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Evaluation of attractors and basins of asynchronous random Boolean networks
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We present an algebraic approach for determining the attractors and their basins of random Boolean networks
under an asynchronous stochastic update based on the recently developed matrix semitensor product theory,
which allows for converting the logical dynamics of a Boolean network into a standard iterative dynamics. In this
setting, all attractors and basins are specified by the network transition matrices. We then devise procedures that
can find all attractors and their basins exactly. We also discuss the issue of overlapping basins in asynchronous
random Boolean networks, and we propose methods to compute the weight of each attractor and the basin entropy
of the systems.
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I. INTRODUCTION

A Boolean network (BN) is often used as a generic model
for the dynamics of complex systems of interacting elements.
The study of random Boolean networks (RBNs) was initiated
by Kauffman as a model for gene regulation [1]. It is also
a candidate for representing a class of behaviors observed in
large regulatory networks [2]. A RBN is typically formulated
as a directed graph with genes or elements, each of which
is identified by a node whose state indicates whether the
gene is switched on or off. Each node receives inputs from
its neighbors or itself and updates its state according to a
Boolean function of all inputs simultaneously. Yet there are
also many real-world systems which do not evolve according
to a globally synchronized clock, and imposing one may lead
to spurious order [3]. It has been found that deviations from
a synchronous update modify the attractors of the dynamics
considerably [4,5]. To clarify the effects of the updating
scheme, asynchronous random Boolean networks (ARBNs)
have received an increasing amount of interest in recent
years [6,7].

For BNs, the states that are revisited infinitely often in
the long-time limit starting from a random initial condition
constitute an attractor, which can be in the form of either a
single state (fixed point) or a repeating set of states (cycle),
and the number of states on an attractor is called the size of the
attractor. Since the total number of states that a network of N

nodes can have is finite (2N ), after a large enough number of
time steps the system must necessarily return to a previously
visited state. Transient states that lead into an attractor and the
attractor itself form the basin of attraction (or basin for short)
of the attractor. The cardinality of the basin of an attractor
normalized by the size of the entire state space (2N ) defines
the weight of the attractor, which indicates the probability that
a randomly chosen state will flow into this very attractor. There
have been numerous investigations focusing on the attractors
and their basins of RBNs. See, e.g., Refs. [4,7–10] .

Essentially, a RBN is a logical system and it is hence not
an easy task to investigate a RBN analytically in general. In
most studies, RBNs (including ARBNs) were approached in
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terms of the relevant elements or nonfrozen nodes to determine
the number and size of the attractors [8–12]. In general, these
methods only estimate the average number and size of the
attractors rather than giving the exact number of attractors and
their specific basins. Recently, a new algebraic approach was
proposed in Ref. [13] that is based on the semitensor product
of matrices and can convert the logical dynamics of BNs into
algebraic form of the standard discrete-time system described
by difference equations. In this setting, all of the attractors
and their basins of deterministic BNs can be calculated
directly.

For the case of ARBNs with arbitrary connectivity, how-
ever, how to determine all attractors and their basins still
remains an open question because of the very different nature
of ARBNs from deterministic BNs and RBNs. Actually,
the number of attractors will change when going from the
synchronized RBNs to ARBNs [6]. In RBNs, all states within
a given basin reach the same attractor in the end, whereas the
transient states of different basins in ARBNs may overlap.
These render the trajectories of the states of attractors of
ARBNs much more complex and irregular than the case of
RBNs, and they make it hard to find the basins of all attractors
in ARBNs. Existing studies based on extensive numerical
methods can locate the attractors and determine the chance
of reaching each attractor in ARBNs, but they cannot obtain
the basins [7].

In this paper, we are concerned with the ARBNs where a
single randomly selected element is updated at each time step.
By means of the matrix expression of logical functions based
on the semitensor product theory, which has only been used in
deterministic BNs, we present a systematic approach to find the
attractors and their basins under an asynchronous stochastic
update. Compared with the existing methods, our approach is
completely based on analytical analysis, suggesting rigorous
numerical procedures for finding all attractors and all the exact
basins. We will also discuss how to deal with the overlapping
parts between different basins.

II. MODEL

Consider an ARBN composed of N nodes that receive
inputs from K distinct nodes. The state of node i at time t

is denoted by Ai(t) and the state of the j th input of node i
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is denoted by Aij (t), j ∈ {1, . . . ,K}. If node i is updated at
a certain time step t + 1, the update schedule of the whole
network can be described as

Ai(t + 1) = fi[Ai1 (t), . . . ,AiK (t)],
(1)

Aj (t + 1) = Aj (t), j ∈ {1, . . . ,N}, j �= i.

Following [13], we can convert the logical dynamics
described in Eqs. (1) into an equivalent algebraic form of
conventional linear iterative dynamics. To do this, we need the
following basic notions and results. Given an m × n matrix A,
a p × q matrix B, and the least common multiplier of n and
p denoted by l, the semitensor product (STP) of A and B is
defined as

A � B := (A ⊗ Il/n)(B ⊗ Il/p),

where ⊗ refers to the Kronecker product of two matrices
and Im to an m × m identity matrix. The STP of matrices
is a generalization of a conventional matrix product. All the
fundamental properties of the conventional matrix product
remain true. More details on the semitensor product and its
application can be found in Ref. [13].

The state of each node in a BN can be regarded as a logical
variable taking its value from a logical domain D = {1,0},
where 1 and 0 represent “true” and “false”, respectively. We
identify the two logical values with two vectors as T ∼ 1 ∼ δ1

2,
F ∼ 0 ∼ δ2

2, where δr
n denotes the rth column of the identity

matrix In. Let �n := {δr
n|1 � r � n}; for notational ease,

denote this as � := �2. Then � ∼ D. An n × s matrix M

is called a logical matrix if M = [δi1
n ,δi2

n , . . . ,δis
n ], which is

also briefly denoted as M = δn[i1,i2, . . . , is]. The set of n × s

logical matrices is denoted by Ln×s .
Let fi be the K-ary logical function in Eqs. (1). According

to Ref. [13], there exists a unique Mi ∈ L2×2N , called the
structure matrix, such that

fi

[
Ai1 (t),Ai2 (t), . . . ,AiK (t)

] = Mi

N

�

i=1
Ai(t) = Mix(t),

Ai(t) ∈ �,

where x(t) = N

�

i=1
Ai(t) = A1(t) � · · · � AN (t) ∈ �2N denotes

the state of all nodes at time t , which contains the information
of the value of the whole network at a given time t . Then,
Eqs. (1) are converted into algebraic form:

Ai(t + 1) = Mix(t),
(2)

Aj (t + 1) = Aj (t), j ∈ {1, . . . ,N}, j �= i.

Multiplying all the N equations of Eqs. (2) yields

x(t + 1) = Lix(t), ∀ i ∈ {1, . . . ,N}, (3)

where Li ∈ L2N ×2N is uniquely determined by Mi for each i

and is called the network transition matrix of Eqs. (1). This
gives an equivalent expression of the ARBN (1) in the form
of conventional discrete-time linear systems. Note that for a
given ARBN, Li can be calculated directly from the logical
functions, and each Li may be chosen randomly from the N

possible options at each time step. Next, we will focus on
Eq. (3).

III. FIXED POINTS

We begin by considering deterministic BNs. In this case,
Eq. (3) reduces to x(t + 1) = Lx(t) with L denoting the unique
network transition matrix. A fixed point xe ∈ �2N is then
defined by Lxe = xe. According to Ref. [13], δi

2N is a fixed
point iff the ith diagonal element lii of L equals 1, and the
number of fixed points, denoted by Ne, equals the number of
i such that lii = 1, namely, Ne = Tr(L) .

For the case of ARBNs as described in Eq. (3), a fixed
point xe ∈ �2N is defined by Lixe = xe for all i. From the
above results, we know that δ

j

2N is a fixed point iff there exists
an index j such that for any updating node i the j th diagonal
element lijj of the transition matrix Li equals 1, and the number
of fixed points Ne equals the number of all such j when i goes
from 1 to N . Thus, one can find all fixed points of the ARBN
(3) by computing the network transition matrices Li .

IV. CYCLES

Unlike the case of fixed points, it is more difficult to
determine all cycles of ARBNs because a state in a cycle is
driven into another state randomly chosen from a subset of the
cycle at the next time step. By the properties of STP [13],
it is not hard to verify the following sufficient condition
for cycles in an ARBN (3): If there exists a state set of
s (s � 2) elements C = {δk1

2N , . . . ,δ
ks

2N } such that Liδ
kj

2N ∈ C,
∀ i ∈ {1, . . . ,N}, ∀ j ∈ {1, . . . ,s}, where i denotes the node
that is updated and δ

kj

2N is the j th element of the set, then C is
a cycle of size (or length) s.

Based on this condition, we can devise a procedure to find
all cycles for ARBNs. The basic idea is to search the cycles
successively from small ones to larger ones in a reducing
feasible set of finite elements. Initially, take the whole state
space of the network {δ1

2N , . . . ,δ2N

2N } as the feasible set F , and set
the size of cycles to be searched as s = 2. Search s states from
the feasible set F that satisfy the above sufficient condition,
then calculate the basin of this cycle (by the method to be given
later) and remove it from F . Repeat the process until all the
cycles of size s have been found. Check whether the feasible
set F is empty. If “not”, set s = s + 1 and go back to find all
the basins of cycles of size s. Otherwise, all the attractors and
basins have been identified and the process stops.

V. BASINS

The determination of basins of attractors is crucial to an
understanding of the global dynamics of BNs. As the basin
of an attractor consists of all states moving toward it, we can
find the basin in a backstepping manner from a given attractor
of the ARBN (3). Specifically, let Colj (Li) stand for the j th
column of matrix Li . It follows from [13] that x(t) = δ

j

2N

and x(t + 1) = δk
2N iff Colj (Li) = δk

2N . Therefore, we define

P k = {δj

2N |Colj (Li) = x(t) = δk
2N ,∀ i ∈ N} to be the further

state set at the last time step for a state δk
2N . Namely, given

x(t + 1) = δk
2N , the possible state of the ARBN (3) at time t is

an element of the set P k .
Then, given an attractor C of size s, we can obtain its

basin by the following procedure. First, initialize the basin
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FIG. 1. The state transfer graph of an ARBN with the Boolean
functions described as Eqs. (4). The transient state 10 may drive into
a fixed point which is either 11 or 00. Therefore, it is the overlapping
part of the basin of the fixed point 11 and that of the fixed point 00.

to be calculated, denoted by B, as B = C. Next, update B

by replacing its elements with all the distinct elements of
the union of B and P j for all δ

j

2N ∈ B,j ∈ {1, . . . ,N}. Then,
check whether the updated B thus obtained is identical with
the former one. If “not”, continue updating B; otherwise, the
basin of attractor C is B.

At this point, we would like to remark on a unique feature
of ARBNs. That is, the transient states of different basins in
ARBNs may overlap. This is quite distinct from the case of
RBNs. As an example, let us consider a two-node ARBN
with binary state values. Suppose the Boolean functions are
described as

A1(t + 1) = A1(t) ∧ A2(t), A2(t + 1) = A1(t) ∨ A2(t),

(4)

where A1(t) and A2(t) are the states of the two nodes at time
t , and the state space is {00,01,10,11}. Then we get the state
transfer graph as shown in Fig. 1.

Observe that the states 00,11,01 are fixed points. The
transient state 10 belongs to the basins of both 11 and 00,
that is, it is the overlapping part of two distinct basins. In
general, the basin of an attractor may consist of overlapping
and nonoverlapping parts for ARBNs. The former may drain
into several distinct attractors and the latter drains into only
one attractor. But in synchronized RBNs, basins never overlap.
It is therefore more complex and difficult to determine basins
in ARBNs.

VI. BASIN ENTROPY

As a measure of the complexity of information that a
BN is capable of storing, the basin entropy is introduced in
Refs. [14,15]. The basin entropy of a RBN is defined as

hi = −
∑

ρ

ωρ ln ωρ, (5)

where ωρ is the weight of attractor ρ. The average entropy
over the ensemble of R realizations of RBNs is

〈h〉 = 1

R

R∑

i

hi . (6)

It has been known in the literature that the basin entropy scales
with the system size only in critical regimes for RBNs, thus
giving a measure of complexity and criticality of RBNs. As to
the case of ARBNs, little has been addressed concerning the
basin entropy except for only a few numerical results [7].

A major difficulty in evaluating the basin entropy for
ARBNs consists in the fact that different basins in an ARBN
may overlap, as mentioned above, which complicates the task.
If we define the weight ωρ of an attractor ρ as the size of its

basin states normalized by the size of the state space (2N ) as
proposed in Ref. [15], it is clear that

∑
ρ ωρ �= 1 in general

because of the overlapping parts. A rigorous computation of
ωρ requires accurate statistics of the weights of an overlapping
part with respect to each related attractor. This can be done in
the following way.

First, for the basin of an attractor ρ, identify the nonover-
lapping part and all of the overlapping parts shared by other
distinct basins. Construct the state transfer graph for all the
n states of one of the overlapping parts ξ by representing the
states as nodes in the graph. A directed link in the graph,
which points from a state to its possible image state reached
with weight 1/N , indicates that a random element node is
updated. An image state can be the state itself or some other
state with a Hamming distance one away. If some of these
images are identical, the weights of the corresponding links
are added. Find all the outlinks in the graph. Here, an outlink
indicates a directed link which points from a state in ξ to a
nonoverlapped state in the basin of some attractor (including
ρ) that shares ξ .

Next, assign the same occupation probability 1/n to each
node in ξ initially. (The occupation probability defined here is
similar to Ref. [7], but the graph concerned here is only a sub-
graph of the entire state space graph, and the terminational con-
dition to be introduced below is different from that in Ref. [7].)
Then, update the occupation probability of each state by
dividing and moving the entire occupation probability on the
node along its outgoing links according to the weights. Since
an outlink only leads the occupation probability from a state in
ξ to the nonoverlapping part and the states in ξ are all transient
states, the occupation probability vanishes for every state in
ξ but remains finite for every other state to which an outlink
points. The algorithm repeats this step until the probability of
each state in ξ is small enough (approaching zero), thus giving
the occupation probability of each state that is pointed to by
an outlink from ξ .

Finally, sum up the occupation probabilities of all states
that are in the basin of ρ and pointed to by outlinks from ξ .
The result is the chance to enter the basin in the long-time limit
after starting from a random initial state in ξ , which is denoted
by αρξ . Similarly, the results for other overlapping parts of the
basin of ρ can be obtained one by one.

Now, we are ready to calculate the weight of attractor ρ. Let
βξ be the size of the overlapping part ξ normalized by the size
of the state space 2N , i.e., βξ = n/2N , and let λρ be the size of
the nonoverlapping part of the basin of attractor ρ normalized
by the size of the state space 2N . Then we have

ωρ =
∑

ξ

αρξβξ + λρ.

This gives a rigorous result of the weight for an attractor in
ARBNs, which is identical to that obtained by the method
given in Ref. [7]. Notice that this result requires finding all
the outlinks of each overlapping part to different basins in a
large complex network, which is usually quite computationally
costly. So, it is also of interest to look for approximate but
simple approaches for evaluating the attractor weights.

A simple idea is to make an even partition of an overlapping
part ξ in calculation. To be specific, we can divide the size of
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FIG. 2. (Color online) The average basin entropy for ARBNs
with K = 1,2,4. The solid line shows an increase of 〈h〉 with N for
the K = 2 case. The red dash-dotted line and the blue dashed line
display an almost constant feature of 〈h〉 in both cases of K = 1 and
6. Hence, the basin entropy grows only when K = 2.

ξ evenly and assign the same number of states in ξ to each
attractor that ξ may drain into. Then for attractor ρ, we add up
the size of the nonoverlapping part and the assigned sizes of
the overlapping parts of its basin, then we normalize the result
based on the size of the state space to obtain an approximate
value of ωρ . Evidently, this approach may result in certain
errors in ωρ . We will discuss the issue later with numerical
examples. Once we obtain all the weights ωρ , we can calculate
the basin entropy 〈h〉 using Eqs. (5) and (6).

To test the effectiveness of the simple idea of an even
partition in the evaluation of ωρ , we have calculated the average
basin entropies 〈h〉 with various network sizes in ordered,
critical, and chaotic phases, respectively. Figure 2 depicts
the results for ARBNs with K = 1,2,6 and N = 6 to 12. It
shows that the basin entropy grows with system size only
in critical case (K = 2) for ARBNs. This agrees well with
the basic finding of [7], which states that despite so many
differences between ARBNs and synchronized RBNs, the
basin entropy may still be regarded as a measure of complexity
for ARBNs. From the results of Fig. 2 we may conclude
that despite being somewhat simple and approximative, the
even partition approach can lead to qualitatively reasonable
results.

So far, we have discussed how to evaluate all attractors,
basins, and basin entropies for a given ARBN based on its
algebraic form (3). Because of the finite size of the state space,
the computation will end within finite steps in principle.

VII. EXAMPLE

Let us now illustrate our approach with a simple example.
Consider an ARBN network with N = 4 and connectivity K =
2 under the stochastic update rule:

A1(t + 1) = A1(t) ↔ A2(t),

A2(t + 1) = A3(t) ∨ A2(t),
(7)

A3(t + 1) = ¬[A1(t) ∧ A3(t)],

A4(t + 1) = A1(t) → A3(t),

where Ai is the state of node i, ↔ denotes the biconditional,
∨ denotes the disjunction, ∧ denotes the conjunction of two

FIG. 3. The state transfer graph of the fixed point 0111, the basin
of which consists of one fixed point state and eleven transient states.
Among these states, the fixed point itself and the transient states
{0110, 0101, 0100} only belong to the basin of the fixed point 0111.
The other eight states also belong to the basin of the cycle {1111,
1110, 1101, 1100}.

propositions, ¬ denotes negation of one proposition, and →
denotes the conditional of the first proposition to the second
one. At each time step, only one equation in Eqs. (7) is picked
out for an update.

The states of nodes A, B, C, and D are expressed as four-
digit numbers in sequence, and the cardinal number of the
state space is 24. It is easy to check that the attractors are a
fixed point ρ1 = {A1 = 0, A2 = 1, A3 = 1, A4 = 1} (briefly
denoted by {0111}) and a cycle ρ2 = {1111,1110,1101,1100}.
Figures 3 and 4 are the state transfer graphs of ρ1 and ρ2,
respectively, where the arrows denote the directed links which
form the trajectories of the states. Observe that the eight states
{1001,0001,1011,0011,1010,1000,0010,0000} consist of the
only overlapping part ξ of the basins of the fixed point and the
cycle, so n = 8.

We now apply our method to the system. First, we convert
Eqs. (7) into the algebraic form of Eq. (3) with

L1 = [Me(I2 ⊗ Mr )] ⊗ I4,

L2 = I2 ⊗ [MdW[2](I2 ⊗ Mr )] ⊗ I2,

L3 = {[I4 ⊗ (MnMc)]I2 ⊗ W[2]Mr} ⊗ I2,

L4 = Ed (I16 ⊗ Mi)(I4 ⊗ W[2,4])(I2 ⊗ Mr )(I8 ⊗ Mr )W[8,2],

where Mn, Mc, Md , Mi , Me, and Ed denote the structure
matrices of negation, conjunction, disjunction, conditional,
biconditional, and dummy operator, respectively. Also, Mr is
the power reducing matrix δ4[1 4] such that p2 = Mrp for an
arbitrary logic vector p ∈ �, and W[m,n] is the mn × mn swap
matrix such that W[m,n] � p � q = q � p and W[n,m] � q �

p = p � q for any two column vectors p ∈ Rm and q ∈ Rn

FIG. 4. The state transfer graph of the cycle {1111, 1110, 1101,
1100}, the basin of which consists of four states of the cycle and eight
transient states. Note that the eight transient states also belong to the
basin of the fixed point 0111. Thus, they are the overlapping part of
the two basins.
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FIG. 5. (Color online) The state transfer graph of the entire state
space. The states in the box form the nonoverlapping parts of basins
of ρ1 and ρ2, respectively. The dashed arrows denote the out links
which point from states in the overlapping part ξ to states in the
nonoverlapping parts. The directed link for a state pointing to itself
is not shown here. The weights of all the directed links in the graph
take the same value: 0.25.

(see Ref. [13]). It follows immediately that

L1 = δ16[1 2 3 4 13 14 15 16 9 10 11 12 5 6 7 8],

L2 = δ16[1 2 3 4 1 2 7 8 9 10 11 12 9 10 15 16],

L3 = δ16[3 4 1 2 7 8 5 6 9 10 9 10 13 14 13 14],

L4 = δ16[1 1 4 4 5 5 8 8 9 9 11 11 13 13 15 15].

To find attractors and their basins, we initialize the feasible
set F = �16 (the state space). It is easy to check that
Col9(Li) = δ9

16, ∀ i. Hence, δ9
16 is a fixed point. The basin

of it can be calculated to be {δk
16|5 � k � 16}. Then, F

reduces to {δk
16|1 � k � 4}. Similarly, we can verify that

Liδ
k
16 ∈ {δ1

16,δ
2
16,δ

3
16,δ

4
16}, ∀ i,k ∈ {1,2,3,4}. By the sufficient

condition of cycles, we know that {δ1
16,δ

2
16,δ

3
16,δ

4
16} ∈ F is a

cycle of size 4. Further calculations can yield the basin of
this cycle as {δk

16 | k ∈ [1,8] ∪ [13,16]}. Finally, converting
the results into binary form [13], we obtain the attractors
as {0111} and {1111,1110,1101,1100}, the basins of which
are {0111, 1000, 1001, 0000, 1010, 1011, 0001, 0010, 0100,

0011,0110,0101} and {1111,1110,1101,1100,1001,1011,

0001,0011,1010,1000,0010,0000}, respectively. The results
coincide with the state transfer graphs in Figs. 3 and 4.

Next, we calculate the basin entropies. Figure 5 is the entire
state transfer graph of the system, which shows clearly the
overlapping and nonoverlapping parts of the basins. We first
use the rigorous method to calculate αρ1ξ and αρ2ξ , and we
obtain

αρ1ξ = 0.55, αρ2ξ = 0.45.

Hence, the weights of the fixed point and the cycle are

ωρ1 =
∑

ξ

αρ1ξβξ + λρ1 = 0.525,

ωρ2 =
∑

ξ

αρ2ξβξ + λρ2 = 0.475,

respectively. So the basin entropy of the network is

h = −ωρ1 ln ωρ1 − ωρ2 ln ωρ2 = 0.6919.

We compare this result with that obtained by the approx-
imate method based on an even partition of the overlapping
part of the basins. In the latter case, the weights of the fixed
point and the cycle are given as

ωρ1,2 = 4/16 + 8/(2 × 16) = 0.5.

The basin entropy of the network then takes a value of h′ =
0.6931. Observe that the error �h = 0.0012 is very small. This
may be indicative of a certain effectiveness of the approximate
method.

VIII. CONCLUDING REMARKS

We have presented an approach to study ARBNs based
on the STP technique developed recently in Ref. [13], which
recasts the logical dynamics of ARBNs into a standard linear
iterative dynamics and hence allows for analysis of ARBNs
in terms of matrix algebra. Our approach gives in principle a
resolution of finding all attractors and their basins in ARBNs
with arbitrary connectivity. We also discussed the phenomenon
of overlapping basins that occur only in ARBNs, and we
proposed two different methods for calculating the basin
entropy of ARBNs; one is rigorous but computationally costly
and the other approximative but very simple.

Here, we would like to note that the approach proposed in a
recent paper [7] can only numerically calculate the weights of
basins in ARBNs without determining the basins themselves.
In contrast, our approach can give an exact algebraic charac-
terization of all attractors and their basins for ARBNs, and
it involves mainly matrix computations in application. This
may give rise to difficulties in calculation as the dimension of
the state transition matrix grows exponentially (2N × 2N ) with
the system size (N ). Hence, developing effective algorithms
or approximate techniques for the present approach will be a
challenging problem in future work.
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