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Dynamical model for competing opinions
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We propose an opinion model based on agents located at the vertices of a regular lattice. Each agent has an
independent opinion (among an arbitrary, but fixed, number of choices) and its own degree of conviction. The
latter changes every time two agents which have different opinions interact with each other. The dynamics leads
to size distributions of clusters (made up of agents which have the same opinion and are located at contiguous
spatial positions) which follow a power law, as long as the range of the interaction between the agents is not
too short; i.e., the system self-organizes into a critical state. Short range interactions lead to an exponential
cutoff in the size distribution and to spatial correlations which cause agents which have the same opinion to be
closely grouped. When the diversity of opinions is restricted to two, a nonconsensus dynamic is observed, with
unequal population fractions, whereas consensus is reached if the agents are also allowed to interact with those
located far from them. The individual agents’ convictions, the preestablished interaction range, and the locality
of the interaction between a pair of agents (their neighborhood has no effect on the interaction) are the main
characteristics which distinguish our model from previous ones.
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I. INTRODUCTION

Statistical mechanics has turned out to be quite successful
in modeling many systems whose interactions are, in principle,
much more complex than those traditionally studied in physics
as, in many cases, the systems are made up of agents which
are endowed with intelligence and therefore the interaction
between them depends on their decisions [1–3]. Nevertheless,
simple statistical models have been developed for describing
social systems [1–7], the economy [8–11], etc. Despite the
great complexity of such real systems, their main properties
can be reproduced by simple models which retain their
underlying features, and the explanation for this fact is related
to the concept of universality [12,13].

A great deal of effort has been devoted to developing models
for describing the properties of systems made up of agents with
competing opinions [1,4–7,14–20]. This is of great relevance
as human conflicts very often arise from the simultaneous
existence of incompatible opinions in populations. Different
systems, such as hierarchical societies [14] or democratic ones
[16], where the agents follow the opinion of the local majority
within a group, have, for instance, been investigated. Most
of these models allow the agents to assume only one of two
possible opinions. Such spin-flip models are representative of
many real situations which offer only two possibilities and
therefore are also of great interest [1,17,18], along with the
similarities with other physical systems. Axelrod’s model for
dissemination of culture is particularly different from the rest
because the agents interact only if some degree of coincidence
exists between them [5–7].

The evolution of scientific paradigms has been recently
modeled in Ref. [4], where agents located on a square
lattice can adopt one of the existing ideas or, occasionally,
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create new ones. In contrast to the models mentioned above,
there is no limitation on the number of ideas that may be
created, except that an agent never returns to an idea it has
previously abandoned. The influence of the neighborhood on
the interaction between the agents, however, is a feature shared
with the models just mentioned. Therefore, the interaction
may be seen as a kind of mean field. The slow decline of
old concepts and the quick adoption of new ones are the
main characteristics of the model. The authors of Ref. [4]
find that the dynamics naturally leads to the replacement
of old concepts by a new paradigm, which dominates for a
certain period of time, until it is gradually replaced by new
ideas.

Inspired by that work, we have developed an opinion model
where agents are placed at the vertices of a regular lattice
and interact only with those located within a certain range,
defined by a model parameter, in contrast to Ref. [4] where no
such restriction is imposed. In this way, we allow the agents
to interact with those located beyond their first neighbors
but restrict the interaction to a preestablished range. In our
model, each agent has an opinion and its degree of conviction.
Different from many other models, such as those developed
in Refs. [4,16–20], for instance, the interaction between two
agents is strictly local, in the sense that it relies only on the
interacting agents’ properties, i.e., on their individual opinions
and convictions. Therefore, during the interaction between
a pair of agents, the fact that one of them may eventually
be surrounded by a competing opinion or supported by its
companions has no influence on the outcome of the interaction.
This is one of the main characteristics that make our model
very different from the previous ones briefly mentioned above,
whose interaction is based on the properties of the agents’
neighborhoods. During the interaction only the interacting
agents’ convictions are affected. If the conviction of one of the
agents reaches a certain lower bound, then its opinion changes
to that of the opponent. We therefore take into account the
difficulty in persuading someone who has a strong conviction.
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S. R. SOUZA AND S. GONÇALVES PHYSICAL REVIEW E 85, 056103 (2012)

In such a case, it is necessary to change that agent’s beliefs
prior to the acceptance of the new idea.

The dynamics of the opinion distribution in populations is
then studied in the framework of this model, and the remainder
of this work is organized as follows. In Sec. II we give a
detailed description of the model. The results are presented
and discussed in Sec. III, and concluding remarks are given in
Sec. IV.

II. THE MODEL

The system is built on a regular mesh of Nx horizontal
and Ny vertical lines, with periodic boundary conditions. One
agent is placed at each vertex, and an opinion Oi , among the
No possible ones, is randomly assigned to the ith agent along
with a positive integer Ci , which corresponds to its degree
of conviction. An agent located at vertex (k,l) interacts with
any of the neighbors located in vertices (k′,l′) �= (k,l), where
k′ = k − r,k − r + 1, . . . ,k + r − 1,k + r and l′ = l − r,l −
r + 1, . . . ,l + r − 1,l + r . The range r is one of the model
parameters. Thus, each agent has 4r(r + 1) neighbors. At each
step of the dynamics, the following occur.

(a) An agent i is sampled with probability proportional
to Ci , and one of its neighbors is randomly selected for
interaction, as described below. By doing so we assume that
the agent’s activity is related to its conviction.

(b) With probability α, another agent is randomly selected
among the others, and its opinion changes to any of the No

possible ones, including its own. This procedure represents
the replacement of the agent by death or substitution due
to departure from its neighborhood. Its new conviction is
selected between 1 and the maximum existing value so as
not to introduce any bias into the system.

In step (a), nothing is done if the agents have the same
opinion, and one then proceeds to step (b).

Two agents i and j may interact only if their opinions are
different. In this case, they do it with probability

p = exp[−λ(Cmin/Cmax)2], (1)

where Cmin (Cmax) is the minimum (maximum) between Ci and
Cj and λ is a parameter which is chosen so as to minimize the
interaction between agents for which Ci ≈ Cj . This is because
it is very unlikely that a leader would be influenced by another
competing leader (two agents with large and similar values of
C). On the other hand, if a leader (large C value) meets an
ordinary agent (small C value) who has a different opinion,
the latter is very likely to be convinced by the former. The
functional form chosen in this work aims to introduce these
features into the model. If the agents interact, with probability
Ci/(Ci + Cj ), the conviction Ci is increased by one unit, and
Cj decreases by |Ci − Cj |. Otherwise, Cj increases by one
unit, and Ci decreases by |Ci − Cj |. If Cj � 0 (Ci � 0), then
its opinion changes to that of agent i (j ), and Cj (Ci) is set to
unity.

III. RESULTS AND DISCUSSION

At the initialization stage, an opinion 1 � Oi � No and the
conviction degree 1 � Ci � 10 [21] are randomly selected and
assigned to the ith agent. The system then evolves during at

FIG. 1. (Color online) Fractions of the population (Ni/Ntotal),
with opinion 1 � i � No = 5, as a function of time. The curves
show the results for r = 1, λ = 1.0, No = 5, α = 1.0 × 10−6, and
Nx = Ny = 100. For details, see the text.

least 108 steps. A full step corresponds to the time interval
during which Nx × Ny intermediate steps, as explained in
steps (a) and (b) in Sec. II, take place.

We start by examining the time evolution of the populations
Ni (1 � i � No) of groups with the same opinion, normalized
by the total number of agents,

Ntotal =
No∑

i=1

Ni. (2)

The results obtained using λ = 1.0, r = 1, No = 5, α = 1.0 ×
10−6, and Nx = Ny = 100 are shown in Fig. 1. For clarity, we
have restricted the time scale to 106, in spite of having carried
out simulations up to much larger times, as just mentioned. One
sees that no opinion dominates the dynamics. The opinions
coexist in different proportions, and one notices that, very
often, there is one opinion which is much more popular than
the others. Its dominance lasts for a relatively short time, and
the popular opinion is replaced by not so popular ones. As a
matter of fact, only a small number of opinions are effectively
disseminated through the system, the others being a small
perturbation most of the time. During the time evolution, the
most popular opinions are replaced by the unpopular ones, but
few opinions dominate the population at the same time.

This conclusion is independent of the number of possible
opinions No, as one sees in Fig. 2, which shows the dynamics
of the three largest populations (normalized by Ntotal). More
specifically, at time step t , the indices i of the opinions are
reordered in descending order of population Ni(t), and the first
three groups (M1 > M2 > M3) are selected. The calculations
have been carried out for No = 50 for both short and long
ranges, i.e., r = 1 and r = 5, and are respectively displayed
in the left and right panels of Fig. 2. The bottom three panels
on each side show the values of M1/Ntotal, M2/Ntotal, and
M3/Ntotal (as indicated in each plot). It is clear from these
results that, although the composition changes, only a very few
opinions are actually adopted by the agents. As in the previous
case, opinions rise and fall during the dynamics. Furthermore,
from the top panels, which exhibit the sum of the three largest

056103-2



DYNAMICAL MODEL FOR COMPETING OPINIONS PHYSICAL REVIEW E 85, 056103 (2012)

FIG. 2. (Color online) Populations of the most abundant opinions
(M1 > M2 > M3) at each step divided by the total number of agents
Ntotal as a function of time. The left panels show the results for
short range interaction r = 1, whereas r = 5 has been used in the
calculations shown in the right panels. In both cases, No = 50
opinions are allowed, and the remaining parameters of the simulations
are λ = 1.0, α = 1.0 × 10−6, and Nx = Ny = 100. For details, see
the text.

populations, normalized by the total number of agents, one
sees that this sum nearly exhausts the normalization almost
all the time. Therefore, the use of a fixed number of opinions
should not be seen as a limitation of the model as the system
naturally eliminates most of the competing opinions and very
few of them effectively play any part in the dynamics at the
same time. A comparison between the left and right panels
of Fig. 2 shows that the effect of the interaction range r on
this observable is mainly quantitative, although there seems
to be a tendency for the dominance of two groups. We have
checked that, when varied within the range 1.0 � λ � 2.0,
the results’ dependence on λ turned out to be weak. Since
this conclusion holds for other observables, such as the size
distribution (discussed below), we adopt λ = 1.0 in all the
calculations. The parameter α has also been varied, and its
effect on the composition of the opinions was found to be
quantitative rather than qualitative. The role played by α on
other properties of the system is further investigated below.

We now turn to the size distribution of clusters made up of
neighbors holding the same opinion. The system configuration
is analyzed at every 103 full steps, and the time average is thus
performed. The results are exhibited in Fig. 3 for different
values of the range r and system sizes (as indicated in each
plot). Two agents belong to the same cluster if they have the
same opinion, and their grid coordinates obey (k,l) − (k′,l′) =
(±1,0),(0, ± 1), or (±1, ± 1). The results clearly show that
the size distribution is very sensitive to the interaction range
r and the system sizes. For cluster sizes up to 10% of the
total system, the distribution becomes steeper as r increases,
whereas the development of a big cluster, of approximately the
size of the total system, becomes more and more pronounced.
Since agents interact only if they do not have the same opinion,
the borders between clusters are the regions of strong activity.
For short range interactions, only agents which are located
very close to the borders are allowed to interact. Therefore,

FIG. 3. (Color online) Size distribution of clusters made up of
neighbor agents which have the same opinion. Some of the model
parameters are listed on the panels, whereas the others correspond
to λ = 1.0 and α = 1.0 × 10−6. The power laws (dashed lines) are
best fits to the results, whose exponents β = 1.65, 1.90, 2.30, and
2.35 are respectively associated with r = 1, 2 ,5, and 10. The solid
circles in the top left panel correspond to P (s) ∝ exp(−s/s1)/sβ1 ,
s1 = 3703.7, and β1 = 1.65. For details, see the text.

for small values of r , one should expect to observe compact
groups of agents which share the same opinion. This should
favor the appearance of medium size clusters. Indeed, large
range values would lead to very diffuse borders and therefore
to the disappearance of the coherence among the agents which
are close to each other. In the limit of very large r values, the
connected agents would pervade the system, and the different
groups would interpenetrate each other, as they would not
be compact. This would enhance the appearance of large
clusters during the dynamics, whose contributions to the size
distribution may also be noticed in Fig. 3. Owing to the strict
conservation laws, the multiplicity of small clusters should
then decrease, and their size distribution would be steeper, as
is also seen in Fig. 3.

This qualitative reasoning is confirmed by the results
displayed in Fig. 4, where the spatial configuration of the
clusters is shown at randomly selected moments. Distinct
opinions are represented by different colors (shades of gray).
One sees that compact groups are indeed formed for r =
1, whereas the clusters become more and more spatially
diffuse as r increases. Thus, our model predicts that long
range interactions tend to destroy spatial correlations among
opinions when consensus has not been reached and different
opinions coexist in the system.

One may also notice in Fig. 3 that the size distribution of
clusters whose size s is smaller than 10% of the system size
is fairly accurately approximated by a power law, i.e., P (s) ∝
s−β , which is depicted by the dotted lines. The exponent varies
with r and corresponds to β = 1.65, 1.90, 2.30, and 2.35 for
r = 1, 2, 5, and 10, respectively. It should be noticed that the
variation of β is very small for 5 � r � 10, which reveals that
the power law exponent rapidly converges to an asymptotic
value. Indeed, we have checked that, within the uncertainties
of the fit, β is very close to this limit at r = 10.
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FIG. 4. (Color online) Spatial cluster distribution at randomly
selected moments of the dynamics. Agents sharing the same opinion
are depicted by the same color (shade of gray). The simulation has
been carried out using No = 5, λ = 1.0, and Nx = Ny = 100. For
details, see the text.

In the different panels of Fig. 3 we compare the size
distributions of different system sizes at fixed values of the
range r . The results show that, for r = 1, there seems to
be a characteristic scale since the largest cluster formed
during the dynamics does not scale with the system size.
In fact, as shown by the solid circles in the top left panel
of Fig. 3, the distribution for r = 1 and Nx = Ny = 200 is
accurately described by P (s) ∝ exp(−s/s1)/sβ1 , s1 = 3702.7,
and β1 = 1.65, which has a clear exponential cutoff at s = s1.
The situation nevertheless changes very quickly for larger r

values, and such and exponential cutoff is not clearly seen for
r = 2. More precisely, the power law regime extends to larger
sizes as the total system size increases for r � 2. Actually,
there is a range value, between 2 and 5, for which the power
law regime is an adequate description of the size distribution,
except for very large clusters since finite size effects have to
be considered for those clusters. Thus, the dynamics leads
to two distinct scenarios. For small r , compact clusters are
formed and occasionally amalgamate and form a very large
one. Owing to the locality of the coalescence process (for
small r the interactions take place at the clusters’ borders), this
happens very rarely since it requires strong spatial correlations,
hindering the formation of very large clusters. Then, this
process leads to the existence of a characteristic scale. On
the other hand, when large r values are used, the coalescence
extends through much larger areas due to the spread of
the clusters. It therefore makes it easier for correlations to
propagate through the entire system. Thus, the present model
predicts that the size distribution of not too large clusters is
fairly well described by a power law if the interaction between
the agents is not restricted to their contiguous neighborhood.

The power law behavior of the size distribution suggests
that the system reaches a critical state during the dynamics, in
close analogy to critical phenomena in equilibrium statistical
mechanics. In the latter case, the system is driven to a critical
state by the external tuning of one its parameters, such as
its temperature. The situation is, nonetheless, distinct from
the present one since, as illustrated by Figs. 1 and 2, the
configuration of the system is always changing and no static
state is ever reached due to the noise introduced in step
(b) of Sec. II. Furthermore, here it is the system itself that
adjusts its internal degrees of freedom to reach the critical
state and to remain close to it. This is called self-organized
criticality (SOC) and has been discussed in many different
places [12,22–26]. It has also been observed in a large diversity
of systems [12,22–30]. The asymptotic value of the power law
exponent of the size distribution shown above lies within the
values obtained with the random site percolation (RSP) whose
exponent ranges from 2.05 for two-dimensional lattices [13] or
2.186 ± 0.002 for three-dimensional lattices [31] up to 2.5 for
the Bethe lattice [13]. This exponent is larger than that obtained
with a nonconsensus opinion (NCO) model [17] whose power
law exponent of the size distribution is 1.89 ± 0.01, which
is very close to the value of 1.90 ± 0.01, obtained with the
invasion percolation with trapping (TIP) [32,33]. These values
reveal that our model and the NCO model belong to different
universality classes, the latter being associated with that of
the TIP. Indeed, except for short range interactions r = 2,
the power law exponents obtained with our model are larger
than that predicted by the NCO model. However, in spite of
lying within the range of exponents obtained with the RSP for
r > 2, further investigations are necessary to better understand
the universality class of our model, which is beyond the scope
of the present study.

At the critical state, the system has no characteristic length,
whose consequences manifest themselves as size distributions
that follow power laws. Similar long range correlations
should also be observed in time when the system is near
the critical point [12]. In order to investigate whether this
property is actually present in our model, Fig. 5 shows the
distribution of time intervals �t during which an opinion stays
as the most popular one. The bottom panel of Fig. 5 displays
the distribution of �t for different values of the range (see the
legend). The power law fit P (�t) ∝ �t−γ to the results reveal
that this is a fairly accurate representation of the distribution
for γ = 1.5, even for small values of r , since the power
law behavior is followed by the simulation results through
more than three decades. Deviations from the power law are
observed only at large values of �t .

Up to this point, we have not thoroughly investigated
the role played by the parameter α, which regulates the
frequency with which an agent randomly changes its opinion.
It contributes with noise, which prevents the system from
freezing when consensus is reached. In this sense, the model
strongly relies on this parameter to ensure an interesting
dynamics. The top panel of Fig. 5 illustrates the effects of α on
the distribution of �t for r = 10. We have focused on this value
since the bottom panel of Fig. 5 shows that the dependence of
�t on r is weak. One sees that the validity of the power law fit
is more and more impacted by the increasing amount of noise
(larger values of α) which is introduced into the dynamics.
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FIG. 5. (Color online) Distribution of time intervals during which
an opinion remains the most popular one for different values of the
parameters. The power law fit P (�t) ∝ �t−γ to the simulation results
gives γ = 1.5. The parameters employed in the model simulations
are listed on the figure legends, except for λ and the system size,
which are λ = 1.0 and Ny = Nx = 100. For details, see the text.

These results suggest that α � 10−5 does not affect the time
interval distribution, at least for the Nx = Ny = 100 system
used in the simulations.

Similar conclusions can be drawn from the results displayed
in the bottom panel of Fig. 6, which exhibits the cluster
size distribution for different values of α. Once more, for
Nx = Ny = 100, we find that the distribution is insensitive
to α only if the noise is kept at a very low level, i.e.,
α � 10−5. The top panel of Fig. 5 and the bottom panel of

FIG. 6. (Color online) Cluster size distributions for different
values of the parameter α and system sizes. The parameter values
not listed on the legends are λ = 1.0 and r = 10. For details, see the
text.

FIG. 7. (Color online) Time averaged conviction distribution. The
parameters not listed in the legend are No = 50, Nx = Ny = 100, and
λ = 1.0. For details, see the text.

Fig. 6 clearly show that there is a transition from short range
correlation (exponential decay), both in time and space, to
long range correlation (power law behavior) as α decreases.
This is because spatial correlations and long term memory
gradually deteriorate as more and more noise is introduced
into the system.

However, the results exhibited in the top panel of Fig. 6
clearly show that, although the cluster size distribution of
not too large clusters is fairly well approximated by a power
law, the exponent is very sensitive to the total system size.
These results are at odds with those shown in Fig. 3 for
r = 10, from which one observes a clear independence from
the total system size. Thus, it turns out that if too much noise is
added to the dynamics by the parameter α, the independence
from system size is lost. This means that, although noise is
needed by the dynamics, too much noise destroys the scale
invariance; i.e., the agents must keep their opinions for at
least a short while in order to preserve spatial correlations.
We have checked that similar conclusions hold for α = 10−5.
Since, on average, Nx × Nyα agents randomly change their
opinions at each step, one sees that there is no unique value of
α that would ensure scale invariance for arbitrary system sizes
since one may always find a size for which too much noise is
added to the system at each time step, destroying the spatial
correlations. This shortcoming may be avoided by redefining
α as the total rate per step, i.e., proportional to (NxNy)−1, so
that the desired amount of noise is introduced into the system
during the dynamics for any system size.

Since the agents’ convictions play an important role in the
dynamics, as they directly influence their resistance to the
adoption of new paradigms, we also examine this quantity.
Thus, Fig. 7 displays the time averaged conviction distribution
for different values of r . As in real life, most of the agents have a
low degree of conviction, and the system has very few leaders
(large C values); i.e., the distribution decays exponentially.
As expected, for a given value of C, the distribution falls off
as r increases since longer range interaction allows the agents
to encounter others with different opinions more often (as
illustrated in Fig. 4, agents with the same opinion tend to be
closer for small r values and they do not interact).
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FIG. 8. (Color online) Time evolution of the difference between
populations with opinions 1 and 2. The parameters not listed on the
plots are No = 2, Nx = Ny = 100, and λ = 1.0. For details, see the
text.

We finally examine the dynamics when only two opinions
are allowed. The modeling of such systems is of great interest
and has been extensively studied [1,15,17–19] since there
are many situations in real life where binary choices have
to be made [1]. Furthermore, the above results, associated
with Figs. 1 and 2, also suggest that this scenario should
retain most of the properties of real systems. The results
of the model simulation obtained with Nx = Ny = 100 are
displayed in Fig. 8, which exhibits the difference between the
populations with opinion 1 (N1) and opinion 2 (N2). As in
Refs. [17,18], where the NCO model has been proposed and
studied, our model allows for the dynamic coexistence of the
two conflicting opinions with unequal population fractions.
This is seen in the left panels of Fig. 8, which show the
results for short range interactions between neighbors, i.e.,
r = 1 and 2. This is in agreement with Ref. [17], which
considers the interaction between the closest neighbors. For
larger r values, one sees that consensus is reached and it
lasts for a long period. We have followed the dynamics
during much longer time scales and confirmed this feature.
Owing to the noise introduced by the random change of the
agents’ opinions, regulated by the parameter α, the status
quo does not last forever, and after being the overwhelmingly
dominating opinion for a long period, its replacement occurs
very quickly, and the other opinion becomes the consensus
and so on. Therefore, our model predicts that a transition from

nonconsensus to consensus occurs as the interaction among
the agents changes from short to long range.

IV. CONCLUDING REMARKS

We have developed a model for the dynamics of competing
opinions which is based on the agents’ degree of conviction
and on the range of the interaction between them. It predicts
that, even when many different opinions are allowed, only
a very few of them are really in use by the agents during
the dynamics. This is, in fact, observed in real life when,
for instance, at the beginning of an election process, many
candidates running for a political office start with not too
different opportunities but, after a while, very few dominate
the voters’ preferences. The model also predicts that the size
distribution of clusters, made up of agents which are located
at contiguous spatial positions and share the same opinion,
follows a power law. That distribution is reached independently
of the initial conditions and does not need external tuning
of any of its parameters, i.e., the dynamics leads to SOC
[12,22–26], as long as the interaction between the agents is
not restricted to too close neighbors. When only two opinions
are allowed, the model leads to nonconsensus dynamics, which
qualitatively agrees with the NCO model proposed in Ref. [17].
On the other hand, if the agents also interact with those who
are located relatively far from them, consensus is quickly
reached, and it lasts for a long time. The dominating opinion
is occasionally replaced, but there is consensus almost all the
time. Our model then provides a means to simulate many
of the properties of real systems by changing a parameter
which has a very simple interpretation on physical systems,
i.e., the range of the interaction between the agents. It also
contrasts with other models as the interaction between agents
affects their conviction in first place and their opinions change
only after their paradigms have been corroded. Furthermore,
the interaction between a pair of agents is not influenced
by their neighborhood, in contrast to most of the existing
models.
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J. S. Sá Martins, Biology, Sociology, Geology by Computational
Physicists (Elsevier, Amsterdam, 2006).

[13] D. Stauffer and A. Aharony, Introduction to Percolation Theory,
2nd ed. (Taylor & Francis, Philadelphia, 2003).

[14] M. F. Laguna, S. R. Gusman, G. Abramson, S. G. Calves, and
J. R. Iglesias, Phys. A 351, 580 (2005).

[15] M. S. de la Lama, I. G. Szendro, J. R. Iglesias, and H. S. Wio,
Eur. Phys. J. B 51, 435 (2006).

[16] P. L. Krapivsky and S. Redner, Phys. Rev. Lett. 90, 238701
(2003).

[17] J. Shao, S. Havlin, and H. E. Stanley, Phys. Rev. Lett. 103,
018701 (2009).

[18] D. ben-Avraham, Phys. Rev. E 83, 050101 (2011).
[19] S. Galam, Europhys. Lett. 70, 705 (2005).
[20] R. Lambiotte and S. Redner, Europhys. Lett. 82, 18007 (2008).
[21] The upper bound for Ci used in the initialization does not play

a relevant role in the evolution since it is adjusted by the system
during the dynamics.

[22] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381
(1987).

[23] M. Paczuski, S. Maslov, and P. Bak, Phys. Rev. E 53, 414
(1996).

[24] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 38, 364
(1988).

[25] K. Sneppen, Phys. Rev. Lett. 69, 3539 (1992).
[26] P. Bak, How Nature Works: The Science of Self-Organized

Criticality (Copernicus, New York, 1996).
[27] P. Bak and K. Sneppen, Phys. Rev. Lett. 71, 4083 (1993).
[28] R. Korsnes, S. R. Souza, R. Donangelo, A. Hansen, M. Paczuski,

and K. Sneppen, Phys. A 331, 291 (2004).
[29] A. Chmel, V. N. Smirnov, and L. V. Panov, Ocean Sci. 3, 291

(2007).
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