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Common community structure in time-varying networks
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In this report we introduce the concept of common community structure in time-varying networks. We propose
a novel optimization algorithm to rapidly detect common community structure in such networks. Both theoretical
and numerical results show that the proposed method not only can resolve detailed common communities, but
also can effectively identify the dynamical phenomena in time-varying networks.
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Networks are powerful abstractions of relational data and
have become very popular tools in many fields, including
sociology, biology, and physics [1]. The characteristic of
community structure in networks; i.e., networks are naturally
divided into modules or communities, has attracted enormous
attention in the past decade. The community analysis can
provide insights into the structure and dynamic formation
of networks. Many methods for community detection in one
network have been developed and studied, including the
fuzzy community structure identification problem [2] and the
more challenging community detection problem in directed
networks [3] (see Ref. [4] for recent comprehensive reviews).

However, previous studies have concentrated on uncovering
community structure in a static network, which represents only
a summarized picture of all possible relations. One typical
example is a protein interaction network in biology, which
represents all proteins of an organism and all interactions
regardless of the conditions and time under which interactions
may take place [5]. In reality most of relationships modeled
by networks evolve with time or conditions [6].

Several recent studies have touched on the analysis of
dynamic networks, including analyzing changes of global
properties, detecting anomalous changes, mining dynamic
frequent subnets, and discovering similar evolving regions in
evolving networks [7] and even the dynamic communities by
combining the information of communities in each network
using traditional community detection methods [8]. However,
the community structure in two or more slices of a series
of time-varying networks has been addressed by only a few
studies until recently [9].

In this report we propose the concept of common com-
munity structure in two or more networks of a series of
time-varying networks. The basic assumption is that essential
and common community structure may exist in two or more
networks, and local dynamic changes may happen. This is very
realistic in time-varying networks of many robust systems.

Suppose that we are given the structure of two or more
networks of the same vertices, then we aim to determine
whether there exists any common community structure or, for
example, similar groups or communities in these networks.
More specifically, some communities appearing in both or
multiple networks can be combined to form the common

*Corresponding author: zsh@amss.ac.cn

community structure in them. As part of this goal, we
further attempt to uncover the dynamic characteristics of some
vertices. Mathematically, the common community structure
and dynamical characteristic are stored in matrices which can
be determined by an efficient optimization procedure.

Let us focus initially on the problem in two networks that
will be very useful in analyzing time-varying networks. To for-
mulate the problem easily, we consider the common notation
of clustering or community structure detection problems. The
objective of classical community detection in networks is to
partition the vertex set V of the graph G(V,E) with |V | = N

into K distinct subsets in a way that densely connected groups
of vertices are placed in the same community. In this case a
convenient representation of a given partition is the partition
matrix U = [uik] (or [ui], ui is a membership vector) with size
of N × K [10]. And uik = 1 if and only if vertex i belongs to
the kth subset in the partition; otherwise it is zero. From the
definition of the partition, it clearly follows that

∑K
k=1 uik = 1

for all i. The generalization of the hard partition follows by
allowing uik to attain any real value from the interval [0,1], and
the corresponding matrix is also called membership matrix.

In the following, we adopt the popular membership matrix
representation to formulate the problem. Nepusz et al. [10]
have suggested that an edge between vertex v1 and v2 implies
the similarity of v1 and v2, and likewise, the absence of an
edge implies dissimilarity, i.e, aij � uiu

T
j or A � UUT , where

A = (aij ) is the adjacency matrix of a network. At the same
time, the same vertices in two networks should have similar
membership vectors. These considerations can be formulated
as

min
2∑

g=1

‖Ag−HgH
T
g ‖2

F + λ1

2∑
g=1

‖Hg−H‖1 + λ2‖H‖1 (1)

subject to

{∑K
k=1(Hg)ik = 1; (Hg)ik, Hik � 0;

g = 1,2, i = 1, . . . ,N, k = 1, . . . ,K,

where Ag is the adjacency matrix of network G(V,Eg), Hg

is the membership matrix of network G(V,Eg), and ‖·‖F

and ‖·‖1 are the entrywise matrix norm (‖·‖F is known
as the Frobenius norm). We note that H is the virtual
membership matrix, which reflects the membership of nodes
determined by the topological information of two networks.
Based on the above formulation, we aim to determine an
optimal H to capture the common community structure in
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both networks. Specifically, the value of the element Hik in
H is non-negative, and it represents the intensity of vertex i

in two or more networks of a time-varying system belonging
to one of their common community k. To solve the problem
easily, we remove the constraints

∑K
k=1(Hg)ik = 1 (g = 1,2;

i = 1, . . . ,N ). Then the magnitude of (Hg)ik reflects the
intensity of vertex i belonging to community k in the network
G(V,Eg). This formulation allows us to map the communities
of two networks as well as their common communities.

Here we assume that the two networks have the same
number N of nodes and the same number K of communities.
But this model can be potentially applied to the cases where
one of the two networks loses some nodes which enable the
two networks do not have exactly the same number of nodes
and communities. For example, one of these two networks is
of size N1 with N1 < N and has only K − 1 communities,
then we can still store them in an N × N adjacency matrix
and assume it has K communities. To solve the model, we can
add small corresponding values to the denominator of related
terms in the updating rule, and the membership matrix has K

columns with small membership values in one of them.
The nonconvexity and the nonsmoothness of the objective

function of Eq. (1) make it a challenging mathematical pro-
gramming problem. To practically solve the problem Eq. (1),
we employ a decomposition technique. We can easily find
that, given the common communities matrix H , the technique
leads to two symmetrical non-negative factorization matrix
(SNMF) problems [11] coupled with a penalty term as follows

min
2∑

g=1

∥∥Ag − HgH
T
g

∥∥2
F

+ λ1

2∑
g=1

‖Hg − H‖1. (2)

Fortunately, it can be divided into two independent
subproblems, which can be solved in a symmetric NMF
manner with the following updating rule:

(Hg)ik ← (H̃g)ik

[
1 − β + β

(AgH̃g)ik

(H̃gH̃g
T
H̃g)ik

]
, (3)

where H̃g = Hg + �(Hg − H ), and 0 < β � 1 (β = 1/2 has
been used empirically). The columns of H1 and H2 determine
the community structure in two networks, respectively.
According to Eq. (3), we update H1 and H2 in each iterative
step separately, and their orders are independent. Then the
columns of H1 and H2 may correspond to unrelated commu-
nities. To avoid the inconsistency, we reorder their columns
by maximizing correlations of corresponding columns to
facilitate the optimization procedure. We should note that this
strategy will not affect the optimal property, since each entry of
HgH

T
g is independent with the column order of Hg (g = 1,2).

While given the community matrix Hg of each network, the
model (1) leads to the following problem:

min λ1

2∑
g=1

‖Hg − H‖1 + λ2‖H‖1. (4)

This formulation with positive combination of L1 norm
of variables can be transformed into a large-scale linear
programming problem through a well-known procedure.
More interestingly, it can be solved efficiently by a further

decomposition technique [12]. We should note, owing to the
L1 norm, that generally the optimal solution has an excellent
property; i.e., there are as many zeros for ‖Hg − H‖1 and
‖H‖1 as possible. This point exactly serves the final goal, i.e.,
consistency and sparseness of the membership of each vertex.

Therefore, we have the following algorithm for discovering
common communities in two undirected networks. We first
set the parameters λ1, λ2, β, and K , initialize the membership
matrices H1and H2, and set H = H1+H2

2 . For the subproblem
Eq. (2), we use the update rule Eq. (3) to update H1 and H2,
respectively. Then using the new H1 and H2 we solve the
subproblem Eq. (4) to obtain the new H , by subdividing it
into N × K one-dimensional optimization subproblem. We
iteratively solve the subproblem Eqs. (2) and (4) until H does

not change too much (e.g., ‖Hnew−Hold‖2
F

‖Hold‖2
F

< 10−5, where Hnew

and Hold are the H in current step and last step, respectively).
The final H , H1, and H2 store the common communities and
dynamical information. The H (H1 and H2) can be considered
as a fuzzy partition of the network(s) directly [13]. It can also
be employed to determine a hard partition by assigning a node
into a single community according to the maximum value in
each row of H (H1 and H2) [14].

The time complexity of the proposed algorithm is
O(T KN2), where T is the number of iterations. The efficiency
of the method can also be seen in its application to networks
with size of 10 000 (see Appendix). Note that the method can
be applied onto a single network by minimizing the criterion:
‖Ag − HgH

T
g ‖2

F , and it shows competitive performance with
two popular algorithms (see Appendix).

The formulation for two networks can be easily extended
to more than two networks as follows:

min
G∑

g=1

∥∥Ag − HgH
T
g

∥∥2
F

+ λ1

G∑
g=1

‖Hg − H‖1 + λ2‖H‖1,

(5)

where all the Hg and H are non-negative matrices. The
algorithm can also be easily extended.

The key issue in community detection is the proper choice
of K . Here we employ the stochastic nature of the proposed
algorithm to achieve this. We should note that a similar strategy
has been used to determine the number of clusters in gene
expression studies [14]. The differences and similarities of
multiple realizations are employed to evaluate the robustness
of a partition of a specific K . Specifically, for each run, the
vertices assignment can be defined by a connectivity matrix C

of size N × N , with entry cij = 1 if vertices i and j belong to
the same communities, and cij = 0 if they belong to different
clusters. We can then compute the consensus matrix, C, defined
as the average connectivity matrix over many runs. The entries
of C range from 0 to 1 and reflect the probability that vertices
i and j belong to one community.

We adopt the entropy as a measure of the stability of the
common community structure. We assume that the cij are
independent of each other and define the average common
community entropy score as

E = − 2

N (N − 1)

∑
(i;j )

[cij log2cij + (1 − cij )log2(1 − cij ],
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FIG. 1. (Color online) The common community entropy for each
testing network system in the following analysis: (a) the simulated
networks, (b) the karate club networks, (c) the US Senate networks.

where the sum is taken over all edges and m is the total number
of edges in the network. If the network is totally unstable (i.e.,
in the most extreme case cij = 0.5 for all pairs), E = 1, while
if the edges are perfectly stable under noise (cij = 0 or 1),
E = 0. We have demonstrated that the E score can help to
select the number of communities in the time-varying networks
(Fig. 1). For example, the E score for the simulated networks

corresponds to a very small value for K = 3, which indicates
that the system has three distinct communities.

We should note that the parameters λ1, λ2, and β can also be
evaluated with the E score by running the method with many
trials. Parameter selection is a challenging problem for many
problems now. It is also difficult to design an exact selection
model for the proposed method, which heavily relies on the
structure of networks. However, similar to the selection of K ,
we can compare the E score of different parameter settings
by running the method with many trials. As the new method
can be run efficiently for relatively large-scale networks,
together with current efficient computing hardware systems,
we think that it is feasible to run the method many trials
for parameter selection. Moreover, domain knowledge about
real networks may provide valuable information for parameter
selection.

The membership matrix Hg for each network represents the
community structure of each network, and the features of H

can be employed to describe the dynamic structure of these
networks. For each run, we can define the following index S

for vertex i as the ratio between the second maximal value
and the maximal value of row i of H . The ratio is a positive
value less than one. In reality there is no rigid threshold for
significant S score due to the diversity of networks, but we can
select top ones based on the popular Z score (i.e., Z = S−μ(S)

σ (S) ,
where μ(S) is the mean of S and σ (S) is the standard deviation
of S). By removing the active dynamic vertices according to
this index, we can define the stable common communities of
these networks.

(a)

(c)

(b)

FIG. 2. (Color online) Illustration of a toy example to show the major idea. (a) The system under the first condition where the links are
marked with solid lines. (b) The system under the second condition with links of some vertices changing, where dotted lines mean links exist
in a previous condition, but disappear in current condition, while double lines mean new links. (c) The dynamic index shows the dynamic
properties of vertices. Some vertices with high values affect the community structure. The horizontal line was drawn to indicate several distinct
S values, whose corresponding nodes have been marked in (b). A similar line has been drawn in Fig. 3(c).
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We first test the proposed method using a pair of simulated
toy networks of a time-varying system under two time points
with 16 links’ difference [Figs. 2(a) and 2(b)]. In the system,
there are three clear communities, however, in the two
conditions, the links of some vertices have changed due to
some perturbations. We aim to identify these communities,
and uncover those link dynamics that can affect the com-
munity structure. The link dynamics exist in two types: link
changes within a community and link changes between two
communities. The dynamics happening within a community
do not affect the community structure, while those between
communities do. For example, the absence of links (15,11)
and (15,20) and the emerging links (15,28) and (15,26) makes
the vertex 15 move to another community. Our method can
not only identify the community structure well, but also
can accurately distinguish the link dynamics that affect the
community structure [Fig. 2(c)].

We next apply our method to the karate club network and its
variants with 12 links’ difference compared with the original
one. The original karate club network was constructed based on
the observed social interactions between members of a karate
club, in which a dispute arose and the club split into two clubs.
We assumed there are changes upon the members’ relationship
as shown in Fig. 3(b). Our method can identify well the
core communities which correspond to the two real subclubs
[Figs. 3(a) and 3(b)]. At the same time, we can uncover
the vertices whose link dynamics can affect the community
structure. For example, the links of vertices 10 and vertices 20
have great difference, and the two vertices are located at the
boundary of two communities. These two nodes have evolved
into opposite communities, which can be reflected well by the
index S [Fig. 3(c)].

We further apply our method to the set of time-varying
networks consisting of 100 vertices (senators) and eight time

points (i.e., eight time-varying networks) corresponding to
three-month epochs starting on 1 January 2005 and ending on
31 December 2006. The network data were created using the
method developed by Kolar et al. [15] based on the United
States 109th Congress voting records and analyzed in Ho
et al. [16]. An edge between two senators in such a network
indicates that their votes were mostly similar during that
particular epoch. We observed that two successional networks
have relatively small changes. As an example, we show the
networks (t = 1 and 5) and identify the common community
among them [Figs. 4(a) and 4(b)]. Our method can well
identify the two common communities which perfectly capture
party affiliations: Republican senators are almost always in
community 1, while Democratic senators are almost always
in community 2. More interestingly, we can also identify the
dynamic changing of some vertices which reflect the changes
of political opinions of some senators [Fig. 4(c)]. For example,
the votes of Democrat Nelson were unaligned with either
Democrats or Republicans at t = 1, while his votes were
gradually shifting toward Republicans, which can be found
by the index S.

In this report, we investigate the common community
structure in time-varying networks. Rather than treating each
slice of a series of time-varying networks independently,
we consider them simultaneously by defining a common
community structure among them. We have proposed a new
framework for recovering the common community structure
and exploring the dynamic changes in these networks by
solving an elaborate mathematical programming problem
via existing decomposition techniques. We have applied the
method to both real and simulated networks, demonstrating
that it is able to recover known common community structure
and reveal dynamic changes among them. The nondetermin-
istic characteristic of the method allows it for the selection of

(a)

(c)

(b)

FIG. 3. (Color online) (a) The original karate club network. (b) The artificial evolving network with 12 links’ difference compared with the
network in (A). (c) The dynamic index shows the dynamic properties of vertices.
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(a)

(b)

(c)

FIG. 4. (Color online) (a) The US Senate networks at different time points: (a) t = 1, (b) t = 5, and five vertices show distinct dynamic
characteristics. (c) The dynamic indexes show the dynamic properties of vertices. Vertex shape show the two political paries: square means
Democrat, and circle means Republican.

number of communities and quantification of the stability of
the community structure. We should note that our framework
can shed lights on the situation that dramatic changes appear in
time-varying networks. Specifically, by applying our method
on each network respectively, we can detect the community
structure of the two networks. By calculating the consistency
of the two community structure with a measure like normalized
mutual information index, we can see how similar the
community structure are in the two networks.

In summary, the main purpose of this report is to propose
the new concept and theoretical framework to analyze the
common community structure of multiple slices of a series
of time-varying networks, which shed light on the network’s
dynamics and stability. We expect it to become a promising
method for time-varying network analysis. We need to point
out that the adjacency matrix A used in this framework can be
replaced by some similarity matrix based on the connectivity
like kernel matrix.

This work was partially supported by the National Natural
Science Foundation of China, No. 11001256, 11131009, the
Special Presidential Prize–Scientific Research Foundation of
the CAS, the Special Foundation of President of AMSS at CAS
for “Chen Jing-Run” Future Star Program, and the Foundation
for Members of Youth Innovation Promotion Association,
CAS (to S.Z.). The authors thank Prof. Eric P. Xing for
providing the US Senate network data.

APPENDIX

We have applied the reduced formulation onto simulated
networks with multiple trials. The networks have been
simulated based on the principle suggested in Lancichinetti
et al. [17]. We found that our method can obtain reasonable
results for many different simulation settings assessed with
normalized mutual information index (Fig. 5). We also
compared it with other typical community methods, which
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FIG. 5. (Color online) Tests of our method on a single network
using the benchmark suggested in Ref. [17]. We also compared it with
two modularity optimization algorithms: the fast greedy modularity
optimization method (QFG) [18] and the spin-glass model and
simulated annealing method (SGSA) [19]. Each point corresponds to
an average over 25 network realizations. Detailed parameter settings
of the simulated networks can be seen in Ref. [17].

FIG. 6. (Color online) The computation time (in seconds) with
network size of n = 1000 to 10 000. Each bar corresponds to an
average over 25 network realizations.

have shown our method has competitive performance with
them. These analyses partially show that our criterion for
multiple networks is reasonable.

The computational efficiency of the proposed method can
also be seen in the simulation study, where we have applied the
reduced formulation onto a single network with 10 000 nodes.
Both the theoretic and experimental analyses have shown that
our method can scale well (Fig. 6).
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