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Stochastic blockmodels are generative network models where the vertices are separated into discrete groups,
and the probability of an edge existing between two vertices is determined solely by their group membership.
In this paper, we derive expressions for the entropy of stochastic blockmodel ensembles. We consider several
ensemble variants, including the traditional model as well as the newly introduced degree-corrected version
[Karrer et al., Phys. Rev. E 83, 016107 (2011)], which imposes a degree sequence on the vertices, in addition
to the block structure. The imposed degree sequence is implemented both as “soft” constraints, where only the
expected degrees are imposed, and as “hard” constraints, where they are required to be the same on all samples
of the ensemble. We also consider generalizations to multigraphs and directed graphs. We illustrate one of many
applications of this measure by directly deriving a log-likelihood function from the entropy expression, and using
it to infer latent block structure in observed data. Due to the general nature of the ensembles considered, the
method works well for ensembles with intrinsic degree correlations (i.e., with entropic origin) as well as extrinsic
degree correlations, which go beyond the block structure.
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I. INTRODUCTION

Stochastic blockmodels [1–4] are random graph ensembles,
in which vertices are separated into discrete groups (or
“blocks”), and the probability of an edge existing between two
vertices is determined according to their group membership.
This class of model (together with many variants which incor-
porate several other details [5,6]) has been used extensively
in the social sciences, where the blocks usually represent the
roles played by different social agents. In this context, it has
been used mainly as a tool to infer latent structure in empirical
data. More recently, it has been applied as an alternative to
the more specific task of community detection [7], which
focuses solely on densely connected communities of vertices
[8–15]. In addition to its usefulness in this context, stochastic
blockmodels serve as a general framework which has many
potential applications, such as the parametrization of network
topologies on which dynamical processes can occur [16,17],
and in the modeling of adaptive networks, where the topology
itself can vary according to dynamical rules [18].

The standard stochastic blockmodel formulation [1] as-
sumes that all vertices belonging to the same block are
statistically indistinguishable, which means that they all have
the same expected degree. This restriction is not very attractive
for a general model, since many observed networks show an
extreme variation of degrees, even between vertices perceived
to be of the same block (or “community”). Recently, this
class of model has been augmented by the introduction of
the “degree-corrected” variant [12], which incorporates such
degree variation, and was shown to be a much better model
for many empirical networks. With this modification, the
stochastic blockmodel becomes more appealing, since (except
for the degrees) it only discards local scale properties of the
network topology (such as clustering, motifs, etc. [19]), but can
represent well arbitrary global or mesoscale properties, such
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as assortativity/dissortativity [20], community structure [7,21],
bipartite and multipartite adjacency, and many others.

In this work, we focus on the microcanonical entropy
[22–25] of stochastic blockmodel ensembles, defined as S =
ln �, where � is the number of graphs in the ensemble.
This quantity has the traditional interpretation of measuring
the degree of “order” of a given ensemble, which is more
disordered (i.e., random) if the entropy is larger. It is also
a thermodynamic potential, which, in conjunction with other
appropriate quantities such as energy—representing different
sorts of interactions, such as homophily in social systems [26]
or robustness in biological dynamical models [16]—can be
used to describe the equilibrium properties of evolved network
systems [16,27–37].

From the entropy S one can directly derive the log-
likelihood function L = lnP , where P is the probability of
observing a given network realization, which is used often in
the blockmodel literature. Assuming that each graph in the
ensemble is realized with the same probability, P = 1/�, we
have simply that L = −S. The log likelihood can be used to
infer the most likely block structure which matches a given
network data, and thus plays a central role in the context
of blockmodel detection. However, the expressions for the
log-likelihood L, as they are often derived in the stochastic
blockmodel literature, do not allow one to directly obtain
the entropy, either because they are expressed in nonclosed
form [1–4,13,14,38], or because they only contain terms which
depend on a posteriori partition of a sample network, with the
remaining terms neglected [10,12,13].

In this work, we derive expressions for the entropy of
elementary variations of the blockmodel ensembles. The
choice of microcanonical ensembles permits the use of
straightforward combinatorics, which simplify the analysis.
We consider both the traditional and degree-corrected variants
of the model, as well as their implementations as ensembles
of multigraphs (with parallel edges and self-loops allowed)
and simple graphs (no parallel edges or self-loops allowed).
The degree-corrected variants considered here represent a
generalization of the original definition [12], since arbitrary
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nearest-neighbor degree correlations are also allowed. For the
degree-corrected variants, we consider the imposed degree
sequence on the vertices both as “soft” and “hard” constraints:
When the degree constraints are “soft,” it is assumed that
the imposed degree on each vertex is only an average over
the ensemble, and their values over sampled realizations are
allowed to fluctuate. With “hard” constraints, on the other
hand, it is imposed that the degree sequence is always the
same on all samples of the ensemble. We also consider the
directed versions of all ensembles. These represent further
refinements of the original definition [12], which considered
only undirected graphs with “soft” degree constraints.

The entropy expressions derived represent generalizations
of several expressions found in the literature for the case
without block structure [24,39–41], which are easily recovered
by setting the number of blocks to one.

As a direct application of the derived entropy functions,
we use them to define a log-likelihood function L, which can
be used to detect the most likely blockmodel partition which
fits a given network data. We show that these estimators work
very well to detect block structures in networks where there
are intrinsic (as in the case of simple graphs with broad degree
distributions) or extrinsic degree correlations. In particular, the
expressions derived in this work perform better for networks
with broad degree distributions than the sparse approximation
derived in Ref. [12], which may result in suboptimal partitions.

This paper is divided as follows. In Sec. II we define
the traditional and degree-corrected stochastic blockmodel
ensembles. In Secs. III–V we systematically derive analytical
expressions for the most fundamental ensemble variants,
including simple graphs (Sec. III) and multigraphs (Sec. IV),
both the traditional and (soft) degree-corrected versions, as
well as the undirected and directed cases. In Sec. V we obtain
the entropy for the degree-corrected ensembles with hard
degree constraints, for the same variants described in the other
sections. In Sec. VI we apply the derived entropy expression
for the soft degree-corrected ensemble to the problem of
blockmodel detection, by using it as a log-likelihood function.
(Readers more interested in the application to blockmodel
detection can read Secs. II to III B, and then move directly
to Sec. VI.) We finalize in Sec. VII with a conclusion.

II. TRADITIONAL AND DEGREE-CORRECTED
BLOCKMODELS

The traditional blockmodel ensemble is parametrized as
follows: There are N vertices, partitioned into B blocks, and
nr is number of vertices in block r ∈ [0,B − 1]. The matrix ers

specifies the number of edges between blocks r and s, which
are randomly placed. As matter of convenience, the diagonal
elements err are defined as twice the number of edges internal
to the block r (or equivalently, the number of “half-edges”).
An example of a specific choice of parameters can be seen in
Fig. 1.

This is a “microcanonical” formulation of the usual “canon-
ical” form which specifies instead the probability wrs of an
edge occurring between two vertices belonging to blocks r

and s, so that the expected number of edges ers = Ewrs is
allowed to fluctuate, where E is the total number of edges.
If the nonzero values of ers are sufficiently large, these two

s

r

FIG. 1. (Color online) Example of a traditional stochastic block-
model with six blocks of equal size, and matrix ers given on the
left (each square is a matrix element, and its size corresponds to
its magnitude). On the right is a sample of this ensemble with 103

vertices.

ensembles become equivalent, since in this case fluctuations
around the mean value can be neglected.

The degree-corrected variant [12] further imposes a degree
sequence {ki} on each vertex i ∈ [0,N − 1] of the network,
which must be obeyed in addition to the block structure
specified by nr and ers . This restriction may be imposed in two
different ways. The first approach assumes these constraints
are “soft,” and each individual degree ki represents only the
average value of the degree of vertex i over all samples of
the ensemble [42,43] (this is the original ensemble defined in
Ref. [12]). Here, we will also consider a second approach
which assumes the degree constraints are “hard,” and the
imposed degree sequence must be exactly the same in all
samples of the ensemble. We will obtain the entropy for both
these ensembles in the following.

III. SIMPLE GRAPH ENSEMBLES

A. Standard stochastic blockmodel

In simple graphs there can be at most only one edge between
two vertices. Therefore, we can enumerate the total number of
different edge choices between blocks r and s as

�rs =
(

nrns

ers

)
, �rr =

((
nr

2

)
err

2

)
, (1)

which leads to the total number of graphs,

� =
∏
r�s

�rs . (2)

The entropy is obtained by Sg = ln �. Considering the values
of nr large enough so that Stirling’s approximation can be
used, expressed as ln ( N

m ) ∼= NH (m/N ), where H (x) is the
binary entropy function,

H (x) = −x ln x − (1 − x) ln(1 − x) (3)

= −x ln x + x −
∞∑
l=1

xl+1

l(l + 1)
, (4)

we obtain the compact expression,

Sg = 1

2

∑
rs

nrnsH

(
ers

nrns

)
. (5)
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Equation (5) has been derived by other means in Ref. [10]
(expressed as a log-likelihood function), for the canonical
variant of the ensemble. Making use of the series expansion
given by Eq. (4), the entropy can be written alternatively as

Sg = E − 1

2

∑
rs

ers ln

(
ers

nrns

)

− 1

2

∑
rs

nrns

∞∑
l=1

1

l(l + 1)

(
ers

nrns

)l+1

, (6)

where E = ∑
rs ers/2 is the total number of edges in the

network. The terms in the last sum in the previous expression
are of the order O(e2

rs/nrns). This number is typically of the
order ∼〈k〉2, where 〈k〉 is the average degree of the network.
Since the other terms of the expression are of the order ∼〈k〉N ,
and one often has that 〈k〉 � N , the last term can be dropped,
which leads to

Sg
∼= E − 1

2

∑
rs

ers ln

(
ers

nrns

)
. (7)

The last term of Eq. (7) is compatible with the equivalent
expression for the log-likelihood derived in Ref. [12]. We
note that while this limit can be assumed in many practical
scenarios, one can also easily imagine ensembles which are
“globally sparse” (i.e., 〈k〉 � N ), but “locally dense,” with
〈k〉r = er/nr ∼ ns , for any two blocks r , s (with er = ∑

s ers

being the total number of half-edges adjacent to block r).
In such scenarios Eq. (7) will neglect potentially important
contributions to the entropy, and therefore Eq. (5) or (6) should
be used instead.

As shown in Ref. [12], the second term of Eq. (7)
can be slightly rewritten as the Kullback-Leibler divergence
[44] between the actual and expected distributions of block
assignments at the opposing ends of randomly chosen edges,
where the expected distribution takes into account only the
size of each block. This can be interpreted as the amount
of additional information required to encode a given block
partition, if one assumes a priori that the amount of edges
incident to each block is proportional to its size.

1. Directed graphs

The ensemble of directed blockmodels can be analyzed
in an analogous fashion. The only differences is that for the
directed version, the matrix ers can be asymmetric, and one
needs to differentiate between the number of edges leaving
block r , e+

r = ∑
s ers , and the number of edges arriving,

e−
r = ∑

s esr . The number of edge choices �rs is given exactly
as in Eq. (1), the only difference being that one no longer
needs to differentiate the diagonal term, which in this case
becomes �rr ≡ �rs |s=r . Since the matrix ers is in general
asymmetric, the total number of graphs becomes the product
over all directed r,s pairs,

� =
∏
rs

�rs . (8)

Therefore the entropy becomes simply,

Sg =
∑
rs

nrnsH

(
ers

nrns

)
, (9)

which is identical to Eq. (5), except for a factor 1/2. (Note
that for directed graphs we define err as the number of edges
internal to block r , not twice this value as in the undirected
case.) Naturally, the same alternative expression as in Eq. (6)
can be written, as well as the same approximation as in Eq. (7),
which will be identical except for a factor 1/2.

B. Degree-corrected ensembles with “soft” constraints

Following [12], we introduce degree variability to the
blockmodel ensemble defined previously, by imposing an
expected degree sequence {κi} on all vertices of the graph,
in addition to their block membership. Thus each individual κi

represents only the average value of the degree of vertex i over
all samples of the ensemble. Such “soft” degree constraints
are relatively easy to implement, since one needs only to
extend the non-degree-corrected version, simply by artificially
separating vertices with given imposed expected degrees into
different degree blocks. Thus, each existent block is labeled
by a pair (r,κ), where the first value is the block label itself,
and the second is the expected degree label. In order for the
label (r,κ) to be meaningful, we need to have intrinsically
that e(r,κ) = ∑

sκ ′ e(r,κ),(s,κ ′) = κn(r,κ), such that the average
degree of vertices in block (r,κ) is exactly κ . This results
in an ensemble with KB blocks, where K is the total number
of different expected degrees, n(r,κ) is the number of vertices
in block (r,κ), and e(r,κ),(s,κ ′) is the number of edges between
(r,κ) and (s,κ ′). Inserting this block structure into Eq. (5), one
obtains

Sgs = 1

2

∑
rκsκ ′

n(r,κ)n(s,κ ′)H

(
e(r,κ),(s,κ ′)

n(r,κ)n(s,κ ′)

)
. (10)

This ensemble accommodates not only blockmodels with
arbitrary (expected) degree sequences, but also with arbitrary
degree correlations, since it is defined as a function of the
full matrix e(r,κ),(s,κ ′). (It is therefore a generalization of the
ensemble defined in Ref. [12].) However, it is often more useful
to consider the less-constrained ensemble where one restricts
only the total number of edges between blocks, irrespective of
their expected degrees,

ers =
∑
κκ ′

e(r,κ),(s,κ ′). (11)

This can be obtained by maximizing the entropy Sgs , subject
to this constraint. Carrying out this maximization, one arrives
at the following nonlinear system,

e(r,κ),(s,κ ′) = n(r,κ)n(s,κ ′)

exp(λrs + μrκ + μsκ ′ ) + 1
, (12)

ers =
∑
κκ ′

e(r,κ),(s,κ ′), (13)

κn(r,κ) =
∑
sκ ′

e(r,κ),(s,κ ′), (14)

which must be solved for {e(r,κ),(s,κ ′),λrs,μrκ}, where {λrs} and
{μrκ} are Lagrange multipliers which impose the necessary
constraints, described by Eqs. (13) and (14), respectively.
Unfortunately, this system admits no general closed-form
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solution. However, if one makes the assumption that exp(λrs +
μrκ + μsκ ′ ) 
 1, one obtains the approximate solution,

e(r,κ),(s,κ ′) ∼= ers

eres

n(r,κ)n(s,κ ′)κκ ′. (15)

This is often called the “sparse” or “classical” limit [29], and
corresponds to the limit where intrinsic degree correlations
between any two blocks r and s can be neglected [45].
Equation (15) is intuitively what one expects for uncorrelated
degree-corrected blockmodels: The number of edges between
(r,κ) and (s,κ ′) is proportional to the number of edges between
the two blocks ers and the degree values themselves, κκ ′.
Including this in Eq. (10), and using Eq. (4) one obtains

Sgsu
∼= E −

∑
κ

Nκκ ln κ − 1

2

∑
rs

ers ln

(
ers

eres

)

−1

2

∑
rs

nrns

∞∑
l=1

1

l(l + 1)

(
ers

eres

)l+1

〈κl+1〉r〈κl+1〉s ,

(16)

where Nκ ≡ ∑
r n(r,κ) is the total number of vertices with

expected degree κ , and 〈kl〉r = ∑
i∈r κl

i /nr is the lth moment
of the expected degree sequence of vertices in block r . It is
interesting to compare this expression with the entropy Sg for
the nondegree-corrected ensemble, Eq. (6). The importance of
the terms in the last sum of Eq. (16) will depend strongly on the
properties of the expected degree sequence {κi}. Irrespective
of its average value, if the higher moments 〈κl+1〉r of a given
block r are large, so will be their contribution to the entropy.
Therefore these terms cannot be neglected a priori for all
expected degree sequences, regardless of the values of the
first moments 〈k〉r . Only if one makes the (relatively strong)
assumption that

nrns

(
ers

eres

)l+1

〈κl+1〉r〈κl+1〉s � ers, (17)

for any l > 0, then Eq. (16) can be rewritten as

Sgsu ≈ E −
∑

κ

Nκκ ln κ − 1

2

∑
rs

ers ln

(
ers

eres

)
. (18)

The last term of Eq. (18) is compatible with the expression for
the log-likelihood derived in Ref. [12], for the degree-corrected
ensemble. It is interesting to note that, in this limit, the block
partition of the network and the expected degree sequence
contribute to independent terms of the entropy. This means
that the expected degrees can be distributed in any way
among the vertices of all blocks, without any entropic cost,
as long as the expected degree distribution is always the same.
Furthermore, as shown in Ref. [12], the last term of Eq. (18) can
also be rewritten as the Kullback-Leibler divergence between
the actual and expected distributions of block assignments
at the opposing ends randomly chosen edges, similarly to
the non-degree-corrected blockmodels. The main difference
now is that the expected distribution is expressed in terms
of the total number of half-edges er leaving block r , instead
of the block size nr . Equivalently, the last term corresponds
(after slight modifications) to the mutual information of block
memberships at the end of randomly chosen edges.

A typical situation where Eq. (17) holds is when the
expected degree sequence is such that the higher moments
are related to the first moment as 〈κl〉r ∼ O(〈κ〉lr ). This is the
case, for instance, of expected degrees distributed according
to a Poisson. In this situation, the left-hand side of Eq. (17)
can be written as el+1

rs /(nrns)l , and thus Eq. (17) holds when
e2
rs/nrns � ers , which is often the case for sparse graphs, as

discussed before for the non-degree-corrected blockmodels.
On the other hand, if the expected degree distributions are
broad enough, the higher moments can be such that their
contributions to the last term cannot be neglected, even
for sparse graphs. One particularly problematic example are
degree distributions which follow a power law, n(r,κ) ∝ κ−γ .
Strictly speaking, for these distributions all higher moments
diverge, 〈κl〉r → ∞, for l � γ − 1. Of course, this divergence,
in itself, is inconsistent with the intrinsic constraints of
simple graph ensembles, since it would mean that there are
expected degrees κi in the sequence which are larger than
the network size, or otherwise incompatible with the desired
block structure. In order to compute the moments correctly,
one would need to consider more detailed distributions (e.g.,
with structural cutoffs which depend on the network size, or
the sizes of the blocks [46]). Nevertheless, it is clear that in
such situations one would not be able to neglect the entropy
terms associated with the higher moments, since they can, in
principle, be arbitrarily large.

Note that certain choices of expected degree sequences are
fundamentally incompatible with Eq. (15), and will cause
Eq. (16) to diverge. If one inserts Eq. (15) into Eq. (10),
the term inside the sum becomes H

(
ersκκ ′/eres

)
. Since the

binary entropy function H (x) is only defined for arguments in
the range 0 � x � 1, then Eq. (18) will only converge if the
following holds:

κκ ′ � eres

ers

, (19)

for all κ , κ ′ belonging to blocks r and s, respectively. If
Eq. (19) is not fulfilled, then Eq. (15) cannot be used as an
approximation for the solution of the system in Eqs. (12)–(14),
and consequently Eq. (16) becomes invalid. Note that even
if Eq. (19) is strictly fulfilled, it may also be the case that
Eq. (15) is a bad approximation, which means there will
be strong intrinsic interblock dissortative degree correlations
[47,48]. A sufficient condition for the applicability of Eq. (16)
would therefore be κκ ′ � eres/ers , for all κ , κ ′ belonging
to blocks r and s, respectively. However, it is important
to emphasize that even if Eq. (15) is assumed to be a
good approximation, it only means that the intrinsic degree
correlations between any given block pair r,s can be neglected,
but the entropic cost of connecting to a block with a broad
degree distribution is still reflected in the last term of Eq.
(16). This captures one important entropic effect of broad
distributions, which can be important (e.g., in inferring block
structures from empirical data) as will be shown in Sec. VI.

1. Directed graphs

The directed degree-correted variants can be analyzed
in analogous fashion, by separating vertices into blocks
depending on their expected in- and out-degrees, leading to
block labels given by (r,κ−,κ+), which are included directly
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into Eq. (9) above, which leads to an expression equivalent
to Eq. (10), which is omitted here for brevity. The “classical”
limit can also be taken, which results in the expression,

e(r,κ−,κ+),(s,κ ′−,κ ′+)
∼= ers

e+
r e−

s

n(r,κ−,κ+)n(s,κ ′−,κ ′+)κ
+κ ′−, (20)

which if inserted into the degree-corrected entropy expression
leads to

Sgsu
∼= E −

∑
κ+

Nκ+κ+ ln κ+ −
∑
κ−

Nκ−κ− ln κ−

−
∑
rs

ers ln

(
ers

e+
r e−

s

)
−

∑
rs

nrns

∞∑
l=1

1

l(l + 1)

×
(

ers

e+
r e−

s

)l+1

〈(κ+)l+1〉r〈(κ−)l+1〉s . (21)

The same caveats as in the undirected case regarding the
suitability of Eq. (20), and consequently the validity of
Eq. (21), apply.

IV. MULTIGRAPH ENSEMBLES

We now consider the situation where multiple edges
between the same vertex pair are allowed. The total number of
different edge choices between blocks r and s now becomes

�rs =
((

nrns

ers

))
, �rr =

(( nrnr

2
err

2

))
, (22)

where (( N
m ))=(N +m−1

m
) is the total number of m-combinations

with repetition from a set of size N . Like for simple graphs, the
total number of graphs is given by the total number of vertex
pairings between all blocks,

� =
∏
r�s

�rs, (23)

which leads to the entropy,

Sm = 1

2

∑
rs

(nrns + ers)H

(
nrns

nrns + ers

)
, (24)

where H (x) is the binary entropy function [Eq. (3)], as before.
If we consider the more usual case when ers � nrns , we can
expand this expression as

Sm = E − 1

2

∑
rs

ers ln

(
ers

nrns

)

+
∑
rs

nrns

∞∑
l=1

(−1)l+1

l(l + 1)

(
ers

nrns

)l+1

. (25)

This is very similar to Eq. (6) for the simple graph ensemble,
with the only difference being the alternating sign in the last
term. In the sparse limit, the last term can also be dropped,
which leads to

Sm
∼= E − 1

2

∑
rs

ers ln

(
ers

nrns

)
. (26)

In this limit, the entropy is identical to the simple graph
ensemble, since the probability of observing multiple edges
vanishes.

1. Directed graphs

Like for the simple graph case, the entropy for directed
multigraphs can be obtained with only small modifications.
The number of edge choices �rs is given exactly as in Eq. (22),
the only difference being that one no longer needs to
differentiate the diagonal term, which in this case becomes
�rr ≡ �rs |s=r . Since the matrix ers is in general asymmetric,
the total number of graphs becomes the product over all
directed r,s pairs,

� =
∏
rs

�rs . (27)

Therefore the entropy becomes simply,

Sg =
∑
rs

(nrns + ers)H

(
nrns

nrns + ers

)
, (28)

which is identical to Eq. (24), except for a factor 1/2. (Note
that for directed graphs we define err as the number of edges
internal to block r , not twice this value as in the undirected
case.) Again, the same alternative expression as in Eq. (25)
can be written, as well as the same approximation as in
Eq. (26), which will be identical except for a factor 1/2.

A. Degree-corrected ensembles with “soft” constraints

We proceed again analogously to the simple graph case, and
impose that each block is labeled by a pair (r,κ), where the first
value is the block label itself, and the second is expected the
degree block. Using this labeling we can write the full entropy
from Eq. (24) as

Sms = 1

2

∑
rκsκ ′

(n(n,κ)n(s,κ ′) + e(r,κ),(s,κ ′))

×H

(
n(r,κ)n(s,κ ′)

n(r,κ)n(s,κ ′) + e(r,κ),(s,κ ′)

)
. (29)

Like for the simple graph case, this is a general ensemble which
allows for arbitrary degree correlations. The “uncorrelated”
ensemble is obtained by imposing the constraint given by
Eq. (11), and maximizing Sms , which leads to the following
nonlinear system,

e(r,κ),(s,κ ′) = n(r,κ)n(s,κ ′)

exp(λrs + μrκ + μsκ ′ ) − 1
, (30)

ers =
∑
κκ ′

e(r,κ),(s,κ ′), (31)

κn(r,κ) =
∑
sκ ′

e(r,κ),(s,κ ′), (32)

which must be solved for {e(r,κ),(s,κ ′),λrs,μrκ}, where {λrs} and
{μrκ} are Lagrange multipliers which impose the necessary
constraints. Like for the simple graph case, this system does
not have a closed form solution, but one can consider the same
“classical” limit, exp(λrs + μrκ + μsκ ′ ) 
 1, which leads to
Eq. (15). Inserting it in Eq. (29), and using the series expansion
given by Eq. (4), the entropy can be written as

Smsu
∼= E −

∑
κ

Nκκ ln κ − 1

2

∑
rs

ers ln

(
ers

eres

)

+ 1

2

∑
rs

nrns

∞∑
l=1

(−1)l+1

l(l + 1)

(
ers

eres

)l+1

〈κl+1〉r〈κl+1〉s .
(33)
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Again, the difference from the simple graph ensemble is only
the alternating sign in the last term. If one takes the sparse
limit, the above equation is approximated by Eq. (18), since in
this case both ensembles become equivalent.

1. Directed graphs

Directed multigraphs can be analyzed in the same way, by
using block labels given by (r,κ−,κ+), which are included
into Eq. (28) above, which leads to an expression equivalent to
Eq. (29), which is omitted here for brevity. The “classical”
limit can also be taken, which results in Eq. (20), as for
simple graphs. Inserting it into the degree-corrected entropy
expression leads finally to

Smsu
∼= E −

∑
κ+

Nκ+κ+ ln κ+ −
∑
κ−

Nκ−κ− ln κ−

−
∑
rs

ers ln

(
ers

e+
r e−

s

)
+

∑
rs

nrns

∞∑
l=1

(−1)l+1

l(l + 1)

×
(

ers

e+
r e−

s

)l+1

〈(κ+)l+1〉r〈(κ−)l+1〉s , (34)

which is once again similar to the simple graph ensemble,
except for the alternating sign in the last term. The same caveats
as in the simple graph case regarding the suitability of Eq. (20),
and consequently the validity of Eq. (34), apply.

V. DEGREE-CORRECTED ENSEMBLES WITH
“HARD” CONSTRAINTS

For the case of “hard” degree constraints we cannot easily
adapt any of the counting schemes used so far. In fact, for
the simpler case of a single block (B = 1), which is the
ensemble of random graphs with a prescribed degree sequence
[24,39–41,49], there is no known asymptotic expression for
the entropy which is universally valid. Even the simpler
asymptotic counting of graphs with a uniform degree sequence
(ki = k for all i) is an open problem in combinatorics [41].
All known expressions are obtained by imposing restrictions
on the largest degree of the sequence [39–41,49], such that
ki � N , where N is the number of vertices in the graph [50].
Here we make similar assumptions, and obtain expressions
which are valid only for such sparse limits, in contrast to
the other expressions calculated so far. The approach we will
take is to start with the ensemble of configurations [51],
which contains all possible half-edge pairings obeying a
degree sequence. Each configuration (i.e., a specific pairing
of half-edges) corresponds to either a simple graph or a
multigraph, but any given simple graph or multigraph will
correspond to more than one configuration. Knowing the total
number of configurations �c

rs between blocks r and s, the total
number �rs of edge choices corresponding to distinct graphs
can then be written as

�rs = �c
rs�rs, (35)

where �rs is the fraction of configurations which correspond
to distinct simple graphs or multigraphs.

Although counting configurations and graphs are different,
and so will be the corresponding entropies, there are some
stochastic processes and algorithms which generate fully

random configurations, instead of graphs. Perhaps the most
well-known example is the configurational model [52,53],
which is the ensemble of all configurations which obey a
prescribed degree sequence. A sample from this ensemble
can be obtained with a simple algorithm which randomly
matches half-edges [52]. If one rejects multigraphs which
are generated by this algorithm, one has a (possibly very
innefficient) method of generating random graphs with a
prescribed degree sequence, since each simple graph will be
generated by the same number of configurations, which is
given by

∏
i ki!. However, the same is not true if one attempts to

generate multigraphs, since they will not be equiprobable [54],
as will be discussed in Sec. V C below.

A central aspect of computing �rs is the evaluation of the
probability of obtaining multiple edges. If we isolate a given
pair i,j of vertices, which belong to block r and s, respectively,
we can write the probability of there being m parallel edges
between them as

P rs
ij (m) =

(
k′
j

m

)(ers−k′
j

k′
i−m

)
(
ers

k′
i

) , (36)

which is the hypergeometric distribution, since each half-edge
can only be paired once (i.e., there can be no replacement of
half-edges). In the above expression, the degrees k′

i and k′
j

reflect the number of edges in each vertex which lie between
blocks r and s, which can be smaller than the total degrees, ki

and kj . In general, this expression is not valid independently for
all pairs i,j , since the pairing of two half-edges automatically
restricts the options available for other half-edges belonging
to different vertex pairs. However, in the limit where the
largest degrees in each block are much smaller than the total
number of vertices in the same blocks, we can neglect such
interaction between different placements, since the number of
available options is always approximately the same. This is
not a rigorous assumption, but it is known to produce results
which are compatible with more rigorous (and laborious)
analysis [24,40]. In the following we compute the number of
configurations and the approximation of �rs for simple graphs
and multigraphs, using this assumption.

A. Configurations

For a given block r , the number of different half-edge
pairings which obey the desired block structure determined
by ers is given by

�r = er !∏
s ers!

. (37)

The above counting only considers to which block a given half-
edge is connected, not specific half-edges. The exact number
of different pairings between two blocks is then given simply
by

�rs = ers!, �rr = (err − 1)!!. (38)

Note that the above counting differentiates between permuta-
tions of the out-neighbors of the same vertex, which are all
equivalent (i.e., correspond to the same graph). This can be
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corrected in the full number of pairings,

� =
∏

r �r

∏
s�r �rs∏

k(k!)Nk
, (39)

where the denominator discounts all equivalent permutations
of out-neighbors. Note that the above counting still does not
account for the total number of simple graphs, since multiedges
are still possible. Multigraphs are also not counted correctly,
since for each occurrence of m multiedges between a given
vertex pair, the number of different edge pairings which are
equivalent decreases by a factor m! [19,54]. These corrections
are going to be considered in the next sections. Taking the
logarithm of Eq. (39), and using Stirling’s approximation, one
obtains

Sc = −E −
∑

k

Nk ln k! − 1

2

∑
rs

ers ln

(
ers

eres

)
. (40)

It is interesting to compare this expression with the one
obtained for soft degree constraints in the sparse limit
[Eq. (18)]. The entropy difference between the two ensembles
depends only on the degree sequence,

Sgsu − Sc = 2E +
∑

k

Nk ln k! −
∑

κ

Nκκ ln κ. (41)

This difference disappears if the individual degrees are large
enough so that Stirling’s approximation can be used (i.e.,
ln k! ≈ k ln k − k), and we have that ki = κi for all vertices.
Thus, in the sparse limit, but with sufficiently large degrees, the
simple graph and multigraph ensembles with soft constraints,
and the configuration ensemble with hard constraints become
equivalent [55].

1. Directed configurations

When counting directed configurations, we no longer
need to discriminate the diagonal terms of the �rs matrix,
which become �rr ≡ err !. Since the matrix ers is in general
asymmetric, the total number of configurations becomes

� =
∏

r �r

∏
rs �rs∏

k+(k+!)Nk+
∏

k−(k−!)Nk−
, (42)

which includes the correction for the permutations of in- and
out-degrees. This leads to the entropy,

Scd = −E −
∑
k+

Nk+ ln k+! −
∑
k−

Nk− ln k−!

−
∑
rs

ers ln

(
ers

eres

)
. (43)

B. Simple graphs

Following [24], if we proceed with the assumption outlined
above that P rs

ij (m) are independent probabilities of there being
m edges between vertices i and j , we can write the probability
�rs that a configuration corresponds to a simple graph as

�rs ≈
∏
ij

[
P rs

ij (0) + P rs
ij (1)

]
, (44)

�rr ≈
∏
i>j

[
P rr

ij (0) + P rr
ij (1)

] ×
∏

i

P r
nl(i), (45)

where the product is taken over all vertex pairs i,j , belonging
to blocks r and s, respectively, and P r

nl(i) is the probability
of there being no self-loops attached to vertex i, belonging to
block r . This is given by computing the probability that all ki

half-edge placements are not self-loops,

P r
nl(i) = err − k′

i

err − 1

err − k′
i − 1

err − 3
· · · err − 2k′

i + 1

err − 2k′
i + 1

(46)

= (err − k′
i)!(err − 2k′

i − 1)!!

(err − 2k′
i)!(err − 1)!!

, (47)

where we also make the assumption that these probabilities
are independent for all vertices. We proceed by applying
Stirling’s approximation up to logarithmic terms [i.e., ln x! ≈
(x − 1/2) ln x − x], and expanding the probabilities in powers
of 1/ers , leading to

ln
[
P rs

ij (0) + P rs
ij (1)

] ≈ − 2

e2
rs

(
k′
i

2

)(
k′
j

2

)
+ O

(
1/e3

rs

)
, (48)

and

ln P r
nl(i) ≈ − 1

ers

(
k′
i

2

)
+ O

(
1/e2

rr

)
. (49)

As mentioned before, the degrees k′
i and k′

j in the expression
above are the number of edges in each vertex which lie
between blocks r and s. Since the total degrees ki and kj

are assumed to be much smaller than the number of half-edges
leaving each block, we can consider k′

i , for i ∈ r , to be a
binomially distributed random number in the range [0,ki], with
a probability ers/er . We can therefore write 〈k′

i〉 = kiers/er ,
and 〈k′

i
2〉 = ki(ki − 1)e2

rs/e
2
r , where the average is taken over

all vertices with the same degree and in the same block r .
Putting it all together we obtain an expression for the entropy
which reads

Sghu ≈ −E −
∑

k

Nk ln k! − 1

2

∑
rs

ers ln

(
ers

eres

)

−1

4

∑
rs

nrnse
2
rs

e2
r e

2
s

(〈k2〉r − 〈k〉r )(〈k2〉s − 〈k〉s)

−1

2

∑
r

nrerr

e2
r

(〈k2〉r − 〈k〉r ), (50)

where 〈k〉r = ∑
i∈r ki/nr and 〈k2〉r = ∑

i∈r k2
i /nr .

If we make B = 1, the ensemble is equivalent to fully
random graphs with an imposed degree sequence. In this case,
Eq. (50) becomes identical to the known expression derived in
Ref. [40], for the limit ki � N [which is known to be valid for
max({ki}) ∼ o(

√
N ) [56]]. This expression is also compatible

with the one later derived in Ref. [24] (except for a trivial
constant). Therefore we have obtained an expression which
is fully consistent with the known special case without block
structure.

It is interesting to compare Eq. (50) with the equivalent
expression for the case with soft degree constraints [Eq. (16)].
Equation (50) is less complete than Eq. (16) since it contains
terms or order comparable only to the first term of the sum
in Eq. (16). Furthermore, in Eq. (50) the last terms involve
the difference 〈k2〉r − 〈k〉r , instead of the second moment
〈k2〉r , as in Eq. (16). [It is worth noting that Eq. (50) passes

056122-7



TIAGO P. PEIXOTO PHYSICAL REVIEW E 85, 056122 (2012)

the “sanity check” of making 〈k2〉r = 〈k〉r , which is only
possible for the uniform degree sequence ki = 1, in which
case no parallel edges are possible, and the entropy becomes
identical to the ensemble of configurations, Eq. (40).] Thus
we can conclude that the two ensembles (with soft and hard
constraints) are only equivalent in the sufficiently sparse case
when the differences in the remaining higher order terms in
Eq. (16) can be neglected, and when the degrees are large
enough (or the distributions broad enough) so that 〈k2〉r 

〈k〉r , and the self-loop term can also be discarded.

1. Directed graphs

For directed graphs one can proceed stepwise with an
analogous calculation, with the only difference that the
probability of self-loops in this case involves the in- and
out-degree of the same vertex, and can be obtained by the
hypergeometric distribution,

P r
nl(i) =

(
err − k+

i

k−
i

) /(
err

k−
i

)
(51)

≈ exp

(
−k+

i k−
i

err

+ O
(
1/e2

rr

))
. (52)

The analogous expression to Eq. (50) then becomes

Sghu ≈ Scd − 1

2

∑
rs

nrnse
2
rs

(e+
r )2(e−

s )2
(〈(k+)2〉r − 〈k+〉r )

×(〈(k−)2〉s − 〈k−〉s) −
∑

r

nrerr

e+
r e−

r

〈k+k−〉r . (53)

Similarly to Eq. (50), if we make B = 1, we recover the known
expression derived in Ref. [40] for the number of directed
simple graphs with imposed in- and out-degree sequence,
obtained for the limit k−/+ � N .

C. Multigraphs

All configurations which are counted in Eq. (40) are
multigraphs, but not all multigraphs are counted the same
number of times. More precisely, for each vertex pair of
a given graph with m edges between them, the number
of configurations which generate this graph is smaller by
a factor of m!, compared to a simple graph of the same
ensemble [19,54]. This means that the denominator of Eq. (39)
overcounts the number of equivalent configurations for graphs
with multiedges. Hence, similarly to the simple graph case, we
can calculate the correction �rs as

�rs ≈
∏
ij

〈m!〉rsij , (54)

�rr ≈
∏
i>j

〈m!〉rrij ×
∏

i

〈(2m)!!〉ri , (55)

where 〈m!〉rsij = ∑∞
m=0 m!P rs

ij (m) is the average correction

factor, and 〈(2m)!!〉ri = ∑∞
m=0(2m)!!P̂ r

i (m) accounts for the
parallel self-loops, with P̂ r

i (m) being the probability of
observing m parallel self-loops on vertex i, belonging to
block r . It is easy to see that P̂ r

i (m = 0) = P r
nl , given by Eq.

(47), P̂ r
i (m = 1) ∼= ( ki

2 )/err + O(1/e2
rr ) and P̂ r

i (m > 1) ∼
O(1/em

rr ). We proceed by applying Stirling’s approximation
up to logarithmic terms [i.e., ln x! ≈ (x − 1/2) ln x − x], and

expanding the sum in powers of 1/ers , which leads to

ln 〈m!〉rsij ≈ 2

e2
rs

(
k′
i

2

)(
k′
j

2

)
+ O

(
1/e3

rs

)
, (56)

ln 〈(2m)!!〉ri ≈ 1

err

(
k′
i

2

)
+ O

(
1/e2

rr

)
. (57)

Using that 〈k′
i〉 = kiers/er , and 〈k′

i
2〉 = ki(ki − 1)e2

rs/e
2
r , and

putting it all together we obtain an expression for the entropy
which reads

Smhu ≈ −E −
∑

k

Nk ln k! − 1

2

∑
rs

ers ln

(
ers

eres

)

+ 1

4

∑
rs

nrnse
2
rs

e2
r e

2
s

(〈k2〉r − 〈k〉r )(〈k2〉s − 〈k〉s)

+ 1

2

∑
r

nrerr

e2
r

(〈k2〉r − 〈k〉r ), (58)

where 〈k〉r = ∑
i∈r ki/nr and 〈k2〉r = ∑

i∈r k2
i /nr . This ex-

pression is very similar to the one obtained for the simple
graph ensemble, except for the sign of the last two terms.

Again if we make B = 1, the ensemble is equivalent to
fully random multigraphs with an imposed degree sequence. In
this case, Eq. (58) becomes identical to the known expression
derived in Ref. [57], for the limit ki � N . It also corresponds to
the expression derived in Ref. [40], which does not include the
last term, since in that work parallel self-edges are effectively
counted as contributing degree one to a vertex, instead of two
as is more typical.

1. Directed multigraphs

For directed graphs one can proceed stepwise with an
analogous calculation, which leads to

Sghu ≈ Scd + 1

2

∑
rs

nrnse
2
rs

(e+
r )2(e−

s )2

×(〈(k+)2〉r − 〈k+〉r )(〈(k−)2〉s − 〈k−〉s). (59)

Note that in this case the calculation of the correction term
for self-loops is no different than other parallel edges, and
hence there is no self-loop term as in Eq. (58). Like before, if
we make B = 1, we recover the known expression derived in
Ref. [39] for the number of multigraphs with imposed in- and
out-degree sequence, obtained for the limit k−/+ � N .

VI. BLOCKMODEL DETECTION

The central problem which motivated a large part of the
existing literature on stochastic blockmodels is the detection
of the most likely ensemble which generated a given network
realization. Solving this problem allows one to infer latent
block structures in empirical data, providing a meaningful way
of grouping vertices in equivalence classes. Blockmodel de-
tection stands in contrast to the usual approach of community
detection [7], which focuses almost solely on specific block
structures where nodes are connected in dense groups, which
are sparsely connected to each other (this corresponds to the
special case of a stochastic blockmodel where the diagonal
elements of the matrix ers are the largest).
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As mentioned in the introduction, the stochastic block-
model entropy can be used directly as a log-likelihood function
L = lnP = −S, if one assumes that each network realization
in the ensemble occurs with the same probability P = 1/�.
Maximizing this log-likelihood can be used as a well-justified
method of inferring the most likely blockmodel which
generated a given network realization [10,12]. Stochastic
blockmodels belong to the family of exponential random
graphs [58,59], and as such display the asymptotic property
of consistently generating networks from which the original
model can be inferred, if the networks are large enough [10,60].

In Ref. [12] a log-likelihood function for the degree-
corrected stochastic blockmodel ensemble was derived, in
the limit where the network is sufficiently sparse. As we
will show, using entropy expressions derived here, we obtain
a log-likelihood function which generalizes the expression
obtained in Ref. [12], which is recovered when one assumes
not only that the graph is sufficiently sparse, but also that
the degree distribution is not very broad. Since this specific
situation has been covered in detail in Ref. [12], we focus
here on a simple, representative example where the degree
distribution is broad enough so that if this limit is assumed, it
leads to misleading results. Network topologies which exhibit
entropic effects due to broad degree distributions are often
found in real systems, of which perhaps the best known is
the Internet [47,48]. We also consider the situation where
there are “extrinsic” degree correlations, in addition to the
latent block structure. The same methods can be used in a
straightforward way for multigraph or directed ensembles,
using the corresponding entropy expressions derived in the
previous sections.

Given a network realization, the task of blockmodel infer-
ence consists in finding a block partition {bi} ∈ [0,B − 1]N

of the vertices, which maximizes the log-likelihood function
L. Considering, for instance, the degree-corrected blockmodel
ensemble with “soft” degree constraints [61], using Eq. (16)
one can write the following log-likelihood function,

L(G|{bi}) =
∑
rs

ers ln

(
ers

eres

)
+

∑
rs

nrns

L∑
l=1

1

l(l + 1)

×
(

ers

eres

)l+1

〈kl+1〉r〈kl+1〉s , (60)

where the terms not depending on the block partition {bi} were
dropped, and L is a parameter which controls how many terms
in the sum are considered. Using this function, we encompass
the following cases:

(1) For L = 0 the objective function derived in Ref. [12]
is recovered, which corresponds to the situation where the
second term can be neglected entirely.

(2) For L > 0, higher order corrections are considered,
which may be relevant if the higher moments of the degree
sequence on each block are sufficiently large.

The general approach used here is to maximize L, as given
by Eq. (60), by starting with a random block partition, and
changing the block membership of a given vertex to the
value for which L is maximal, and proceeding in the same
way repeatedly for all vertices, until no further improvement
is possible. The algorithmic complexity of updating the

membership of a single vertex in such a “greedy” manner
is O(B(B(L + 1) + 〈k〉)), which does not depend on the
system size, and therefore is efficient as long as B is not too
large. However, this algorithm will often get stuck in a local
maximum, so one has to start over from a different random
partition, and compare the maximum obtained. Repeating this
a few times is often enough to find the optimal solution [62].

In the following we will consider a representative example
where the terms for L > 0 are indeed relevant and result in
different block partitions, when compared to L = 0. Instead of
testing the general approach in difficult cases, we deliberately
choose a very simple scenario, where the block structure is
very well defined, in order to make the block identification
as easy as possible. However, as we will see, even in these
rather extreme cases, not properly accounting for the correct
entropic effects will lead to spurious results, which is the case
with L = 0.

A. Intrinsic degree correlations

In order to illustrate the use of the objective function given
by Eq. (60) we will consider a simple diagonal blockmodel
defined as

ers ∝ wδrs + (1 − w)(1 − δrs), (61)

where w ∈ [0,1] is free parameter, and all blocks have equal
size. Furthermore, independently of the block membership,
the degrees will be distributed according to a Zipf distribution
within a certain range,

pk ∝
{
k−γ , if k ∈ [kmin,kmax]

0, otherwise.
(62)

This choice allows for a precise control of how broad the
distribution is. Here we will consider a typical sample from
this ensemble, with N = 103 vertices, B = 4, a strong block
structure with w = 0.99, and degree distribution with γ = 1.1
and [kmin,kmax] = [30,200]. As mentioned before, this strong
block structure is deliberately chosen to make the detection
task more straightforward. The sample was generated using the
Metropolis-Hastings algorithm [63,64], by starting with some
network with a degree sequence sampled from the desired
distribution, and the block labels distributed randomly among
the nodes. At each step, the end point of two randomly chosen
edges are swapped, such that the degree sequence is preserved.
The probability difference �p = p′ − p is computed, where
p ∝ ∑

ij Aij ebi ,bj
is the probability of observing the given

network before the move, and p′ is the same probability after
the move. If �P is positive the move is accepted, otherwise
it is rejected with probability 1 − p′/p. Additionally, a move
is always rejected if it generates a parallel edge or a self-
loop. If the probabilities are nonzero, this defines a Markov
chain which fulfills detailed balance, and which is known to be
ergodic [65–67], and thus generates samples with the correct
probability after equilibrium is reached [68].

As can be seen in Fig. 2, the degree distribution is broad
enough to cause intrinsic dissortative degree correlations in the
generated sample. In the following, the same single sample
from the ensemble will be used, to mimic the situation of
empirically obtained data. However, we have repeated the
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FIG. 2. (Color online) Average nearest-neighbor degree 〈k〉nn(k),
as a function of the degree of the originating vertex k, for the model
with intrinsic (left) and extrinsic (right) degree correlations.

analysis for different samples from the ensemble, and found
always very similar results.

It is usually the case that one does not know a priori which
value of B is the most appropriate. Hence, one must obtain
the best partitions for several B values, and choose the one
with the largest value of L. However, the values of L will
always increase monotonically with B, since the number of
suitable models will become larger, while the data remains the
same, culminating in the extreme situation where each vertex
will belong to its own block, and the inferred ers parameters
will be given directly by the adjacency matrix [69]. One can
estimate how L should increase with B by exploiting the fact
that the first term in Eq. (60) has the same functional form as
the mutual information of two random variables x, y,

I (x,y) =
∑
xy

pxy ln

(
pxy

pxpy

)
, (63)

where pxy is the joint distribution of both variables. It is
a known fact that the mutual information calculated from
empirical distributions suffers from an upward systematic
bias which disappears only as the number of samples goes
to infinity [70]. Assuming the fluctuations of the counts in
each bin of the distribution are independent, one can calculate
this bias analytically as �I (x,y) = (X − 1)(Y − 1)/2Ns +
O(1/N2

s ), where X and Y are the number of possible values
of the x and y variables, respectively, and Ns is the number of
empirical samples [70]. Using this information, one can obtain
an estimation for the dependence of L on B,

L∗ ≈ L − (B − 1)2, (64)

where L∗ is the expected “true” value of the log-likelihood,
if the sample size goes to infinity [71]. This can be used
to roughly differentiate between situations where the log-
likelihood is increasing due to new block structures which
are being discovered, and when it is only due to an artifact of
the limited data.

In Fig. 3 are shown the values of L for different L, for the
same sample of the ensemble above. The likelihood increases
monotonically until B = 4, after which it does not increase
significantly. The values of L are significantly different for
different L [which shows that the higher order terms in Eq. (60)
should indeed not be neglected], but all curves indicate B = 4
as being the “true” partition size, which is indeed correct.
However, a closer inspection of the resulting partitions reveals
important differences. In Fig. 4 are shown some of the obtained
partitions for different values of L and B. For B = 4, all values
of L result in the same partition, which corresponds exactly

FIG. 3. (Color online) (Left) Optimized log-likelihood L
[Eq. (60)] as a function of B, for different values of L, for the
same sample from the ensemble with intrinsic degree correlations.
(Right) Average normalized mutual information [Eq. (65)] between
the degree sequence and the block partition, as a function of B, for
different values of L.

B = 4, L = {0, 1, 2, 3, 4} B = 8, L = 0

B = 8, L = 1 B = 8, L = 2

B = 8, L = 3 B = 8, L = 4

FIG. 4. (Color online) Obtained block partitions for different
values of B and L, for the same sample of the ensemble with intrinsic
degree correlations. The colors indicate the partition, and the size
of the vertices is proportional to the degree. Nodes of high degree
are pushed towards the center of the layout. Note that for B = 8
and L ∈ [0,1], the nodes of high degree are segregated into separate
blocks.
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to the correct partition. For larger values of B, however, the
obtained partitions differ a lot more than one would guess by
looking at the values of L alone. For B = 8 and L = 0 one
sees a clear division into eight blocks, which strongly separates
vertices of different degrees. This could easily be mistaken for
a true partition, despite the fact that it is nothing more than an
entropic artifact of the broad degree distribution. Indeed if one
increases L, the optimal partition becomes eventually a random
sub-partition of the correct B = 4 structure. In this particular
example, L = 2 is enough to obtain the correct result, and the
higher values result in the same partition, with only negligible
differences.

The correlation of the block partition with the degree
sequence can be computed more precisely by using the mutual
information I (b,k) [Eq. (63)], between the block labels and
the degrees. Since we want to compare partitions obtained
for different values of B, and changing B will invariably
change I (b,k), we use instead the average normalized mutual
information, defined here as

Ī (b,k) =
〈
I (b,k)

I (r,k)

〉
, (65)

where I (r,k) is the mutual information of the degree sequence
and a random block partition {ri}, obtained by shuffling
the block labels {bi}. The average is taken over several
independent realizations of {ri}. If the block partition is
uncorrelated with the degree sequence, one should have that
Ī (b,k) is close to one, since there are no intrinsic correlations
between the correct partition and the degrees. The values of
Ī (b,k) are shown in Fig. 3. One sees clearly that the results
for lower values of L are significantly correlated with the
degree sequence, and that for L � 2 the correlation essentially
vanishes.

The reason why the log-likelihood with L = 0 delivers
spurious block structures is intimately related to the fact that
the degree distribution in this case is broad. This causes the
remaining terms of Eq. (60) to become relevant, as they
represent the entropic cost of an edge leading to a block
with a broader degree distribution. On the other hand, the
same entropic cost is responsible for the dissortative degree
correlations seen in Fig. 2. This is in fact inconsistent with the
assumption made when deriving Eq. (16), namely Eq. (15),
which says that there are no such degree correlations. This is
indeed true, and it means that Eq. (60), even for L → ∞, is
still an approximation which neglects certain entropic effects.
However, as mentioned previously, it still captures a large
portion of the entropic cost of placing an edge incident to a
block with a broad degree sequence, and this is the reason why
it can be used to infer the correct block structure in the example
shown. The same performance should be expected in situations
where the intrinsic degree correlations are present, but not
“too strong” as to require better approximations. Indeed, as
was discussed previously following the derivation of Eq. (16),
for networks with very large degrees it may be that Eq. (60)
diverges, for sufficiently large L. However, this situation can be
managed adequately. In Sec. III B we computed the entropy
for the ensemble with soft degree constraints and arbitrary
degree correlations, given in Eq. (10). This expression is exact,
and can be used as a log-likelihood in the extreme situations
where Eq. (60) is not a good approximation. The downside

is that one needs to infer many more parameters, since the
model is defined by the full matrix e(r,k),(s,k), which makes
the maximization of L less computationally efficient, and may
result in overfitting. A more efficient method will be described
in the next section, which consists of separating vertices in
groups of similar degree, and using this auxiliary partition to
infer the actual block structure. This can be done in a way
which allows one to control how much information needs
to be inferred, such that the degree correlations (intrinsic or
otherwise) have been sufficiently accounted for.

B. Extrinsic degree correlations

We consider now the case where there are arbitrary extrinsic
degree correlations [although the method described here also
works well in situations with strong intrinsic degree correla-
tions which are not well captured by Eq. (60)]. As an example,
we will use a modified version of the blockmodel ensemble
used in the previous section, which includes assortative degree
correlations, defined as

e(r,k),(s,k′) ∝ ers

1 + |k − k′| , (66)

where ers is given by Eq. (61). Similarly to the previous case,
we consider a typical sample from this ensemble, with N =
103 vertices, B = 4, a block structure with w = 0.99, and
degree distribution with γ = 1.1 and [kmin,kmax] = [30,200].
The degree correlations obtained in this sample are show in
Fig. 2.

If one does not know, or ignores, that there are degree
correlations present, and attempts to detect the most likely
block structure using Eq. (60), one obtains block partitions
shown in Fig. 5 . Due to the high segregation of the modules,
one indeed finds the correct block partition for B = 4, but as
the value of B is increased, one finds increasingly many “sub-
blocks” corresponding to groups vertices of different degrees.
This is simply a manifestation of the degree correlations
present in Eq. (66). As Fig. 5 shows, the log-likelihood
increases steadily with larger B values, indicating that the
“true” block structure has not yet been found. Indeed one
would need to make B ∼ 4K , where K is the number of
different degrees in the network, to finally capture the complete
structure. The correct inferred partition in this case would put
vertices of the same degree in their own block, which we can

B = 4 B = 8

FIG. 5. (Color online) Inferred block partitions for the model
with extrinsic degree correlations, obtained by maximizing the log-
likelihood L, given by Eq. (60), for different values of B and L = 2.
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label as (r,k). In this situation, Eq. (16) becomes no longer
an approximation, since Eq. (17) will also hold exactly, and
it becomes identical to Eq. (10), which we could use instead
as a log-likelihood (which effectively removes the parameter
L). Strictly speaking, Eq. (10) is entirely sufficient to detect
any block structure with arbitrary degree correlations, either
intrinsic or extrinsic. In practice, however, it is cumbersome to
use since it requires the inference a large amount of parameters,
namely the full e(r,k),(r,k) matrix of size (BK)2 (of which
half the elements are independent parameters), as well as the
n(r,k) vector of size BK . The number of different degrees K

is often significantly large. For the specific example shown
in Fig. 5 we have K = 168, which results in a parameter
matrix which is much larger than the number of edges in
the network. This is an undesired situation, since with such
a large number of parameters, not only does it become
easier to get trapped in local maxima when optimizing L,
it also becomes impossible to discern between actual features
of the inferred model and stochastic fluctuations which are
frozen in the network structure. However, it is possible to
circumvent this problem using the following approach. Before
attempting to infer the block partition {bi}, one constructs an
auxiliary partition {di} which remains fixed throughout the
entire process. The auxiliary partition separates vertices in D

blocks representing degree bins, so that vertices in the same
block have similar degrees. Exactly how large should be each
degree block, and how the bin boundaries should be chosen
will depend in general on specific network properties; however,
a good starting point is to separate them into bins such that the
total number of bins D is as small as possible, while at the same
time keeping the degree variance within each bin is also small.
Furthermore, one should also avoid having degree bins with
very few vertices, since this is more likely to lead to artifacts
due to lack of statistics. With this auxiliary partition in hand,
one can proceed to infer a block partition {bi} into B blocks,
such that the combined block label of a given vertex i is (bi,di).
The log-likelihood is computed using Eq. (60), using the full
(b,d) block labels to differentiate between blocks. If the {di}
partition is reasonably chosen, the degree correlations will be
inferred automatically, and from the {bi} partition it is possible
to extract the block structure which is independent from degree
correlations. Note, however, that after this procedure the bi

labels by themselves do not represent a meaningful partition,

Auxiliary partition {di}, with
D = 8.

Inferred partition {bi}, with
B = 8.

FIG. 6. (Color online) Auxiliary and inferred block partitions for
a sample of the ensemble with intrinsic degree correlations.

FIG. 7. (Color online) (Left) Optimized log-likelihood L
[Eq. (60)] as a function of B, for different values of L, for the same
sample from the ensemble with extrinsic degree correlations. The
legend “aux.” indicates results obtained with the auxiliary degree-
based partition described in the text. (Right) Average normalized
mutual information [Eq. (65)] between the degree sequence and the
block partition, as a function of B, for different values of L, and size
of the auxiliary partition D (or without it if D is omitted).

since any relabeling of the form (r,d) ↔ (s,d), for the same
value of d, results in an entirely equivalent block structure. In
order to obtain a meaningful {bi} partition, it is necessary to
proceed as follows,

(1) MaximizeL using auxiliary the partition, {di}, obtaining
the best partition {(bi,di)}.

(2) Swap labels (r,d) ↔ (s,d), within the same auxiliary
block d, such that the log-likelihood L, ignoring the auxiliary
partition {di}, is maximized.
In step 2, the labels are swapped until no further improvement
is possible. After step 2 is completed, the blockmodel obtained
in step 1 remains unchanged, but the block labels {bi}
now have a clear meaning, since they represent the best
overall block structure, ignoring the auxiliary partition, among
the possibilities which are equivalent to the inferred block
partition.

In the left of Fig. 6 is shown a sample auxiliary partition,
with D = 8, and bin widths chosen so that all groups have
approximately the same size. On the right is shown the inferred
{bi} partition with B = 8, using the auxiliary partition, after the
label swap step described above. Notice how the correlations
with degree can no longer be distinguished visually. Observing
how the log-likelihood increases with B (see Fig. 7), the results
with the auxiliary partition point more convincingly to the
B = 4 structure, since it does not increase significantly for
increasing block numbers. Figure 7 also shows the average
normalized mutual information between the block partitions
and the degrees, and indeed the difference between the
inference with and without the block partition is significant.
For D = 8 one can still measure a residual correlation, but by
increasing the auxiliary partition to D = 16 virtually removes
it, which is still significantly smaller than the total number of
degrees K = 168.

VII. CONCLUSION

We have calculated analytical expressions for the entropy
of stochastic blockmodel ensembles, both in its traditional
and degree-corrected forms. We have considered all the
fundamental variants of the ensembles, including directed and
undirected graphs, as well as degree sequences implemented
as soft and hard constraints. The expressions derived represent
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generalizations of the known entropies of random graphs
with arbitrary degree sequence [24,39–41], which are easily
recovered by setting the number of blocks to one.

As a straightforward application of the derived entropy
functions, we applied them to the task of blockmodel inference,
given observed data. We showed that this method can be
used even in situations where there are intrinsic (i.e., with an
entropic origin) degree correlations, and can be easily adapted
to the case with arbitrary extrinsic degree correlations. This
approach represents a generalization of the one presented in
Ref. [12], which is only expected to work well with sparse
graphs without very broad degree sequences.

Furthermore, the blockmodel entropy could also be used as
a more refined method to infer the relevance of topological
features in empirical networks [72], and to determine the
statistical significance of modular network partitions [73–75].

Beyond the task of block detection, the knowledge of the
entropy of these ensembles can be used to directly obtain

the equilibrium properties of network systems which possess
an energy function which depends directly on the block
structure. Indeed this has been used in Ref. [16] to construct
a simplified model of a gene regulatory system, in which the
robustness can be expressed in terms of the block structure,
functioning as an energy function. The evolutionary process
acting on the system was mapped to a Gibbs ensemble,
where the selective pressure plays the role of temperature. The
equilibrium properties were obtained by minimizing the free
energy, which was written using the blockmodel entropy. This
model in particular exhibited a topological phase transition
at higher values of selective pressure, where the network
becomes assembled in a core-periphery structure, which is
very similar to what is observed in real gene networks.
We speculate that the blockmodel entropy can be used in
the same manner to obtain properties of wide variety of
adaptive networks [18], for which stochastic blockmodels are
adequate models.
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