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Quantifying reflexivity in financial markets: Toward a prediction of flash crashes
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We introduce a measure of activity of financial markets that provides a direct access to their level of endogeneity.
This measure quantifies how much of price changes is due to endogenous feedback processes, as opposed to
exogenous news. For this, we calibrate the self-excited conditional Poisson Hawkes model, which combines in a
natural and parsimonious way exogenous influences with self-excited dynamics, to the E-mini S&P 500 futures
contracts traded in the Chicago Mercantile Exchange from 1998 to 2010. We find that the level of endogeneity
has increased significantly from 1998 to 2010, with only 70% in 1998 to less than 30% since 2007 of the
price changes resulting from some revealed exogenous information. Analogous to nuclear plant safety measures
concerned with avoiding “criticality,” our measure provides a direct quantification of the distance of the financial
market from a critical state defined precisely as the limit of diverging trading activity in the absence of any
external driving.
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I. INTRODUCTION

Human societies and more generally biological commu-
nities are characterized by significant levels of interactions
developing into complex networks of interdependencies,
leading to the emergence of remarkable dynamical properties
and abilities. These societies are, however, not just evolving
spontaneously or endogenously. In the absence of external
“forces,” they would freeze, regress, or die. Essential to their
organization is the flux of exogenous influences that allow
them to “feed,” adapt, learn, and evolve. For instance, both
external stimuli and endogenous collective and interactive
wiring between neurons are essential for brain development
and continuous performance. Scientific discoveries result from
the interplay between the maturation of ideas and technical
progress within the scientific community as well as serendipity
[1,2]. One can find many other examples of the essen-
tial interplay between endogenous processes and exogenous
dynamics in interesting out-of-equilibrium systems, that is,
almost everywhere from the micro to the macro worlds [3].

Some fundamental questions are the following: How much
of the observed dynamics is due to the external influences
versus internal processes? Is it possible to quantify the
interplay between exogeneity and endogeneity? Can this be
used for characterizing the robustness of systems and for
developing diagnostics of fragility and of incoming crises as
well as upside potentials?

Here, to address these questions quantitatively, we consider
financial markets as paradigms of complex human societies, in
which external news play the role of the exogenous influences
impacting investors whose elaborate interactions via complex
social and economic networks lead to price formation. In a
nutshell, one can indeed state that financial markets are nothing
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but the engines through which information is transformed into
prices. But how much of the news and information is really
captured by prices? Is it not the case that prices also reflect
idiosyncratic dynamics of social networks that may lead to
deviations from true valuation? The arguably most important
question in financial economics is indeed to what degree prices
are faithful embodiments of information. And, correlatively,
what is “information”?

Financial economists have introduced the “efficient market
hypothesis” (EMH) that states, in its ideal limit, that the market
absorbs in full and essentially instantaneously the flow of
information by faithfully reflecting it in asset prices [4–7]. The
EMH amounts to considering the process of price formation
as perfect with almost instantaneous reaction and infinite
precision, so that only external influences show up. In other
words, according to the EMH, prices are just reflecting news:
whatever the internal structure of the market, the EMH assumes
that the market is sufficiently fast and effective so that it
converges to an equilibrium price justly reflecting exogenous
information, while all endogenous processes have had time to
converge after each given exogenous shock, thus disappearing
from the observations. As a result, markets are assumed to
be driven only by external inputs of information and reflect
only them. Only updates of these inputs can change investors’
anticipation and thus prices. In particular, such extreme events
as financial crashes are, according to the EMH, the signature
of exogenous negative news of large impact.

In reality, it is now recognized that prices move much too
much compared with what would be expected from the EMH
(even corrected for the costs of gathering information), i.e.,
from the volatility of fundamental news proxied, for instance,
by dividends [8,9]. Moreover, according to the EMH, large
price moves should occur only with significant geopolitical-
economic-financial news. This prediction has been refuted
by diverse studies comparing price movements and relevant
news at the daily time scale [10] and for high-frequency
financial data [11,12], which showed that only a small
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fraction of price movements could be explained by relevant
news releases. This suggests that price dynamics is mostly
endogenous and driven by positive feedback mechanisms
involving investors’ anticipations that lead to self-fulfilling
prophecies, as described qualitatively by Soros’ concept of
“market reflexivity” [13].

The contribution of the present work is to provide what is,
to the best of our knowledge, the first quantitative estimate
of the degree of reflexivity, measured as the ratio of price
moves due to endogenous interactions to the total number of
all price moves that also include the impact of exogenous
news. We use the self-excited conditional Poisson Hawkes
model [14], which combines in a natural and parsimonious way
exogenous influences with self-excited dynamics. According
to the Hawkes model, each event, i.e., price change, may lead to
a whole tree of offspring, i.e., other price changes. The Hawkes
model provides a natural setup to describe the endogenous
mechanisms resulting from herding as well as from strategic
order splitting, which lead to long-range correlation in the se-
ries of trade initiations (buy side or sell side). The self-excited
Hawkes branching process allows us to classify different types
of volatility shock and to separate the exogenous shocks from
the endogenous dynamics. In particular, the Hawkes model
provides a single parameter, the so-called branching ratio n that
measures directly the level of endogeneity. The parameter n

can be interpreted as the fraction of endogenous events within
the whole population of price changes. Our observations of
this measure of endogeneity reflect a robust behavioral trait
of human beings, who tend to herd more at short time scales
in times of fear and panic. Our study thus complements the
evidence for herding at the time scales of years over with
financial bubbles develop [15], by showing the existence of
herding at short time scales according to a different mechanism
than the ones operating at large time scales.

II. THE DATA

We use the E-mini S&P 500 futures contracts (ticker symbol
ES), which are traded in the Chicago Mercentile Exchange.
Being introduced in 1997 as a supplement to the regular S&P
500 futures contracts with reduced contract sizes, E-minis have
attracted a lot of small investors and have become some of
the most actively traded contracts in the world. Our data set
contains all transactions and changes in supply and demand
(best bid and best ask sides) from January 5, 1998 to August
29, 2010 (in total 2 431 967 666 records including 298 586 423
transactions), which are recorded with corresponding volume
and time stamps that are rounded to the nearest second. The
data set was cleaned of gaps and nontrading days. At every
moment, there are traded futures contracts with five different
maturities in the March quarterly cycle (with expirations on
the third Friday of March, June, September, and December).
However, the rollover dates are 8 days before the expiration
dates, i.e., on the second Thursday of each of these months.
At the rollover date, the liquidity (measured in volume) of the
contract that is going to expire is switched to the contract that
will expire at the following quarter. For the analyzed data set,
the volume of the most actively traded contracts accounts for
96.7% of the total traded volume (99.1% when rollover weeks
are excluded). Thus, in our studies, we have focused only on

the most actively traded contract—the contract whose rollover
date is closest to the given moment.

The analyzed data set presents highly nonstationary proper-
ties at both fine-grained and coarse-grained scales. At the daily
scale, the trading activity has increased dramatically over these
ten years: starting in 1998 with an average of 7000 transactions
per day on 16 000 contracts, the average daily volume in 2009
consisted in 148 000 transactions on approximately 1 837 000
contracts [see Fig. 4(a)]. At the same time, during any given
day, the activity is very low outside regular trading hours
(9:30–16:15 EST) and exhibits the well-known U-shaped
intraday seasonality, which is illustrated in Fig. 3(a).

At any given moment t , one may distinguish four different
prices in the market that reflect its different properties:
(i) the last transaction price ptr (t), at which the previous
transaction was executed, (ii) the best ask price a(t) and
(iii) the best bid price b(t) at which market participants
may immediately correspondingly by and sell an asset, and
(iv) the mid-price, which is defined as the average of best
bid and ask prices: pm(t) = [a(t) + b(t)]/2. The bid and
ask prices reflect respectively demand and supply of the
liquidity providers; the transaction price reflects actions of
liquidity takers, and mid-price changes result from actions of
all market participants, both liquidity providers and takers.
The transactions are triggered when a market order arrives. In
the case of a buy market order, the transaction is executed at the
best ask price, while a sell market order triggers a transaction
at the best bid price. Since the sequence of order arrivals is
stochastic with the sign of order being a random variable, the
last transaction price will jump from best bid to best ask price
and back even without changes in the balance between supply
and demand. This stochastic behavior, which is called “bid-ask
bounce,” represents a kind of “noise source” to the price.

The idea that the last transaction price in high-frequency
financial data is a poor proxy of the unobservable asset’s value,
which is subjected to the additive “microstructure noise,”
is a well-established concept in the market microstructure
literature (see, for instance, [16], and the concept of “noise
traders” developed by Black [17]). In contrast to the last
transaction price, the mid-price is free from the bid-ask
bounce and is changed only when the balance between supply
(liquidity providers) and demand (liquidity takers) is upset.
Therefore, the mid-price is claimed to be a better proxy for
the asset value, given the information available [18,19]. In
the “market impact” (or “price impact”) literature that studies
the question of how much the price of an asset will change due
to a single market order execution, the mid-price became the
“default measure” of the price movements (see, for instance,
the extensive review in Ref. [20]).

In the present study, we consider the changes of the mid-
price of E-Mini S&P 500 futures as the best proxy for market
movements as a whole. More precisely, we apply and test
the Hawkes model to events corresponding to changes in the
mid-price of E-minis within the regular trading hours (in total
24 309 652 events).

III. SELF-EXCITED HAWKES MODEL

A class of models based on continuous or discrete stochastic
price processes have built on Bachelierapos;s random walk
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model [21] to incorporate stylized facts, such as the quasi-
absence of linear autocorrelation of returns, the existence of
long memory in the volatility, volatility clustering and mul-
tifractality, fat tails in the distributions of returns, correlation
between volatility and volume, time-reversal asymmetry, the
leverage effect, gain-loss asymmetries, and others (see for
instance [22,23]).

Another class of models view the price formation process
as discontinuous, i.e., following point processes reflecting
the discrete nature of market order arrivals. The Poisson
point process is the simplest of this class, in which events
occur independently of one another with a constant arrival
rate λ. Having no correlation structure, the Poisson point
process cannot describe the stylized facts of real order flows,
such as (i) clustering of order arrivals, (ii) long memory
in intertrade intervals [24,25], (iii) slower-than-exponential
decay of the distribution of intertrade intervals [24,26,27],
(iv) long memory of the signs of successive trades [20],
and (v) multifractal scaling of intertrade intervals [25,28,29].
A first attempt to account partially for these stylized facts
characterizing high-frequency transaction data uses a class
of self-excited processes called the autoregressive conditional
durations (ACD) model [30,31], which describes the interevent
durations with an equation similar to the generalized autore-
gressive conditional heteroskedasticity (GARCH) model. A
more consistent approach based on the generalization of the
self-excited Hawkes model [14] was developed in the working
paper [32] (published later with corrections [33]), where the
author used a bivariate Hawkes process to model the arrival
times of market buy and sell orders. This approach later
became the “gold standard” for the use of self-excited models
to describe high-frequency order flows [34,35] and was later
extended to account for the actions of liquidity providers
in the construction process of the order book [36–38].
Recently, the multivariate Hawkes process was used to model
last transaction price data and, in particular, the signature plot
and the Epps effect [39,40].

The Hawkes point process can be regarded as the gen-
eralization of the nonhomogeneous Poisson process, whose
intensity λ(t) [defined such that λ(t)dt is the expected value of
the number of events in the time interval [t,t + dt)] depends
not only on time t but also on the history of the process
according to

λt (t) = μ(t) +
∑
ti<t

h(t − ti), (1)

where ti are the time stamps of the events of the process,
μ(t) is a background intensity that accounts for exogenous
events (not dependent on history), and h(t) is a memory kernel
function that weights how much past events influence the
generation of future events and thus controls the amplitude
of the endogenous feedback mechanism. For our purposes,
the Hawkes process presents two interesting properties. First,
the external influences on the system [μ(t)] and the internal
feedback mechanisms [h(t)] can be clearly isolated in their
linear additive contributions to the conditional intensity λt (t) in
expression (1). Second, the linear structure λt (t) in the Hawkes
model allows one to map it exactly onto a branching process
[41]. This implies that the process exhibits a critical bifurcation
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FIG. 1. (Color online) Illustration of the branching structure of
the Hawkes process (top) and events on the time axis (bottom).
Different colors of markers correspond to different clusters, the
dashed lines denote descendants of the same cluster, and the number
next to each event denotes its order within the cluster. This picture
corresponds to a branching ratio equal to n = 0.88.

controlled by the so-called branching ratio parameter to be
defined shortly below.

In the language of branching processes, all events belong
to one of two classes—immigrants (or, using earthquake
terminology, main events) and descendants (or aftershocks).
The exogenous immigration [described by the background
intensity μ(t)] triggers clusters of descendants. Namely, every
zeroth-order event (immigrant) can trigger one or more first-
order events, each of which in turn can trigger several second-
order events and so on over many generations (see Fig. 1).
All first-, second-, and higher-order events (descendants) form
the cluster of aftershocks of the main event as a result of
the self-excited (endogenous) generating mechanism of the
system.

The crucial parameter of the branching process is the
so-called branching ratio (n), which is defined as the average
number of daughter events per mother event. There are three
regimes: (i) subcritical (n < 1), (ii) critical (n = 1), and
(iii) supercritical or explosive (n > 1). Starting from a single
mother event (or immigrant) at time t1, the process dies out
with probability 1 in the subcritical and critical regimes and
has a finite probability to explode to an infinite number of
events in the supercritical regime. The critical regime for n = 1
separates the two main regimes and is characterized by power
law statistics of the number of events and in the number of
generations before extinction [42]. For n � 1, the process is
stationary in the presence of a Poissonian or more generally
stationary flux of immigrants.

In the subcritical regime, in the case of a constant back-
ground intensity [μ(t) = μ = const], the branching ratio is
equal to the proportion of the average number of descendants
in the whole population [43]. In other words, the branching
ratio is equal to the proportion of the average number of
endogenously generated events among all events. To see this,
since by definition n is the average number of first-generation
events per immigrant, the total average number of events
of all generations triggered by a given mother event is
n + n2 + n3 + · · · = n/(1 − n). The fraction of such triggered
events in the total number of events (that therefore includes the
mother event) is thus the ratio of n/(1 − n) to 1 + n/(1 − n),
which is equal to n. Using the branching property that the
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generations of events associated with different mother events
are forming independent “branches,” the ratio n holds for
each cluster so that the average ratio of all triggered events
by all immigrants to the total number of events is equal
to n. Calibrating n on the data therefore provides a direct
quantitative estimate of the degree of endogeneity.

There are several routes to determine n. One is to reverse-
engineer the clusters and calculate the average number of
direct descendants from any given event. This can be done via
the stochastic declustering (parametric [44] and nonparametric
[45]) method, which amounts to reconstructing from the se-
quence of events (Fig. 1, bottom) the original cluster structure
(Fig. 1, top), or at least distinguishing between descendants
and immigrants, but this may have severe limitations [46]. A
simpler way is to just use the definition

n =
∫ ∞

0
h(t)dt. (2)

Given the parametric form of the kernel h(t ; θ̂), one can
estimate the parameters θ̂ for the given realization of the
process t1, . . . ,tN , using the maximum likelihood estimation
method, which benefits from the fact that the log-likelihood
function is known in closed form for Hawkes processes
[47,48].

IV. CALIBRATION TO MID-PRICE CHANGES DATA AND
GOODNESS OF FIT ANALYSIS

For the present application, we use the classical model
(1) and assume (i) a constant background intensity μ(t) =
const with (ii) an exponential kernel [32,33,37–40]: h(t) =
αe−βt ξ (t), where β > 0 and ξ (t) is the Heaviside function that
ensures causality. Given this parametrization, the branching
ratio (2) is given by n = α/β. Choosing n as an independent
parameter and substituting it into expression (1), we finally
write the conditional intensity

λt (t) = μ + nβ
∑
ti<t

e−β(t−ti ), (3)

where ti are time stamps of the individual events and μ,n,β

are parameters of the model. In this formulation, all events
(changes of mid-price) have identical impact on the conditional
intensity, independently of the direction and size of mid-price
changes or volumes at the bid or ask sides. This simplification
can be removed by considering the marked Hawkes process,
with marks being functions of the volumes or increments of
prices. However, residual analysis indicates that the selected
model (3) fits the data with an excellent precision, and the
extension to marked or multivariate Hawkes processes is not
necessary.

The assumption that the background intensity is constant
implies for n � 1 that the events time series is stationary. As
noted earlier, the activity (the flow of events) is nonstationary
and, in particular, subjected to intraday seasonality. To address
this issue, one needs to consider the smallest possible intervals.
But a decrease in the size of the intervals decreases the
number of events that are used for the estimation and thus its
robustness. More important, the size of the time window limits
the memory of the endogenous process taken into account in
the estimation procedure. In other words, considering time

intervals of just a few minutes prevents capturing the memory
effects that are developing over the scale of hours. In the
present work, we resolve this trade-off by considering time
intervals of a few tens of minutes (namely, windows of 10,
20, and 30 min). In such short time intervals, the parameters
of the Hawkes model (3) can be considered approximately
constant. At the same time, these intervals are wide enough
to capture the endogenous memory of the system due to
the algorithmic and high-frequency trading that operate at
the scales of seconds to milliseconds. Moreover, windows of
10 min or more contain typically more than 100 events, which
allows a reliable calibration (there were on average 150 events
per 10 min in 1998, 350 in 2010, and 890 in 2008).

Another characteristic of the data needs to be addressed
before calibration. Because time stamps are rounded to the
nearest second, the data set contains multiple events with equal
time stamps. On average, there are approximately 0.26 events
(mid-price changes) per second in 1998, and 1.5 events per
second in 2008. However, during the so-called flash-crash
event (May 6, 2010, 14:45 EST), there was a peak of 194
mid-price changes per second. The flash-crash event occurred
as algorithmic and high-frequency traders in S&P 500 E-mini
futures contracts triggered a dramatic fall in other markets [49]
(see Fig. 5). To address this issue of multiple events per
time stamp, which may bias the calibration of the model,
we round the time stamps by randomly redistributing events
with the same time stamp within each second interval. This
amounts to assuming that each event occurring within one
second is independent of all the others within the same second
interval (but not between different seconds). To verify that this
procedure does not bias the calibration of the Hawkes model,
we have tested it on synthetic time series obtained by numerical
simulation of the Hawkes process (3) with parameters (μ,n,β)
close to the values calibrated on the real data. Our simulations
show that the estimation errors, which result from the finite
sample size and the rounding of time stamps, are low (standard
deviations of 1.4% for μ, 0.6% for n, and 3.5% for β).
Additionally, after the estimation of the parameters of the
real time series, we performed 50 bootstraps obtained by 50
different realizations of the randomization within each second
in each time window in 1998–2010, allowing us to study error
bars of the estimations of (μ,n,β). The standard deviation of
the estimated parameters is relatively small and decreases in
time with increase of the number of events per time window.
For instance, the standard deviation of the estimation of n

was approximately 0.13–0.18 (in absolute value) in 1998,
0.05–0.07 in 2000, and after 2002 it never exceeded the level
of 0.035, decreasing by 2010 to the range of 0.005–0.015,
implying a 1%–2% estimation error.

The standard quantification of the goodness of fit of the
data by the Hawkes process uses residual analysis [50], which
consists in studying the so-called residual process defined as
the nonparametric transformation of the initial time series ti
into ξi = ∫ ti

0 λ̂t (t)dt , where λ̂t (t) is the conditional intensity
of the Hawkes process (3) estimated with the maximum
likelihood method. Under the null hypothesis that the data
have been generated by the Hawkes process (3), the residual
process ξi should be a Poisson process with unit intensity [51].
Visual cumulative sum (CUSUM) plot and Q-Q plot analysis
shows the excellent explanatory power of the Hawkes model
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with respect to the data. Visual analysis was complemented
with rigorous statistical tests. Under the null hypothesis of
agreement of data with the model (Poisson statistics of the
residual process ξi), the interevent times in the residual
process �i = ξi − ξi−1 should be exponentially distributed
with cumulative distribution function (CDF) F (�) = 1 −
exp(−�). Thus, the random variables Ui ≡ F (�i) = 1 −
exp(−�i) should be uniformly distributed in [0,1]. We have
performed rigorous Kolmogorov-Smirnov tests for uniformity
for each calibration of the Hawkes process over 1998–2010
in moving time windows of 10 min (198 713 estimates),
20 min (193 877 estimates), and 30 min (188 909 estimates)
that are swept through the regular trading hours with a step
of 5 min. We rejected the model in a given time interval
if the hypothesis of a uniform distribution of the residuals
Ui could be rejected at the 5% confidence level for each
of the 50 different estimations obtained with bootstrapping
performed for that time interval. With this criterion, we have
found that, out of all 10 min intervals, 240 intervals (0.12%)
could not be described with the Hawkes model (3) with an
exponential kernel. For 20 min intervals, we could reject
3180 calibrations (1.64%), and, for 30 min intervals, 23 878
calibrations (12.64%) could be rejected. Figure 2 presents
the empirical cumulative distribution of the maximal p-values
for estimations performed in windows of different sizes. The
larger number of rejected calibrations obtained for longer
time windows results from fits that are generally poorer due
to intraday nonstationarity of the data. Extending the time
window size to one hour, we find that more than 50% of all
calibrations are rejected at the 5% confidence level. Working
with these short time intervals of 10 to 30 min, we exclude
from our following analysis the small fractions of windows
for which the data could not be described with the model (3) at
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FIG. 2. Cumulative distribution of the p-values obtained in the
test for uniform distribution (see text) used to estimate the Hawkes
model, performed in windows of (a) 10, (b) 20, and (c) 30 min. The
vertical dashed line denotes the 5% threshold at which the statistical
test performed on the calibration of the model in a given window
leads to its rejection.

the showing threshold of 5%. Overall, different tests presented
in this section confirm that (i) the chosen exponential kernel
(3) describes the data well, (ii) the random redistribution of
the time stamps within each second does not affect the results
of the estimation procedure, and (iii) the assumption that the
parameters are constant in each window is valid.

V. BRANCHING RATIO n AND LEVEL
OF ENDOGENEITY IN US FINANCIAL MARKETS

To analyze the short-term reflexivity of the market, we use
the maximum likelihood estimator [47,48] to calibrate the
Hawkes model (3) in time windows of 10, 20, and 30 min
spanning every day from 1998 to 2010 with a 5 min time
step. We excluded the days when trading was closed before
16:15 EST or with nonactive trading. We also filtered out
the trading days with daily volume less than the 5% quantile
of daily volumes for each given year. Figure 3 illustrates
an example of the intraday behavior of the parameters in
March 2009. Figure 3(a) illustrates the U shape of the intraday
seasonality in the trading activity discussed above: one can
observe that the number of transactions and the number of
mid-price changes (as well as the trading volume and the
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FIG. 3. (Color online) (a) Number of mid-price changes (dots)
and transactions (circles) for the E-mini S&P 500 futures contracts
in time windows of 10 min during the regular trading hours in March
2009 (logarithmic scale on vertical axis). Each point represents the
averaged value over the period from March 1, 2009 to March 31,
2009, and the shaded area corresponds to the 10%–90% quantile range
obtained with the same 1 month of data. (b) Estimated background
intensity (μ̂) and (c) branching ratio (n̂) of the flow of mid-price
changes of the E-mini S&P 500 futures contracts over the regular
trading hours. Each point at a given time t represents an estimate in
windows of 10 (dots), 20 (squares), and 30 (crosses) min averaged
over the period of 1 month. The shaded area corresponds to 10%–90%
quantile range obtained with the same 1 month of estimates for 10 min
time windows.
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numbers of market and limit orders not presented in the figure)
drop by almost 50% over the lunch time in comparison with the
opening and closing levels. This seasonality is observed in the
estimated background intensity μ of exogenous events in the
market [Fig. 3(b)]. In contrast to the background intensity,
the branching ratio [Fig. 3(c)] that captures the endogenous
impact of reflexivity does not exhibit a U shape. As one can
see from the figure, the branching ratio fluctuates around some
mean value, showing sometimes nonregular excursions that
will be investigated further below in two case studies discussed
in Sec. VI. While the average intraday pattern of the branching
ratio can be considered as approximately constant in a first
approximation, its shape slightly varies from year to year. We
attribute this effect to the evolution of the trading algorithms
that are the main source of the short-term reflexivity measured
by n. Finally, we stress the good coincidence of results obtained
from the estimations performed in windows of different sizes,
which supports the robustness of the proposed method.

To analyze the evolution of the parameters over the whole
period of 1998–2010, we have averaged the estimates for the
parameters (μ,n,β) over all windows within a 2 month period.
The curves shown in Fig. 4 give the average values of the
parameters as functions of the middle time t over the time
intervals [t − �m,t + �m], where �m = 1 month. We also
determined the quantiles over the set of all 10, 20, and 30 min
windows in each 2 month interval. Figures 4(c) and 4(d) show
that the results obtained for the 10, 20, and 30 min windows are
practically indistinguishable. This observation together with
the narrowness of the 10%–90% quantile range, especially for
the estimation of the branching ratio, confirm both the status
of the Hawkes model as an excellent description of the data
and the robustness of our estimation procedure.

Comparison of Figs. 4(a)–4(c) shows that (a) the number
of mid-price changes [Fig. 4(a)], (b) the daily volatility
[Fig. 4(b)], and (c) the background intensity μ [Fig. 4(c)]
are behaving similarly with coincident major peaks associated
with major phases of market instabilities, during and following
the burst of the information and communications technology
(ICT) dotcom bubble [53] and associated with the financial
crisis that started in 2007 and culminated with Lehman
Brothers bankruptcy [54]. Note that the increase of trading
activity from 1998 to 2010, as proxied by volume [Fig. 4(a)] is
not accompanied by an increase of the background intensity μ

of exogenous events in the market. This makes intuitive sense
since μ should reflect the genuine news impacting the market.

In contrast, the time evolution of the branching ratio n

presented in Fig. 4(d) exhibits a very different behavior. The
first important observation is that, since 2002, n has been
consistently above 0.6 and, since 2007, between 0.7 and 0.8
with spikes at 0.9. These values translate directly into the
conclusion that, since 2007, more than 70% of the price moves
are endogenous in nature, i.e., are not due to exogenous news
but result from positive feedbacks from past price moves.

It should be emphasized that the increase of the branching
ratio over the period 1998–2010 is not due to an increase
of the trading activity (measured in number of transactions
or volume) over the same period. Neither transactions nor
volume enter directly into the formulation of the model, since
individual transactions do not necessary result in a change of
the mid-price. As a simple example, doubling the number of
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FIG. 4. (Color online) (a) Number of mid-price changes (in mil-
lions of events) and volume (in millions of contracts) for the E-mini
S&P 500 futures contracts over the period 1998–2010. Each point at
a given time t represents the total volume and number of events over
a 2 month interval centered on that time t . (b) Daily closing price
and daily volatility estimated with the Garman&Klass estimator [52].
(c) Estimated background intensity (μ̂) and (d) branching ratio (n̂) of
the flow of mid-price changes of the E-mini S&P 500 futures contracts
over the period 1998–2010. Each point at a given time t represents an
average over a 2 month interval centered on that time t of windows of
10 (dots), 20 (squares), and 30 (crosses) min (the corresponding lines
are almost indistinguishable). The shaded area corresponds to the
10%–90% quantile range obtained with the same 2 months of daily
estimates for 10 min time windows. The almost horizontal shaded
area in the inset (d) corresponds to the 90% quantile of estimations
performed with the “reshuffled” time series (see text). Dots corre-
spond to the median value and circles to the arithmetic mean.

transactions by splitting each of them into two independent
transactions (to keep the daily volume constant) does not
affect the dynamics of the mid-price at all. Similarly, keeping
the number of transactions constant and doubling the volume
of each of them (doubling the volume of each incoming
market order) while simultaneously doubling the volume of all
incoming limit orders again does not change the dynamics of
the mid-price. The “decoupling” of market transactions from
the simple measure of activity can be seen from Fig. 4(a),
where the dramatic increase of volume in 1998–2007 was
not accompanied by an increase of the number of mid-price
changes. In fact, the latter decreased in 2003–2005.

In order to reject the possibility that the observed increase
of the branching ratio over 1998–2010 is due to the increase
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of the trading activity over that period, we have performed the
following test. We have fixed the number of mid-price changes
per day but have redistributed these events such that, within
1 day, their dynamics was described by a Poisson process.
This “reshuffling” of the time series amounts to keeping
the price trajectories, the daily volume, and the number of
price and mid-price changes per day unchanged [i.e., keeping
the same trajectories as shown in Figs. 4(a) and 4(b)], while
distorting time such that the intervals between consecutive
mid-price changes within 1 day become uncorrelated and
exponentially distributed. We have then performed exactly
the same procedure as described above [dividing each day in
10 min interval and estimating the parameters of the Hawkes
process (3)] within these intervals. As one can see from the
bottom shaded area in Fig. 4(d), which represents the 90%
quantile of the branching ratio estimated within such distorted
time series, one can clearly reject the hypothesis that the
branching ratio is sensitive to, or equivalently provides another
measure of, trading activity. This quantitative result supports
the key property of the Hawkes model, which is that the
branching ratio is not determined by the average rate of events
but by the degree of self-excitation of the system.

In addition to the increase of the level of endogeneity
in 1998–2010, one can observe another remarkable fact in
Fig. 4(d) corresponding to the existence of four market regimes
over the period 1998–2010:

(i) In the period from Q1-1998 to Q2-2000, the final run-up
of the dotcom bubble is associated with a stationary branching
ratio n fluctuation around 0.3.

(ii) From Q3-2000 to Q3-2002, n increases from 0.3 to 0.6.
This regime corresponds to the succession of rallies and panics
that characterized the aftermath of the burst of the dot-com
bubble and an economic recession [55,56].

(iii) From Q4-2002 to Q4-2006, one can observe a slow
increase of n from 0.6 to 0.7. This period corresponds to the
“glorious years” of the combined real-estate bubble, financial
product collaterized debt obligation (CDO) and credit default
swap (CDS) bubbles, stock market bubble, and commodity
bubbles [54].

(iv) After Q1-2007 the branching ratio stabilized between
0.7 and 0.8, corresponding to the start of the problems
of the subprime financial crisis (first alert in February
2007), whose aftershocks are still resonating at the time of
writing.

As already mentioned, the value of the branching ratio
larger than 0.7 since 2007 indicates that more than 70%
of the price movements can be attributed to endogenous
processes occurring in the market. Notwithstanding such
rather large calibrated branching ratios n, they are most
likely underestimations of the real values. Indeed, the Hawkes
self-excited model has been calibrated on short intraday time
windows, using a short-memory exponential kernel h(t). This
means that price moves before any given time window of
10, 20, or 30 min that could trigger price changes within
the window are not taken into account. This truncation is
known to decrease artificially the observed branching ratio
n and increase the background rate μ [57]. In other words,
neglect of past events before the short-term windows and their
triggering effect leads to the misattribution that many of the
endogenous events are exogenous.

The endogeneity of n � 70% that we observe in the short
time windows (10, 20, and 30 minutes) captures short-term
feedback mechanisms within financial systems that can be
interpreted as short-term reflexivity of humans and algorithmic
trading systems. Indeed, the growth of the branching ratio
n coincides with the appearance and dramatic growth of
algorithmic and high-frequency trading, whose creation is
usually dated to 1998 when the US Securities and Exchange
Commission (SEC) authorized electronic exchanges. In the
early 2000s, high-frequency trading (defined as the high-
speed component of algorithmic trading) was quite rare and
accounted for less than 10% of all equity orders. In subsequent
years, its importance grew rapidly, increasing by about 164%
between 2005 and 2009 [58]. In 2009, the proportion of
high-frequency trading in US markets was estimated as more
than 60% by the TABB Group [59] and the Aite Group
[60]. Thus, there is no contradiction between a rather low
value n ≈ 0.3 during the final run-up of the dotcom bubble
from Q1-1998 to Q2-2000 and the strong herding that is
often invoked to explain its development. As said above, our
calibration refers to short-term endogeneity at the time scale
of 10 min, while the herding mechanism thought to be at the
origin of the dotcom bubble has been operating at time scales of
years [15,61].

VI. DIAGNOSTIC OF CRITICALITY: TOWARD THE
FORECAST OF FLASH CRASHES

We now show with the famous example of the flash crash
of May 6, 2010 that the calibration of the level of endogeneity
n may provide instantaneous characteristic signatures of
anomalous market regimes, which could be used as precursors
for forecasts.

For this, we consider two extreme events that occurred
in the spring of 2010 that are comparable in their price
amplitudes and market-wide impacts, as can be seen from
the top four panels of Fig. 5. On April 27, 2010, all major US
indices and stocks felt significantly after Standard&Poors cut
Greece’s debt rating to “BB + ” and lowered Portugalapos;s
debt rating, raising fears that a euro zone debt crisis could
slow the global economic recovery [62]. On May 6, 2010, in
a general atmosphere of pessimism and worry concerning the
debt crisis in Greece, a large market order triggered a flurry
of activities by algorithmic traders resulting in a large drop
of the price of S&P 500 E-mini futures. Due to the coupling
with other markets via hedging and portfolio effects, this drop
cascaded to many other markets, triggering drawdowns of up
to 60% in some of them [49].

The top four panels of Fig. 5 show that the two extreme
events of April 27 and May 6, 2010 have similar price drops
and volume of transactions. In particular, we find that the
volume was multiplied by 4.7 for April 27, 2010 and by 5.3
for May 6, 2010 in comparison with the 95% quantile of the
previous daysapos; volumes. The main difference lies in the
trading rates and in the branching ratio. Indeed, the event of
April 27, 2010 can be classified according to our calibration
of the Hawkes model as a pure exogenous event, since the
branching ratio n [Fig. 5(a1)] does not exhibit any statistically
significant change compared with previous and later periods.
In contrast, for the May 6, 2010 flash crash, one can observe
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FIG. 5. (Color online) Case study of two extreme events that
occurred during the spring of 2010. The left column corresponds to
April 27, when almost all US markets fell significantly following
the dramatic decrease of the credit ratings of Greece and Portugal
[62]. The right column corresponds to May 6, 2010, the so-called
flash-crash event, when the activity of high-frequency traders of the
S&P 500 E-mini futures contracts led to a dramatic fall in other
markets [49]. From top to bottom: Minute-by-minute price (a) and
volume (b) of S&P 500 E-mini futures contracts (maturity June,
2010). (c) Average number of mid-price changes per second (averaged
in 10 min intervals). (d) Branching ratio n estimated within each
10 min interval. The blue horizontal regions depict the 5%–95%
quantile intervals of the corresponding values calculated over the
previous trading day. The pink vertical regions highlight the time
periods of the most active trading.

a statistically significant increase of the level of endogeneity
n [Fig. 5(d2)]. At the peak, n reaches 95% from a previous
average level of 72%, which means that, at the peak (14:45
EST), more than 95% of the trading was due to endogenous
triggering effects rather than genuine news.

Comparing the trading rates in Figs. 5(c1) and 5(c2), one
can observe that until time 14:30 EST the trading rate of May
6 was increasing at a similar rate as for April 27. Therefore,
on the basis of trading rates, it would not have been possible
to predict the subsequent jump in trading rate that occurred
during the flash crash. But Fig. 5(d2) for n shows that, at this
time, the instantaneous statistical estimation of the branching
ratio n was already giving an abnormal reading, in the sense
that n jumped above the 95% quantile. In contrast, for the April
27, 2010 event, the branching ratio was fluctuating normally
within its normal band.

This comparison suggests that the estimation of the branch-
ing ratio provides a powerful metric of endogeneity, which is
much richer than standard direct measures of activity such as
volume and trading rates. Indeed, the branching ratio provides
a direct access to the level of endogeneity of the market. The
distance of n from the critical value 1 can be taken as a gauge

of the degree to which the market is going “critical.” The term
actually is more than just suggestive: “criticality” in nuclear
reactions precisely refers to a branching process of neutrons
triggering and being created by nuclear reactions for which
the process does not stop but may in fact explode. Similarly,
as n approaches 1, we can state that the market approaches
criticality in this precise sense of a theoretically diverging
trading activity in absence of any external driving.

VII. CONCLUSION

We have provided what is, to the best of our knowledge,
the first quantitative estimate of the degree of reflexivity,
measured as the proportion n of price moves due to endogenous
interactions to the total number of all price moves that also
include the impact of exogenous news. For this, we have
used the self-excited conditional Poisson Hawkes model [14],
which combines in a natural and parsimonious way exogenous
influences with self-excited dynamics. Within the Hawkes
model framework, the parameter n takes the simple meaning
of being the average branching ratio or, equivalently, the
average number of triggered events of first generation per
exogenous source. We have calibrated the Hawkes model to
the E-mini S&P 500 futures contracts traded in the Chicago
Mercantile Exchange from 1998 to 2010. We find that the level
of endogeneity has increased significantly from 1998 to 2010,
with only 70% in 1998 to less than 30% since 2007 of the price
changes resulting from some revealed exogenous information.
We have also documented a drastic difference in the change of
n before and during two extraordinary flash-crash events that
occurred respectively on April 27, 2010 and on May 6, 2010.
For the former, we find that the branching ratio n remained
constant, exemplifying the exogenous nature of the crash.
For the latter, in contrast, we document a precursory early
rise of n followed by strong increase culminating very close
to the critical value n = 1, suggesting a strong endogenous
component.

In conclusion, the present study enlarges considerably the
usefulness and operational implementation of the Hawkes
model, which was already used in the study of the dynamics of
book sales [63] and of views of YouTube videos [64]. Indeed,
these two previous studies have selected the blockbusters,
which are characterized by large social and/or media attention.
This amounts to introducing a selection bias toward dynamics
(i.e., those books and videos) that are close to critical
(n � 1), as confirmed by the pure power law behavior [65]
documented in Refs. [63,64]. In contrast, the present study
has demonstrated how to quantify the level of endogeneity
n, which is found to characterize different social regimes. Our
work opens the road toward the full utilization of the dynamics
of n in order to diagnose different regimes and to possibly
forecast impending crises associated with the approach to
criticality n � 1.
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