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Ghost resonance in the chaotic Chua’s circuit
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We experimentally investigate the ghost resonance phenomenon in the electronic circuit of Chua operating
in the chaotic regime. The circuit can be stimulated to jump between two single-scroll attractors by an external
periodic signal with an amplitude above an intrinsic threshold. For subthreshold signals, jumps between the
chaotic attractors can be promoted by a superposed white noise. We show that the circuit output can exhibit
a well-defined ghost resonance signature, i.e., a resonance on a frequency that is absent in a multicomponent
input signal, when the amplitudes of the input components are properly related. Further, we show that ghost
resonance can be induced by the Chua’s circuit’s own chaotic dynamics when it is driven by a suprathreshold
multicomponent signal without the need of an external noise source.
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I. INTRODUCTION

Noise-driven dynamical phenomena have attracted the
attention of the scientific community over the last decades. In
particular, stochastic resonance, which is the optimal detection
of a subthreshold sinusoidal signal through an optimal noise
level, has helped to change the traditional concept of noise
as a disturber agent [1]. Recently, stochastic resonance has
been used to explain a phenomenon that happens in the
human ear known as the missing fundamental illusion. In this
phenomenology, the human ear can perceive frequencies that
are not present in the characteristic function of pressed notes
[2–7]. This phenomenon has been studied in a neuron model
[7] and compared with a general case of unharmonious tones
used in the experiments of Schouten [8], where the complex
tones were constructed adding pure tones uniformly displaced
from an harmonic series. A resonance produced by noise in a
simple neuron model was observed with good agreement with
experiments. The missing frequency detected in the presence
of noise has been termed the ghost frequency and it has been
observed in different systems [9–12], a phenomenon nowadays
referred as ghost stochastic resonance.

On the other hand, chaos concepts have turned out to
be essential to understanding various nonlinear dynamical
processes. They have been the subject of intense investigations
in several systems, ranging from lasers [13] to the human
heart [14]. The interaction between systems that exhibit chaos
with external signals has been largely explored in the study of
synchronization processes [15,16]. Particularly, the interaction
between an external signal and a nonlinear system is important
since the response can be especially dependent on the input
signal form. Given a dynamical system, a frequent goal is to
determine an external driving signal that forces the system to
achieve some desired characteristic response [17].

In the present work, we explore the possibility of a chaotic
system to exhibit ghost resonance. We will use the Chua’s
circuit as a prototype system exhibiting chaos to develop a
detailed analog experiment aiming to characterize the main
features related to the ghost resonance. We will show that
the internal dynamics is responsible for displacements of
the resonance frequencies with respect to the theoretically
predicted values. Such displacement will be shown to reduce
substantially when the external signal is properly tailored to

match the threshold characteristics of the internal chaotic
dynamics. We perform our investigation considering the
influence of an external signal composed of a superposition
of sinusoidal functions and white noise on the dynamics of
the chaotic Chua’s circuit on which stochastic resonance plays
a fundamental role. After this preliminary analysis, we will
show that ghost resonance can be driven by the nonlinear
dynamical system’s own chaotic behavior, even in the absence
of an external noise source.

The manuscript is organized as follows: In the next section,
we will review some basic aspects of the stochastic and ghost
resonances. In Sec. III, we describe the main characteristics
of the Chua’s circuit that are relevant to the present study.
In Sec. IV, we present our analog experimental study for the
Chua’s circuit system driven by an external multicomponent
subthreshold signal in the presence of external noise. Section V
shows that the identification of ghost resonance can be done
even in the absence of noise when the system is stimulated by
a complex suprathreshold signal. In Sec. VI, we summarize
and draw our conclusions.

II. STOCHASTIC AND GHOST RESONANCES

Stochastic resonance refers to a nonlinear phenomenon in
which a dynamical system, benefited by an external noise, can
respond to a subthreshold signal [1]. Usually, these systems
depict a threshold which makes them unable to capture the
presence of an external periodic harmonic stimulus with an
amplitude weaker than the specified threshold. When noise
is superposed to a subthreshold signal, stochastic crossings
of the minimum stimulus level take place. However, for
very weak noise amplitudes, these crossings only occur in
the rare events of strong noise signals, with no correlation
with the underlying periodic stimulus. Therefore, the system
response does not bring any information from the typical
frequency of the subthreshold signal. On the other hand, in
the regime of strong noise amplitudes, the threshold crossings
are promoted by the frequent events of large noise input. Once
again, the system’s response is insensitive to the underlying
harmonic stimulus. At intermediate noise amplitudes, the
level crossings occur more frequently when large noise and
maximum of the periodic stimulus combine. In this way,
although the sequence of crossings remains stochastic, it
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depicts a pronounced frequency component matching that of
the underlying harmonic stimulus.

There is a typical noise amplitude at which the recognition
of the subthreshold signal is optimal, which is termed the
stochastic resonance condition. It can be obtained by tra-
ditional time-series analysis techniques. A commonly used
method is to compute the power spectrum of the system
response and to measure the signal-to-noise ratio at the
frequency corresponding to the subthreshold signal as a
function of the noise amplitude. Such signal-to-noise ratio has
a well-defined maximum at the optimal stochastic resonance
condition. An alternative approach is to construct histograms
of the frequencies at which the crossings occur. Near the
stochastic resonance condition, it displays a well-defined
maximum that identifies the frequency of the periodic stimulus.

Ghost resonance is a variant of the stochastic resonance
phenomenon in which the periodic stimulus is a superposition
of higher harmonics, equally spaced in frequency, of a
fundamental tone [3]. When the maximum of this complex
signal is below a response threshold, a stochastic resonance
condition can be reached in the presence of noise. However,
the main stochastic resonance is not in any of the frequencies
contained in the periodic stimulus but rather in the missing fun-
damental tone. This phenomenon is referred to as the missing
fundamental illusion, or ghost stochastic resonance, because
the perceived tone corresponds to the fundamental frequency
for which there is no actual source. This phenomenon has been
shown to be directly related to pitch perception of complex
sound waves [4–6]. Within this context, a relevant question
refers to the shift in the pitch perception when the frequencies
of the harmonic tones are rigidly displaced, which makes them
no longer higher harmonics of a fundamental tone. Within this
context, the external complex stimulus is usually considered
as a superposition of sinusoidal functions in the form

F (t) = P [sin (2πf1t) + sin (2πf2t) + ... + sin (2πfnt)],

(1)

where f1 = kf0 + �f, f2 = (k + 1)f0 + �f,..., fn = (k +
n − 1)f0 + �f ; �f is a frequency shift from a perfect
harmonic series, f0 is the fundamental tone, and P is the
amplitude of the signal components. A stochastic resonance is
observed in frequencies given by Ref. [3]

fr = f0 + �f/[k + (n − 1)/2], (2)

where n = 1,2,3... and k > 1. The above equation actually
corresponds to the expected frequency at which the highest
peaks of the complex signal occur. Such prediction has been
probed in several physical systems such as the FitzHugh-
Nagumo neuron (FHN) model [7], lasers [9], and electronic
systems [10]. It has also been well reproduced in experiments
of pitch perception [8]. A recent review on ghost stochastic res-
onance and its different manifestations can be found in Ref. [3].

III. THE CHUA’S ELECTRONIC CIRCUIT

Here, we used an electronic circuit of Chua [18,19] due
to its well-known characteristics, simplicity of construction,
and capacity to exhibit a variety of bifurcations and chaos.
Stochastic resonance has been numerically and experimentally
observed in this system [20–23]. Our aim is to explore the

FIG. 1. Experimental setup. A Chua’s chaotic circuit driven by
superposed periodic signal and white noise.

behavior of this simple nonlinear dynamical system to study
the main characteristics of the ghost resonance phenomenon
in the presence of chaos.

The circuit diagram of the Chua circuit, as shown in
Fig. 1, can be briefly described as consisting of five circuit
elements. The first four elements are standard linear passive
electrical components (L, R, C1, and C2) and the other is a
nonlinear active element. The temporal dynamical behavior of
the interconnected passive elements always leads to trivial
solution of voltages and currents tending to zero. Chaotic
or oscillatory trends occur with the inclusion of the fifth
locally active element whose current shows a nonlinear
dependence on its applied voltage, such as the Chua diode.
The nonlinear function slope must be negative somewhere
on the curve. The Chua’s diode consists of two operational
amplifiers, usually encapsulated in the same integrated circuit
(IC) to avoid different thermal fluctuations, connected in the
current feedback configuration. In the present investigation
the input signals are a sum of a broadband white noise
and a superposition of sinusoidal functions. The white noise
is due to a function generator (Agilent 33220) and the
superposition is digitally generated. This signal is applied
to the circuit via the inductor L. The chaotic signals were
measured by means of the voltages of the capacitors C1 and
C2, respectively. The data acquisition system employed in
the characterization consists of a 16-bit analog-to-digital card
(ADC)—NI PCI6281 (500 kS/s)—connected to a personal
computer (PC). Appropriated software was also used for data
processing. A sampling frequency of 20 kHz was used during
the experiments.

In the absence of sinusoidal and noise signals, the au-
tonomous Chua’s circuit exhibits chaotic dynamical behavior
for the parameters of the electronic components we used. The
phase space is characterized by two symmetric attractors called
single scrolls [see Fig. 2(a)]. The dynamical trajectory selects
one of two single scrolls depending on the initial condition
of the circuit. The characteristic frequency of rotation of
the dynamical trajectory around the single scroll is 2.8
kHz. The corresponding output signal is shown in Fig. 2(b).
In the presence of an external perturbation, the system can
be able to bifurcate and the phase space will exhibit the
double-scroll chaotic attractor shown in Fig. 2(c). Under this
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FIG. 2. (a) Single-scroll chaotic attractor. (b) Voltage V1 as a
function of time in the absence of external perturbation. (c) The
system is driven by an external sinusoidal signal of frequency f =
30 Hz reaching the double-scroll chaotic attractor. (d) Voltage V1

as a function of time when the circuit is driven by a suprathreshold
sinusoidal signal. The system jumps between the single scrolls. The
series of tr,j ’s represent the stochastic sequence of residence times.

condition, the system exhibits a sequence of irregular jumps
between the single scrolls [as shown in Fig. 2(d)].

As a preliminary step toward the study of ghost resonance
in the Chua’s circuit, we analyze under which conditions it
can show stochastic resonance; i.e., we determine the optimal
noise amplitude at which the system becomes able to detect
subthreshold periodic sinusoidal signals [1]. The verification
of stochastic resonance in a Chua’s circuit operating in the
chaotic regime has been well characterized in Ref. [23]. In gen-
eral, there are some basic ingredients involved in the stochastic
resonance of a nonlinear dynamical system. There is an ampli-
tude threshold level below which the system is unable to detect
a periodic external signal. In the Chua’s circuit the threshold
separates single- and double-scroll chaotic orbits. When the
external sinusoidal signal A sin (2πf t) has a small amplitude,
the system remains trapped in a single-scroll attractor. Jumps
between the symmetric single scrolls are performed when
the amplitude of the sinusoidal signal surpasses a threshold
level As .

In the Chua’s circuit, the threshold amplitude decreases
continuously with the frequency of the harmonic signal in
the frequency range we analyzed, as shown by the squared
symbols in Fig. 3. Stochastic jumps can be produced when
noise is superposed on a subthreshold sinusoidal signal.
However, if the noise amplitude is too small or two large, these
jumps occur at times that are uncorrelated to the modulations of
the underlying periodic signal and no signature of its presence
can be inferred from the system’s dynamics. However, at
intermediate noise levels, jumps are more probable to occur
when the subthreshold signal is maximum. In this regime, the
sequence of jumps is strongly correlated to the modulation
of the underlying external signal and a time-series analysis
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FIG. 3. (Color online) Squares: Frequency dependence of the
threshold amplitude of an harmonic input signal A sin (2πf1t) versus
frequency f1. Solid line is an exponential fit of data in the form
As = a + be−αf1 . Dotted line: The constant amplitude P = 28 mV
used in the experimental results reported in Fig. 4(a).

of the system output can reveal its presence. Actually, there
is an optimal noise amplitude at which the signature of the
underlying subthreshold signal is more pronounced. Such
optimal noise amplitude can be extracted by computing the
maximal signal-to-noise ratio of the output spectral density or
from frequency histograms derived from the residence time
series.

IV. GHOST STOCHASTIC RESONANCE IN THE
CHUA’S CIRCUIT

A. Interaction with an external periodic signal
with n = 2 components

As emphasized in the previous section, stochastic resonance
usually appears in systems with an activation threshold. The
ideal setup is to stimulate the system with a subthreshold
periodic signal which, by itself, is not able to make the system
surpass the activation barrier. In the presence of noise, random
jumps over the threshold are promoted which may bring
information concerning the typical frequency of the underlying
periodic signal. However, if the external periodic signal is too
weak, the sequence of jumps becomes uncorrelated and the
resonance signal is absent. Therefore, the external signal shall
have an amplitude smaller than the threshold, but close enough
to it to be detected by stochastic resonance.

In the case of Chua’s chaotic system, the threshold depends
on the frequency of the external sinusoidal signal, as seen
in Fig. 3. Above the dashed line connecting the squares, the
system jumps from one single scroll to another just due to the
periodic sinusoidal signal A sin (2πf t). Below this line,
the system remains trapped in a single scroll.

The frequency dependence of the threshold strongly affects
the ghost resonance verification in the Chua’s chaotic system.
For example, consider Figs. 4(a) and 4(c) where we present
the histograms of the experimental response of the system
driven by a signal composed of two superposed sinusoidal
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FIG. 4. (Color online) (a) Density plot of the frequency his-
tograms when the system is driven by an external periodic two-
component signal P [sin (2πf1t) + sin (2πf2t)] of constant amplitude
(P = 28 mV) superposed on a white optimal noise N = 0.9 V. Here
f2 = f1 + f0 = 3f0 + �f , with f0 = 30 Hz and �f ranging from
−20 Hz to 70 Hz. Solid lines are the theoretically predicted ghost
resonances. (b) Density plot of the frequency histograms when the
system is driven by a two-component periodic signal with distinct
amplitudes P [sin (2pif1t) + (A2

s /A
1
s ) sin (2pif2t)] and white noise.

Here P depends on the value of frequency shift �f and is set below the
frequency-dependent threshold level Ps (shown in Fig. 5). The values
of A2

s /A
1
s are the ratio of the threshold amplitudes of each component.

(c) and (d) show the histograms of the output frequencies for the cases
of components with the same (c) and different (d) amplitudes. These
have been obtained for the particular case of f1 = 40 Hz. In (c)
and (d) the vertical lines represent the theoretically predicted ghost
frequency.

components with the same amplitude P [sin (2πf1t) +
sin (2πf2t)] and optimal noise amplitude N = 0.9 V. In
Fig. 4(a), we have chosen f1 to be on the horizontal axis
and the output frequency f to be on the vertical axis. In
this figure, the density plot is obtained by computing the
histograms of the typical frequencies fj of jumps between
the single scrolls in the output signal V1 (Figs. 1 and 2). fj

was obtained by taking the inverse of the sum of consecutive
residence times t

j
r + t

j+1
r . The histograms were obtained by

counting the number of occurrences of fj within a window
of 1 Hz. The vertical line in Figs. 4(c) and 4(d) marks the
point where the main ghost frequency should arise according
to theoretical arguments [3]. The parameters used to build the
external two-component signal were P = 28 mV (below the
threshold of the highest frequency component), f0 = 30 Hz,
k = 2, and n = 2; �f varied from −20 Hz to 70 Hz. The
peak in the histogram is the signature of the ghost resonance
phenomenon.

In Fig. 4(a), although the general structure is in agreement
with the theoretical prediction for the location of the ghost
frequencies, we verify that there are small differences between
the predicted and experimental values. Further, the histograms
do not have a well-defined peak structure, thus exhibiting
a weak sensibility to the stochastic resonance condition.
These two aspects are directly related to the frequency
dependence of the threshold. When the system is driven by
a signal with two components with the same amplitude, the

experiment shows that the circuit responds predominantly to
the signal component which requires the smaller amplitude
to promote the jumps between the single-scroll attractors.
Therefore, the second component f2 is always closer to its
threshold, thus leading to the frequency displacements from
the ghost resonance prediction. The first component f1 does
not have sufficient amplitude to significantly influence the
dynamic response of the system because it is too far from
the threshold and, therefore, from the internal resonance zone.
These features make the system weakly sensitive to the ghost
stochastic condition.

Based on the above discussion, we propose that a better
ghost resonance signal can be obtained by taking advantage
of the internal dynamics of the system when constructing
the complex external signal. The main idea is to allow both
components to have amplitudes close to their respective
thresholds. In what follows, we will consider the external
two-component periodic signal to be in the form

F (t) = P sin (2πf1t) + Q sin (2πf2t), (3)

where P and Q allow us to adjust the individual intensity of
the components and s = 1,2,...,n denotes their dependence on
the frequencies f1 = kf0 + �f and f2 = (k + 1)f0 + �f for
different values of the frequency shift �f . In order to choose
the best ratio between the amplitudes of the two components,
we observe that each of them has a distinct threshold level when
acting individually, namely A1

s and A2
s for the frequencies f1

and f2, respectively. Using the parameters f0 = 30 Hz, k = 2,
with �f ranging from −20 Hz to 70 Hz, we determined the
values of A1

s and A2
s . In the case of both components acting

together, the best condition to achieve the ghost resonance
is when their amplitudes are equally close to their respective
thresholds. In this way, we consider these amplitudes to have
the same ratio as the threshold levels by considering Q =
(A2

s /A
1
s )P .

Even with both components having amplitudes proportional
to their respective thresholds, the complex signal still depicts a
frequency dependence of its threshold amplitude Ps . In Fig. 5,
we report the values of the threshold amplitude ratio A2

s /A
1
s ,

as well as the overall threshold amplitude Ps as a function
of the frequency shift �f . Besides reporting the threshold
for the case of two superposed components, we also report
the threshold for a more complex signal containing n = 4
components that will be explored in the next subsection.
The ghost stochastic resonance signal can then be optimized
for each frequency displacement by choosing the overall
amplitude of the complex signal to be nearly below its
respective threshold.

The above procedure was implemented to analyze the ghost
resonance phenomenon in the Chua’s circuit, as shown in
Figs. 4(b) and 4(d). Notice that the typical histogram now
has a narrower well-defined peak at the theoretically predicted
ghost frequencies, as seen in Fig. 4(d). The density plot
[Fig. 4(b)] better characterizes the improvement of this
approach as compared to the one using a periodic signal with
two superposed components with identical amplitudes. We can
see that the displacements from the predicted resonances have
considerably decreased, with the peaks of the histograms well
centered at the theoretical values.
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FIG. 5. Ratio between the threshold amplitudes A2
s /A

1
s of individ-

ual components, as well as the thresholds Ps of the n = 2 and n = 4
components signals having distinct amplitudes, versus the frequency
shift �f . Here f1 = 2f0 + �f and f2 = 3f0 + �f with f0 = 30 Hz.
10 distinct frequency shifts are shown, indicated by the index s. The
thresholds for the n = 2 components signal were used to obtain the
experimental results reported in Fig. 4(b), while the thresholds for
the n = 4 components signal were used to obtain the results reported
in Fig. 6.

We would like to stress that although we have used distinct
amplitude ratios for each frequency shift, they vary over a
very limited range. We have experimentally checked that a
ghost resonance signal with a similar accuracy can be achieved
if, instead using the actual threshold amplitude ratio for
each frequency shift, one simply uses the average threshold
ratio over the entire experiment, as will be employed in the
following.

B. Interaction with a complex signal with n = 4 components

The same methodology developed in the last section can
be applied when the system is driven by a complex signal
containing more than two components. In order to obtain a
well-defined signature of the ghost resonance, we generalize
the form of the input signal to account for the decay of the
threshold amplitude at each frequency present in the complex
signal. Within this line, the input signal is considered to be
given by

F (t) = P [sin (2πf1t) + (
A2

s /A
1
s

)
sin (2πf2t) + ...

+ (
An

s /A
1
s

)
sin (2πfnt)]. (4)

We have driven the chaotic Chua’s circuit using the
above input signal superposed to a white noise to verify
the ghost resonance phenomenon for the particular case of
a signal containing n = 4 components. We have used the same
parameters as in Fig. 4(b). However, in this case, we took the
ratio between the threshold amplitudes as the average over
all frequency shifts analyzed. Therefore the relative amplitude
ratio of the signal components was taken as

F (t) = P [sin (2πf1t) + 0.72 sin (2πf2t)

+ 0.56 sin (2πf2t) + 0.48 sin (2πf2t)]. (5)

FIG. 6. (Color online) Density plot of the frequency histograms
of the output signal for the case of a complex sub-threshold input
periodic signal with n = 4 components. The peaks of the histograms
still depict good agreement with the theoretical prediction for the
location of the ghost frequencies (solid lines). Here fn = f1 + (n −
1)f0, with f0 = 30 Hz and we used the same noise level as in
Fig. 4.

In this way, only the overall input amplitude P was adapted
for each frequency shift in order to leave the input signal
nearly below the activation threshold Ps of jumps between
the single-scroll attractors, shown as triangles in Fig. 5. The
density plot of the frequency histograms contained in the
output signal is shown in Fig. 6. Note that the general structure
is similar to the one reported in Fig. 4(b) for the case of a
two-component input. There is a very good coincidence of
the histogram peaks with the theoretically predicted values
of the ghost frequency (shown as solid lines). This result is
in agreement with previous observations of ghost resonance
signals in several nonlinear stochastic systems on which the
structure of the frequency histograms of the system’s response
is independent of the number of sinusoidal components present
in the external signal.

Finally, we have observed that within the range of frequen-
cies used in our experiments, the threshold amplitude of each
sinusoidal component is well fitted by an exponential decay
as a function of the signal frequency (shown as a solid line
in Fig. 3). Therefore, a simple way to construct a complex
external signal that can produce a well-defined signature of the
ghost resonance phenomenon is to assume that An

s /A
1
s = γ n−1

for all frequency shifts. We will use this approach in the next
section when discussing the possibility of identifying the ghost
resonance signature in the Chua’s circuit even in the absence
of external noise.

V. GHOST RESONANCE WITHOUT NOISE

When the amplitude of the input periodic signal is above the
activation threshold, jumps between the single-scroll attractors
can occur without the assistance of an external noise. A
relevant question to answer is whether a nonlinear chaotic
system can depict the missing fundamental illusion under
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FIG. 7. Histogram of the frequencies contained in the output
signal V1 when the system is stimulated by a two-component signal
with an overall amplitude above the activation threshold. The signal
frequencies are f1 = 60 Hz and f2 = 90 Hz. The histogram shows
a resonance in the missing fundamental frequency f0 = 30 Hz for
amplitudes not far above the threshold.

this circumstance. In order to explore this point, we have
firstly stimulated the chaotic Chua’s circuit with a periodic
signal presenting two components with identical amplitudes
F (t) = P [sin (2πf1t) + sin (2πf2t)] with f1 = 60 Hz and
f2 = 90 Hz. The overall amplitude was varied above the
threshold level. In Fig. 7 we plot the histogram of the output
signal frequencies for three representative values of the input
amplitude. One can clearly notice that a resonance at f0 = 30
Hz appears for amplitudes nearly above the threshold. This is
exactly the missing fundamental illusion, namely, a resonance
at a fundamental frequency that is not present in the complex
input signal. Its signature is more evident at intermediate
amplitudes. In the present case, the signal amplitude resulting
in the highest peak on the histogram at the missing fundamental
frequency is around P = 120 mV.

In order to verify whether the missing fundamental
frequency appearing in the case of suprathreshold signals
depicts the expected dependence on a uniform shift of the
signal frequencies, we drove the system by a two-component
suprathreshold signal with frequencies uniformly shifted such
that f2 = f0 + f1 = 3f0 + �f . In Fig. 8 we show the density
plot of the frequency histograms of the output signal. The peaks
in the histograms present very good agreement with the the-
oretical prediction for the resonance frequencies (solid lines).
Therefore, in this case of a suprathreshold two-component
signal, there is no need to scale the signal components to
properly detect the ghost resonance signature.

We extended the above analysis for a n = 4 components
signal. When keeping all components with the same amplitude,
the optimal overall amplitude to observe the ghost resonance
signature is reduced to P = 55 mV. This is related to the fact
that the highest frequency component has a smaller threshold
(as shown in Fig. 3). The resulting density plot of the frequency
histograms is reported in Fig. 9. For an input signal with n = 4
components, these peaks were expected to fall along straight

FIG. 8. (Color online) Density plot of the frequency histogram of
the output signal when the Chua’s circuit is driven by a suprathreshold
two-component external signal without noise. Here we used both
components with amplitude P = 120 mV, and f2 = f1 + f0 with
f0 = 30 Hz. The solid lines show the theoretical prediction of the
ghost frequencies.

lines with slopes given by the inverse of semi-integers [see
Eq. (2)]. However, the data show that the peaks follow straight
lines with slopes given by the inverse of integer numbers, as
should be the case of an input signal with an odd number of
components. This feature has the same origin of the resonance
displacement reported in the case of subthreshold signals.
The amplitude thresholds of the components with the lowest

FIG. 9. (Color online) Density plot of the output signal frequency
histograms when the Chua’s circuit is stimulated by a suprathreshold
signal with n = 4 components with the same amplitude P = 55 mV.
Here we used fn = f1 + (n − 1)f0, with f0 = 30 Hz. The straight
lines have slopes given by the inverse of integer numbers, as would
be expected for a complex input signal with an odd number of
components. This feature indicates that the input components are
not contributing on the same level to the dynamical mechanism of
ghost resonance.
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FIG. 10. (Color online) Density plot of the output signal fre-
quency histograms when the Chua’s circuit is stimulated by a
suprathreshold signal with n = 4 components with amplitudes
obeying An/An−1 = γ = 0.5. The amplitude of the lowest frequency
component was P = 210 mV. Frequencies are the same as in Fig. 9. In
this case, there is a very good agreement between the experimental and
theoretical location of the ghost resonance frequencies. The straight
lines have slopes given by the inverse of semi-integers, as expected
for a complex input signal with an even number of components.

and highest frequencies are quite distinct and they are not
contributing on the same level to the dynamical mechanism of
ghost resonance.

In order to overcome this point, we drive the system with a
complex signal on which the components have relative ampli-
tudes following the frequency dependence of the threshold.
Based on the roughly exponential decay observed for the
threshold in the small frequency regime we are probing (as
shown in Fig. 3), we drove the system with an input signal of
the form

F (t) = P [sin (2πf1t) + γ sin (2πf2t)

+ γ 2 sin (2πf3t) + γ 3 sin (2πf4t)]. (6)

In Fig. 10 we report the density plot of the output frequency
histograms for distinct frequency shifts of a n = 4 components
input signal with γ = 0.5. Here, we also considered k = 2 in
such a way that the lowest frequency present in the input
signal corresponds to a shift of the second harmonic of the
fundamental frequency f0 = 30 Hz. The frequency shift was
also varied from −20 Hz up to 70 Hz. We have observed in this

study that the overall amplitude of the input signal, at which the
ghost resonance signature is optimal, is P = 210 mV. With this
properly tailored input signal, on which all components play
a similar role in the system’s dynamics, we got a very good
agreement between the experimental and theoretical values,
with the ghost resonance frequencies falling along straight
lines with slopes given by the inverse of semi-integers.

VI. SUMMARY AND CONCLUSIONS

In summary, we performed an experimental analog study
of the ghost stochastic resonance in the chaotic Chua’s circuit
driven by a multicomponent external signal. For external sig-
nals with an amplitude below a threshold level, the dynamical
attractor is a single scroll. When the system is stimulated by
a subthreshold signal, jumps between two symmetric single
scrolls can be activated by a superposed white noise. In the
chaotic Chua’s circuit, the threshold level of a sinusoidal signal
depends on its frequency. Therefore the distinct components
of a complex signal can play different roles in the dynamics.
We have shown that when the Chua’s circuit is driven by
a superposition of a subthreshold multicomponent signal
and white noise, the output signal can display the ghost
resonance phenomenon, on which the system responds in
a frequency that is not present in the input signal, related
to a missing fundamental component. Due to the frequency
dependence of the threshold level, we have found that the
ghost resonance signature is deteriorated when the system
is driven by a complex signal on which all components
have the same amplitude. In this case, the output frequency
histograms do not depict well-defined peaks and the location
of the experimental peaks are displaced with respect to the
theoretically predicted ghost frequencies. We have shown
that a very well defined ghost resonance signature can be
achieved when the amplitudes of the input signal components
decay with frequency following the corresponding decay of
their individual threshold levels. Finally, we experimentally
observed that ghost resonance can still be identified without
the need of an external noise for suprathreshold signals. These
results corroborate the recently developed concept that ghost
resonance is a ubiquitous phenomena presented by nonlinear
dynamical systems.
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