300).
The second functional is the boundary length or the perimeter,
B, which separates the black and white regions in the discrete
image [see Fig. 2(c) to observe the black and white regions].

Another morphological quantity is the number of white
(black) clusters Cw (Cb) present in the patterns. Moreover, we
can also estimate the eccentricity of each cluster by means of an
ellipse that has the same normalized second central moment
as the cluster [43]. We then calculate the mean eccentricity
(εw and εb corresponding to the white and black clusters,
respectively). Note that an eccentricity close to zero indicates
that the cluster is a circle, whereas, for a value close to 1, the
cluster resembles a segment.

The following functional is the Euler number, E, that
contains only topological information. It measures the con-
nectivity of the black and white regions. Despite the global
definition of the Euler number, there are different ways to
calculate this parameter. The first one, E1, considers the Euler
number defined as E1 = (nw − nb)/N . According to this, if
this quantity takes values lower (larger) than zero the black
(white) area dominates. In this way, this is a good measure to
differentiate direct and reverse structures. The other definition,
E2, counts the number of white clusters or islands (black
holes) over the black (white) background, assigning a positive
(negative) unit to each.

Our aim is to apply all of these quantities to obtain, in an
accurate way, a morphological characterization of the different
geometrical patterns described in Sec. II and, thus, characterize
the transition induced by the control parameter in our system.

IV. RESULTS

We analyze the simulations performed in Sec. II, consisting
on a set of Turing patterns ranging from white spots (islands)
to black spots (holes) with their corresponding intermediate
labyrinth patterns. In this section we present the morphological
analysis in order to evaluate the transition due to the control
parameter.

Figure 3(a) shows the value of the area, Aw, as a function
of the control parameter, �. This functional increases with the
forcing because the white area is occupying more surface up
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FIG. 3. (Color online) Variations of the morphological measures with the control parameter �. (a) The white area, Aw . (b) The number of
clusters Cw . (c) The mean area per cluster, Âw , in logscale, with dispersion, (d). The boundary length, B. (e) The mean eccentricity of black
and white clusters (εw and εb, respectively) with their respectively uncertainties. (f) The Euler numbers, E1 and E2 .

to a maximum value (81.33% of the total area, obtained in
the black-spots regime). The area relates the growing of the
pattern with the forcing but is not a good indicator to establish
the pattern transitions.

In Figs. 3(b) and 3(c), we show the cluster distribution,
Cw, with the forcing, and the mean area per cluster (Âw =
Aw/Cw) with its standard deviation, respectively. For low
values of forcing the cluster distribution increases mainly due
to the sharp reduction in the Turing wavelength observed in
the white-spots regime. Therefore, the clusters are formed
closer to each other, and, consequently, more clusters are
taken into account in the analyzed domain due to the finite
size of the images. For larger values of the control parameter,
the presence of labyrinthine structures reflects an exponential
decrease of the cluster distribution [from 100 to 10 clusters,
see Fig. 3(b)] until the control parameter induces a sharp
transition to black spots (this is at � = 0.03). Higher values
of the control parameter within the black-spots regime (i.e.,
0.03 < � < 0.045) do not alter the type of pattern and
induce only smooth changes in the wavelength, which have
no measurable effects in the cluster distribution, remaining
constant at Cw = 1. The mean area per cluster, Âw, takes
a low value for the labyrinthine structures until black spots
appear for, i.e., � = 0.03, as shown in Fig. 3(c). Note that the
uncertainty of the distribution is smaller for low values of the
forcing because most of the clusters are white spots. But, as we
approach to the transition point, the white spots deform into
labyrinths and the cluster distribution becomes more irregular.
However, above this point, the sharp transition transforms the

cluster distribution in only one great cluster, whose area is
much larger than the others.

Figure 3(d) presents the boundary length, B, which is a
much more sensitive magnitude to the transitions analyzed
than the area. Different patterns exhibit different values for
the boundary length while the area contained remains almost
unchanged.

White spots or islands (� = 0) present a boundary length
smaller than the labyrinthine structures (� = 0.01–0.03).
From � = 0 to 0.01, this functional grows linearly with
the forcing, while in the labyrinthine range remains almost
unaltered. Above � = 0.03, the boundary length falls sharply
due to the abrupt transition between labyrinth to black spots.
This curve is not perfectly symmetric due to two main factors:
(i) the wavelength decreases [as shown in Fig. 1(e)], producing
a boundary length for the white spots larger than the observed
for the black spots, and (ii) the response of the system to the
perturbation is nonlinear.

The latest morphological measures are the eccentricity, εw,
and the Euler numbers, E1,2. The eccentricity is a mean value
for each cluster, so we can obtain an uncertainty out of the
distribution. This measure is related to the boundary length.
Thus, in our system, patterns with larger boundary length
imply a greater eccentricity. This is the reason because the
boundary length and εw curves look so similar. In Fig. 3(e),
at low forcing values we observe an eccentricity close to 0.4.
Moreover, these results present a high uncertainty basically
due to the appearance of small defects in the white spots, as
an intermediate state before labyrinthine structures.
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By smoothly increasing the forcing, in this regime
(0.0025 < � < 0.007), the εw measure exhibits a direct
relation with the control parameter, reaching values up to twice
the free-forcing case, i.e., around 0.8. This sharp increment
in the eccentricity is related with the increasing number of
labyrinthine irregularities. Above � = 0.008 the labyrinthine
configuration prevails over the white spots, resulting in an
εw tending slowly to 1 and in decreasing the uncertainty. Once
again, the forcing associated with the appearance of black spots
(� = 0.03) demonstrates a sharp decreasing in the eccentricity,
falling down to 0.1. This value is smaller than the obtained for
the white spots. The explanation is that the black-spots pattern
looks like a white square with black holes, and the ellipse
associated with the second central momentum of a square
structure is close to 0. In addition, in order to elucidate these
transitions, around � = 0.0025 and � = 0.03, we calculate the
black-clusters eccentricity [dotted curve in Fig. 3(e)], i.e., εb.
For low forcing values, εb is close to 0 (due to the presence of
one black square cluster with white holes), further increasing
the forcing, εb tends to 1 (stripes regime) and then it falls
sharply to 0.34 (εb obtained for the black spots).

The Euler numbers, E1 and E2, are shown in Fig. 3(f). White
spots (low forcing) present a low connectivity, i.e., E2 = 100,
due to the fact that the white clusters (or islands) are mainly
disconnected between them. Furthermore, E1 also presents
a negative value, indicating that the black area dominates
over the white one. At intermediate values of the control
parameter, close to � = 0.01, E1 reaches the zero value,
which corresponds with the transition from direct to reverse
structures (the white area begins to be larger than the black
area). Moreover, at � = 0.03 the number of disconnected
clusters (E2) decreases to 0. This result suggests that the pattern
changes from labyrinths to black spots (only one great white
cluster). Moreover, in this transition point, E2 reaches 200
holes due to the wavelength decrement.

Figure 4 shows all normalized measures described above.
A cursory inspection points out the relationship between them,
Aw with E1, Cw with E2, and B with εw, and how they are able
to differentiate direct from reverse structures or the white spots
from black and labyrinth. Thus, we expect that a combination
of these quantities may account for all the different types of

FIG. 4. (Color online) Comparison of all measures normalized.
The normalization was performed by dividing over the maximum
absolute value of each measure, i.e., |Aw|max = 7.32 × 104 pixels2,
|B|max = 1.09 × 104 pixels, |Cw|max = 100, |E2|max = 248; the other
measures are already normalized.

FIG. 5. Turing pattern transitions induced by the perturbation
�. The � parameter discriminates among the different pattern
configurations. Regions I (IV) and II (III) correspond to direct
(reverse) patterns, white (black) spots and white (black) stripes,
respectively.

patterns. We propose the following parameter defined as:

� = −ε̄sgn (E1) , (6)

where ε̄ is the mean eccentricity between εw and ε,b. With
such a definition, the � parameter is able to differentiate
between round and narrow clusters due to the eccentricity
and, by means of E1, between direct and reverse structures.
According to this, the � parameter is able to distinguish among
the patterns described in Sec. II A, as shown in Fig. 5. Note
the sharp transitions delimiting the four different regimes.
In this way, � discriminates four well-differentiated regions
corresponding to the different types of patterns. In regions I
and II, � > 0 indicates the presence of direct structures, i.e.,
white spots or white stripes. In region I the small value of �

indicates that the structures are circlelike or white spots. When
entering in region II (� = 0.0025), � increases sharply until
0.8, indicating that the pattern evolves into a white-stripes
structure. Around � = 0.01, inverse structures dominate,
� < 0, and the pattern evolves to black stripes described by a
large value of �. And, finally, the last transition occurs at � =
0.03, where the forcing transforms the black-stripes structures
into black spots; note that � parameter falls to −0.2 due to
the low eccentricity of the black spots. This parameter also
describes the transient regimes before stationary patterns are
fully established (see Appendix A).

In order to emphasize the relevance of the � parameter, we
introduce a different system endowed with an internal dynam-
ics such that it never reaches a stationary state but instead
periodically oscillates between different configurations. In
Fig. 7 we present experiments showing the temporal evolution
of a CDIMA reaction subjected to a different spatiotemporal
external forcing [25].

Basically, the system undergoes a periodic oscillation
between two hexagonal-like Turing patterns. The experimental
context can be followed in Refs. [24,25] and it implies a
symmetry breaking phenomena leading to the alternation
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FIG. 6. (Color online) Temporal evoluction of a forcing CDIMA reaction (courtesy of D. G. Mı́guez [25]). (a) White spots (W-S); (b)
intermediate transition state (T); (c) black-spots (B-S). (d) Space-time plot of corresponding oscillations. (e) Oscillations of the � parameter
with time (in hours).

between direct and reverse hexagons, i.e., white spots, W-S
[Fig. 6(a)], and black spots, B-S [Fig. 6(c)], respectively.
Transitions to a mixed state composed by black and white
spots coexisting together appear for a short time [Fig. 6(b)],
which makes them difficult to characterize at that time. The
oscillatory dynamic is shown in the spatiotemporal plot in
Fig. 6(d). From the complete temporal evolution we calculated
the � parameter at each time and plotted its dependence with
time in Fig. 6(e).

Note that the � parameter jumps from positive to negative
values as the system transits from white to black spots.
Additionally, the � parameter allows us to characterize the
exact time where the mixed state exists (that periodically
appears every 0.72 h).

FIG. 7. (Color online) Temporal Evolution of � parameter for
Turing patterns showed in Figs. 2(a)–2(d): white spots � = 0 (red
circles), white stripes � = 0.008 (pink squares), black stripes � =
0.025 (blue diamonds), and black spots � = 0.045 (cyan stars).
Simulations were performed with a time step of 10−4 t.u.

V. DICUSSION AND CONCLUSIONS

The morphological characterization of transitions between
spatiotemporal structures is an interesting issue for diverse
disciplines, in particular for nonlinear dynamics. In this work,
we considered a theoretical and numerical example where
Turing patterns present transitions among four different main
structures from a morphological point of view. Due to the
failure of the Fourier transform to account for this information,
we apply the morphological measures that keep the entire
structural description.

We analyzed a set of parameters known as the Minkowski
functionals, as well as other morphological measures, to
evaluate the topology and geometric characteristics of the
Turing patterns and, in particular, the transitions between
the different types of structures. We studied the variation of
each functional with the control parameter, observing a great
sensitivity to the perturbation. Further, the functionals present
important correlations among them. Therefore, it is possible
to define a sort of measure able to differentiate all types of
Turing structures and characterize their transitions, � = −εw

sgn(E1). We observed two second-order phase transitions (in
analogy with thermodynamic systems [44]) between spots
and labyrinth structures and one first-order phase transition
between direct and reversed structures.

In this paper we have applied the � functional to different
examples coming from completely different contexts such as
experiments with chemical reactions, numerical simulations,
and patterns in nature (see Appendix B). In all cases, the
� parameter is a useful tool to discriminate among the
different morphological patterns. To conclude, the authors
want to enhance the relevance of this morphological study as
a useful technique to identify morphology and characterize
possible transitions among a great diversity of dynamical
spatiotemporal structures.
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APPENDIX A: TRANSIENT EVOLUTION OF PATTERNS

We analyze in this appendix the transient evolution of the
system described in Sec. II before reaching the stationary states
shown in Fig. 1.

The temporal evolution of the � parameter (Fig. 7)
discriminates among the four different types of Turing patterns.
Departing from initial random conditions, the � parameter
gives us information about the precise moment at which we
distinguish between black and white structures and also when
the patterns reach the transient state. Thus, after a random
initially state (see the inset in Fig. 7), the � parameter exhibits
a bifurcation. Meanwhile, white patterns exhibit a strong
increase in � (up to 0.8), with reverse structures presenting
a constant value. Later, the � parameter also differentiates
between spot and stripe configurations, demonstrating four
different asymptotical solutions once the system reaches the
transient.

APPENDIX B: CHARACTERIZATION OF PATTERNS
IN NATURE

The � parameter is useful to characterize structures more
complex than those patterns appearing in the CDIMA or BZ-
AOT reactions. Here we consider the patterns spontaneously
exhibited on the skin of animals (Fig. 8). Following the same

FIG. 8. (Color online) Morphological characterization of skin
patterns. The first row presents direct pictures from animals (tiger,
leopard, Ancistrus fish, and zebra). The second row are the corre-
sponding digitalized images following the Otsu algorithm. The tiger
and leopard skin patterns are reverse structures (with � equal to −0.82
and −0.44, respectively), while the fish (Ancistrus) and zebra skin
are direct patterns (with � equal to 0.37 and 0.75, respectively).

procedure as described along this manuscript, we can calculate
the � functional for the four examples plotted in Fig. 8.
Reversepatterns (tiger and leopard skins) produce a negative
value of �, while the Ancistrus fish and zebra present direct
patterns and, therefore, the � value is positive. Furthermore,
the numerical � values are compatible with those obtained
for the numerical or experimental cases. This emphasizes
the usefulness of this parameter to characterize patterns in
completely different contexts.
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E 74, 046203 (2006).
[22] G. Fernández-Garcı́a, D. I. Roncaglia, V. Pérez-Villar, A. P.
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