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Random walk on discrete lattice models is important to understand various types of transport processes. The
extreme events, defined as exceedences of the flux of walkers above a prescribed threshold, have been studied
recently in the context of complex networks. This was motivated by the occurrence of rare events such as traffic
jams, floods, and power blackouts which take place on networks. In this work, we study extreme events in a
generalized random walk model in which the walk is preferentially biased by the network topology. The walkers
preferentially choose to hop toward the hubs or small degree nodes. In this setting, we show that extremely large
fluctuations in event sizes are possible on small degree nodes when the walkers are biased toward the hubs. In
particular, we obtain the distribution of event sizes on the network. Further, the probability for the occurrence of
extreme events on any node in the network depends on its “generalized strength,” a measure of the ability of a
node to attract walkers. The generalized strength is a function of the degree of the node and that of its nearest
neighbors. We obtain analytical and simulation results for the probability of occurrence of extreme events on the
nodes of a network using a generalized random walk model. The result reveals that the nodes with a larger value
of generalized strength, on average, display lower probability for the occurrence of extreme events compared to
the nodes with lower values of generalized strength.
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I. INTRODUCTION

Extreme events are typically associated with disasters of
some kind or other, e.g., droughts, cold wave, cyclones,
earthquakes, wind gusts, and economic recession. When a
relevant variable, such as the wind speed w(t) recorded at
time t in the case of wind gusts, exceeds a certain prescribed
threshold q due to its inherent fluctuations, i.e., w(t) > q, then
it is taken to be an extreme event. In particular, it is important to
note that the magnitude of the tremor, wind speed, temperature,
economic growth, etc., are scalar variables. A large number of
results, both theoretical and empirical, are known about the
statistics and dynamics of extreme events for such univariate,
scalar variables [1]. One significant result due to classical
extreme value theory is that, depending on the probability
distribution function of the variable, the distribution of block
maxima for the uncorrelated sequence of random variables
converges to only one of three possible forms, namely, Fréchet,
Gumbel, and Weibull distributions [2].

In contrast to this scenario, extreme events can also
take place on complex networks. Consider, for instance, the
most common experience of web surfers, a web server not
responding due to the heavy load of http requests. This is
an extreme event taking place on the network of the World
Wide Web. For example, the popular social networking site
Twitter handled about 600 tweets per second in early 2010 [3].
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According to an industry estimate, the Google search engine
received approximately 34 000 search requests per second by
the end of 2009 [4]. For most web sites on the World Wide
Web that are unprepared for such a large number of http
requests, these numbers would represent extreme events and
could potentially disrupt the service. The power blackout in
the northeastern United States in 2003 is also an example of
extreme event on the power transmission grid network. The
cascading failures shut down more than 508 power generating
units at 265 power plants during the peak of this blackout [5].
Gridlock on highways is an example of an extreme event on
the transportation network. From the point of view of physics,
all these events could be thought of as an emergent phenomena
arising due to flux on the networks and could be regarded as
extreme events arising primarily due to the limited handling
capacity of the node. Transport on networks continues to be
widely studied, but much less attention has been focused on
it from the point of view of extreme events. Generally, when
the flux (packets of information or power or highway traffic
in the case of the examples given above) exceeds the handling
capacity, it turns out to be an extreme event for the particular
node on the network. In earlier works related to congestion
and cascade on networks [6–13], handling capacity is a key
ingredient that needs to be prescribed upfront.

However, extreme events happen not only because of the
limited handling capacity of the node on a network but also
because of inherent fluctuations in the flux passing through
the node. These fluctuations in the flux passing through a
node could be so large that they breach a prescribed threshold,
in which case we label the event as an extreme event for
the node. This definition of extreme event for a node on any
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network is similar in spirit to that of the classical extreme value
theory. Then, a relevant question is how the connectivity of the
network affects the probability for extreme event occurrence.
By modeling the transport as standard random walks on
networks, it was shown in Ref. [14] that the probability
for the occurrence of extreme events P (ki), arising due to
inherent fluctuations, depends only on the degree ki of the ith
node in question. In this work, the threshold qi was chosen
to be proportional to typical fluctuation size on ith node.
Thus, the extreme events are identified after taking care of
the natural variability of the flux passing through the given
node. Further, it was shown that, on average, P (k) is higher
for small degree nodes than for hubs. This is a surprising result
because it implies that, within the framework of random walk
on networks, even though hubs attract large flux (compared
to small degree nodes) they are less prone to extreme events.
Thus, in the context of a node on a connected network, larger
flux does not necessarily translate into higher probabilities
for extreme events. This feature is one possible signature of
connectivity, i.e., the network setting on which the system
operates. In contrast, for a scalar time series w(t) larger flux
would imply higher extreme-event probabilities.

Random walk on complex networks is a useful fundamental
model against which to compare other transport processes.
Most realistic transport phenomena on networks, such as
the flux of information packets passing through the network
of routers or road traffic, do not proceed by performing a
random walk. In order to model the flux in a more realistic
way, it is useful to generalize the standard random walk to
a situation in which the flux is either biased toward hubs or
small degree nodes. For example, consider the case of two
remote airports which are not directly connected by flights.
Typically, they would be connected through a major hub on
the airline network. This is one practical scenario in which
the traffic is biased toward the hubs. This happens in many
network settings; railways tend to connect the hinterland with
the hubs, phone connect to nearest hubs on the network.
Motivated by these physical examples, in this work, we model
the transport process as random walks biased by the topology
of the network and study the extreme-event probabilities and
event-size distributions. We show that a biased random walk
leads to extreme fluctuations in the event sizes on the network.
In the subsequent sections, we discuss the topologically biased
random walk model on a network and obtain analytical results
for the probability of occurrence of extreme events on any
node. We show that the analytical and simulation results are in
good agreement.

II. BIASED RANDOM WALK ON NETWORKS

A. Stationary distribution

We consider a connected, undirected, finite network with
N nodes and E edges. The network is characterized by a
symmetric adjacency matrix A with elements Aij = 1 if nodes
i and j are connected by an edge and Aij = 0 otherwise. There
are W independent walkers performing biased random walks
on this network in the sense explained below. We denote by
bij the transition probability for a walker to hop from node i to
a neighboring node j . Let Pij be the probability that a walker

starting at node i at time n = 0 is at node j at time n. Then,
the master equation can be written as

Pij (n + 1) =
∑

l

Alj bljPil(n). (1)

The random walkers are biased by taking the time-independent
transition probability for hopping from the lth node to the j th
node to be [15–17]

blj ∝ kα
j , (2)

where α is a parameter that defines the degree of bias imparted
to the walkers. Clearly, α = 0 corresponds to the standard
random walk, where the transition probability is unbiased
and a walker can hop to any neighboring node with equal
probability. For α > 0, the random walkers are biased toward
nodes with larger degree or hubs. In contrast, if α < 0, walkers
preferentially hop to small degree nodes. The larger (smaller)
α is, the stronger the bias toward hubs (small degree nodes) is.
Then, the normalized transition probability becomes

blj = kα
j∑kl

m=1 kα
m

. (3)

The summation in the denominator runs over the nearest
neighbors of node l. Using the transition probability in Eq. (3),
the master equation becomes

Pij (n + 1) =
∑

l

Alj

kα
j∑kl

m=1 kα
m

Pil(n). (4)

By repeated iteration of Eq. (4), it can be shown that Pij (n) as
n → ∞ leads to the stationary distribution

lim
n→∞ Pij (n) = pj = kα

j

∑kj

l=1 kα
l∑N

m=1

(
kα
m

∑km

l=1 kα
l

) . (5)

We can define the generalized strength of the j th node to be

φj = kα
j

kj∑
i=1

kα
i , (6)

which is a measure of the ability of a node to attract walkers.
Note that φj depends on the bias parameter α and the degree
of the nearest neighbors to which it is connected by an edge.
Hence, it is possible for nodes with the same degree to have
different generalized strengths. Thus, the generalized strength
of the node is independent of the global network structure but
is dependent on the local connectivity structure around the
node. This is in contrast to the case of a standard random walk
(on networks) in which the large-scale structure of the network
topology plays no significant role. The local network structure
is important for biased random walks on networks. In Fig. 1,
we show how the generalized strength φ depends on the degree
of a node for several values of α in a scale-free network with
degree exponent γ = 2.2. For α = 1 (crosses in Fig. 1), the
generalized strength of a node is higher for large degree nodes
(hubs), and an approximate linear relation is seen between
φi and ki of the ith node. For α = 0, which is the standard
random walk case, the generalized strength of the node is
the same as the degree of the node (solid circles in Fig. 1).
However, for α = −1.0, φ is independent of k, especially for
large degree nodes (triangles in Fig. 1). In this case, the bias
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FIG. 1. (Color online) Strength φ as a function of degree k for
different values of α in log-log plot.

in the random walk represented by its generalized strength φ

is balanced by the degree of the node. In a scale-free network,
a large number of small degree nodes are present, and they
do not have identical values for the generalized strength φ.
This explains the spread in φ for all values of k < 50. Upon
a further decrease in the bias parameter α below −1.0 (open
squares in Fig. 1), nodes with a smaller degree or neighbors
with a smaller degree become important, and the generalized
strength decreases with increasing degree.

B. Extreme-event probability

The stationary distribution for the number of walkers in the
j th node can be rewritten in terms of the generalized strength
φ as

pj = φj∑N
l=1 φl

. (7)

Thus, every node can be uniquely characterized by its
generalized strength φ. It is expected that two nodes with the
same value of φ show similar behavior as far as biased walks on
networks based on Eq. (2) are concerned. In the case of α = 0,
we get φi = ki , and the stationary distribution simplifies to
pj = kj

2E
, the result obtained for the case of a standard random

walk in Ref. [18]. Thus, in the case of a standard random walk,
the degree k characterizes the node. In the case of uncorrelated
random networks, the stationary occupation probability can be
further simplified by using the mean field approximation and
can be written as [15,16]

pj = kα+1
j

N〈kα+1〉 . (8)

This approximate result suggests that the nodes with the same
degree should have identical transition probabilities [15]. This
does not necessarily hold well for the nodes of correlated
networks, such as scale-free networks. This is because in
a scale-free network, the neighborhoods of nodes with an
identical degree are not identical. Hence, to study extreme
events we use Eq. (7) instead of Eq. (8).

Given that Eq. (7) gives the probability to find one walker on
the ith node with generalized strength φi , we can now obtain
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FIG. 2. (Color online) The distribution of walkers on two nodes
with k = 4 and k = 234 for α = −1.0,0.0, and 1.0. The solid lines
show the distribution of walkers obtained from simulation, while the
solid circles belong to the binomial distribution obtained analytically
using the stationary probability in Eq. (7).

the distribution of random walkers on the ith node. The for-
mulation is applicable to any node on the network, and hence,
in our further discussions, we suppress the index i of the node.
The random walkers (W ) are independent and noninteracting,
and hence the probability f (w) of finding w walkers on a node
is pw, while the rest of the walkers, W − w, are distributed
on the rest of the nodes of the network. When properly
normalized, this leads to a binomial distribution given by

f (w) =
(

W

w

)
pw(1 − p)W−w. (9)

The mean and variance of the flux passing through the given
node is

〈f 〉 = W
φ∑N

l=1 φl

,

σ 2 = W
φ∑N

l=1 φl

(
1 − φ∑N

l=1 φl

)
. (10)

Note that the results in Eqs. (9) and (10) depend only on the
generalized strength φ that characterizes a node including its
neighborhood. It does not depend on the large scale connectiv-
ity pattern. Hence, these results will hold good for any network,
such as scale free, random, or small world, irrespective of its
degree distribution. Further, in the cases for which

∑N
l=1 φl �

φ, we obtain the approximate relation σ ≈ 〈f 〉1/2. This rela-
tion can be thought of as a generalization of a similar relation
for the unbiased random walks reported in Ref. [14]. However,
the exponent 1/2 is not universal and instead depends on details
such as the fluctuation in number of walkers and sampling
resolution of the flux [19]. The distribution of random walkers
on two nodes with different degrees, k = 4 and k = 234, is
plotted in Fig. 2. The biased random walk simulations were
performed on a scale-free network with 5000 nodes with
19 915 links and 39 830 walkers. Initially, at time n = 0, the
walkers are randomly distributed on N nodes. The simulation
results presented in Fig. 2 have been obtained after averaging
over 100 realizations with different initial conditions of
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random walkers. The simulation results, the solid lines in
Fig. 2, show a good agreement with the analytical distribution
given by Eq. (9).

III. PROBABILITY FOR EXTREME EVENTS

We take an extreme event to be the one for which the
probability of occurrence is small and is typically associated
with the tail of the probability distribution function for the
events. We extend this principle to the events on the nodes of
a network [14]. Given that the number of walkers w passing
through a node with generalized strength φ follow the binomial
distribution, if more than q walkers pass through the node, then
it is an extreme event for the node. Then, the probability for
the occurrence of extreme event is

Fi =
W∑

w=qi

(
W

w

)
pw

i (1 − pi)
W−w (11)

= Ipi
(	qi
 + 1,W − 	qi
), (12)

where 	u
 is the floor function defined as the largest integer
not greater than u and Iz(a,b) is the standard incomplete beta
function [20]. In this form, the extreme event probability will
depend on the choice of threshold qi . First, we consider the
case of constant threshold. If qi = 0, using Eq. (11) we obtain
Fi = 1 for all the nodes on the network. Thus, all the nodes
will experience extreme events all the time. On the other hand,
if we set qi = W , then we obtain

Fi = pW
i . (13)

Since pi � 1, we get Fi ≈ 0 for all the nodes, implying
that there are no extreme events anywhere in the network.
Hence, these choices of threshold values are not physically
interesting cases. Any other arbitrary choice such as qi = q0,
where q0 is a constant, will predominantly lead to some nodes
encountering extreme events nearly all the time and others
having no events at all. This too is not an interesting case. The
foregoing arguments imply that an interesting scenario would
arise if the threshold is chosen to be proportional to the natural
variability of the flux passing through a node. Thus, we choose
the threshold for extreme events to be [14]

qi = 〈fi〉 + mσi, (14)

where m � 0. The mean flux 〈fi〉 and standard deviation σi are
given by Eq. (10). Substituting qi in Eq. (12), it is clear that the
probability for the occurrence of extreme events is dependent
only on the generalized strength φ of the node. In Fig. 3, we
show the simulation and analytical results for the probability of
extreme events as a function of φ for several choices of α. The
numerical results are based on simulations with W = 39 380
walkers on a scale-free network with N = 5000 nodes evolved
for 107 time steps. An unusual feature is that Fi predicts a
higher probability of occurrence of extreme events, on average,
for nodes with small values of generalized strength φ than
for the nodes with higher values of generalized strength φ.
For instance, in Fig. 3(a), the probability of extreme-event
occurrence is generally higher for nodes with φ < 10−5

than for nodes with φ > 10−3. A similar effect is seen in
Figs. 3(b)–3(e). Even though nodes with higher generalized
strength φ attract more walkers as given by Eq. (5), this
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FIG. 3. (Color online) The probability of the occurrence of
extreme events plotted as a function of the node generalized strength
φ (normalized) for different values of bias parameters: (a) α = −2.0,
(b) α = −1.0, (c) α = 0.0, (d) α = 1.0, and (e) α = 2.0. The
threshold for an extreme event is q = 〈f 〉 + 4σ . The circles are from
analytical results in Eq. (12), while the solid lines are the simulation
results performed on a scale-free network (N = 5000, E = 19 915)
with W = 2E walkers averaged over 100 realizations with randomly
chosen initial positions of walkers.

does not imply that they also have a higher probability for
extreme events. This is a generalization of the result obtained
in Ref. [14] for the standard random walk on networks which
shows that extreme events are more probable for nodes with a
small degree than for the ones with a high degree. The local
fluctuations seen in Fig. 3 are inherent in the system and not
due to insufficient ensemble averaging. Further, notice that
Eq. (12) does not depend on the large scale structure of the
topology, and hence it is valid for biased random walks on any
topology, random or small world or scale free.

However, the local connectivity patterns in the vicinity of
any node play a crucial role in the diffusion of an extreme
event. Suppose an extreme event takes place at node A at time
n; then one interesting question is how probable it is for an
extreme event to take place in its immediate neighborhood
at time n + 1, i.e., after the first jump. We call it first-jump
probability, and it is similar to the one reported in [21]. In the
case of a standard random walk (α = 0), our simulations (not
shown here) indicate that, in general, if node A is a hub, then the
probability to encounter an extreme event in its neighborhood
is higher (at least by a factor of 3–4) compared to the case when
node A is a small degree node. For biased random walks, the
results suggest a higher likelihood for an extreme event to
be transferred to its neighborhood in the case when α < 0
compared to the case with α > 0.

IV. FLUCTUATIONS IN EVENT SIZE

The size of an event is measured in units of the standard
deviation σ of the flux passing through a node. In this section,
we show that the extreme fluctuations in the flux of walkers are
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FIG. 4. (Color online) The distribution of event sizes for biased
random walks as a function of the node number on the x axis obtained
from simulations performed on a scale-free network for different
values of the bias parameter: (a) α = −2.0, (b) α = −1.0, (c) α = 0.0,
(d) α = 1.0, and (e) α = 2.0. The nodes are arranged in order of
increasing degree. The probability values Pm are color coded. This
should be compared with analytical results in Fig. 5.

realized in the case of α = 2, which implies that the walkers
are biased toward the nodes with a larger generalized strength
φ (hubs). An event is of size m if mσ � w − 〈w〉 < (m + 1)σ ,
where w is the number of walkers on a given node.

Then, the probability for the occurrence of an event of size
m can be written down as

Pm = Ip(	qm
 + 1,W − 	qm
) − Ip(	qm+1

+ 1,W − 	qm+1
). (15)

To illustrate the result, we show the distribution of event sizes
in Fig. 4 for α = −2,−1,0,1,2 in a scale-free network obtained
from simulations evolved for 107 steps and averaged over 100
ensembles. Here, the events with a probability of occurrence of
less than 10−8 have been discarded to maintain the numerical
accuracy. In the case of α = 0 (standard random walk), the
distribution of events is shown in Fig. 4(c). The events of
size m = 0 are highly probable with P0 ∼ 0.1. In contrast,
the probability for events of size |m| > 0 decreases, and
thus extreme events of size m = −2,8 occur with probability
P−2 ∼ P8 ∼ 10−8. The limitation on the lower limit of event
sizes is restricted by the minimum possible number of walkers
on a node, i.e., 0. For lower degree nodes, events of sizes −2σ

to 8σ are observed, but in the case of higher degree nodes
k > 100, event sizes range from −5σ to 6σ only. In the case
of a standard random walk, for the whole network, event size
m varies from −5σ to 8σ .

In comparison, for the case of α = 1 shown in Fig. 4(d)
the events of size 8 have a higher probability of occurrence
(P8 ∼ 10−7), and events of even higher sizes are also possible.
For α = 2, even higher size events, as large as 40, become
highly probable for small degree nodes, as seen in Fig. 4(e).
Thus, in general, for larger α, larger size events become
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FIG. 5. (Color online) The distribution of event sizes for biased
random walks as a function of the node number on the x axis obtained
analytically using Eq. (15) for different values of the bias parameter:
(a) α = −2.0, (b) α = −1.0, (c) α = 0.0, (d) α = 1.0, and (e) α =
2.0. The nodes are arranged in the order of increasing degree. The
probability values Pm are color coded.

probable when compared with the case of α = 0. Physically,
this can be understood as follows. With α = 0, the random
walkers perform unbiased random walks. However, for α = 2,
the walkers preferentially choose to hop to nodes with a
larger degree (hubs). Since large degree nodes are mostly well
connected among themselves, very few walkers reach small
degree nodes. Hence the average flux through the small degree
nodes becomes so small that even occasional visits by a few
walkers lead to extremely large size events. These occasional
visits lead to a probability of order 10−6 even for events of
size 40. Hence, in the case of biased random walks, extremely
large fluctuations in event sizes can be observed in small degree
nodes. This effect is also seen in the analytical results obtained
using Eq. (15), shown in Fig. 5.

On the other hand, for cases α = −2,−1 such large
fluctuations are not visible in the event sizes in Figs. 4(a)
and 4(b). For α = −1 in Fig. 4(b), there is a small increase in
the event sizes (when compared to α = 0) for the small degree
nodes, but it is not as large as in the α = 1 case. Further,
with α = −1, it must also be noted that the probability profile
remains similar for most of the nodes irrespective of the large
differences in their degree. This is because φ is an approximate
constant for most of the nodes since, in this case, the effect of
the bias is balanced by the degree of these nodes. For α = −2,
the flux is strongly biased toward small degree nodes, and
again events of sizes m = 10 can be seen in Fig. 4(a), though
only on the higher degree nodes. The event sizes for hubs
are not as large as observed in the case of α = 2 for lower
degree nodes. It can be explained as follows: when α = −2,
the flux preferentially flows through the small degree nodes,
which form the bulk in a scale-free network. Most small degree
nodes do not have a direct link with other small degree nodes
but are connected through a hub. Hence, despite the biased
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walk favoring the small degree nodes, a sufficiently large flux
flows through the hubs as well. Hence, abnormally large event
size fluctuations are not seen in hubs for α = −1,−2. All
these features show a good agreement with the analytical result
obtained in Eq. (15) and shown in Fig. 5.

V. DISCUSSION AND SUMMARY

This work is an attempt to understand the extreme events
occurring on the nodes due to flow on networks which typically
is directed toward or away from the hubs. In this work,
we study a biased random walk model in which the traffic
preferentially moves either toward or away from the hubs, and
we analytically obtain the probabilities for the occurrence of
extreme events. In this framework, extreme events are due to
inherent fluctuations in the flux passing through any node and
is defined as exceedences above a chosen threshold q. The
threshold is chosen to be proportional to the natural variability
of the node. Each node on the network is characterized by
the generalized strength φ, which depends on its degree and
that of its immediate neighborhood. It is a measure of how
much traffic is attracted to the particular node. The larger
the generalized strength of a node is, the larger its ability
to attract walkers is. In this paper, we have shown that
the nodes with a smaller generalized strength, on average,
have a higher probability for the occurrence of extreme
events when compared to nodes with a higher generalized
strength. Further, we have also shown that when the flux
is biased toward the hubs, abnormally large fluctuations in
event sizes become highly probable. This is one possible
signature of the topologically biased flow in a scale-free
network.

In general, it is possible to conceive of many ways by
which bias can be imparted to independent random walkers
on networks. These biasing strategies are motivated by real

observations and the quest for efficient search strategies
on networks. Various kind of biases based on the local
environment, shortest paths, the entropy of random walk,
and various adaptive strategies are some examples of biased
random walk on networks [21–26]. It will be interesting
to study the extreme-event probabilities under such biasing
strategies. However, we emphasize that if the stationary
probability distribution equivalent to Eq. (5) exists for all the
above strategies, then it would be possible to define extreme
events and analyze them following the methods presented in
this work.

In the context of scale-free network, it has been argued
that hubs are important for better functioning of the network.
Apart from being responsible for providing better connectivity,
the existence of hubs makes the scale-free network robust
against random node removal but fragile if the node removal
is targeted [27,28]. The results in this paper show that extreme
events due to natural fluctuations are more probable on small
degree nodes (when compared to the hubs). Hence special
attention must be paid to designing the capacity of the small
degree nodes so that extreme events can be smoothly handled
without leading to disruption of the node. The results in this
paper can be used to estimate the capacity a node should
possess if it should handle extreme events of size, say, m.
If we want the node to handle 4σ events smoothly, then the
required capacity can be obtained by inverting Eq. (12). Thus,
the numbers so obtained can be useful as an input for arriving
at the capacity at which the nodes on a network should be built.
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