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Initial spreading of low-viscosity drops on partially wetting surfaces
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Liquid drops start spreading directly after coming into contact with a partially wetting substrate. Although
this phenomenon involves a three-phase contact line, the spreading motion is very fast. We study the initial
spreading dynamics of low-viscosity drops using two complementary methods: molecular dynamics simulations
and high-speed imaging. We access previously unexplored length and time scales and provide a detailed picture
on how the initial contact between the liquid drop and the solid is established. Both methods unambiguously
point toward a spreading regime that is independent of wettability, with the contact radius growing as the square
root of time.
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How fast can a liquid drop spread over a surface? This basic
question is relevant for applications ranging from printing and
coating to agriculture [1–5]. In the final stage of drop spreading
the dynamics are governed by Tanner’s law, which relates the
radius of the wetted area with time as r ∼ t1/10 [6,7]. This
extremely slow dynamics emerges from a balance between
surface tension and viscous forces close to the contact line [3].
Much less is known about the early stages of spreading after a
spherical drop is brought into contact with a solid at negligible
speed. In contrast to Tanner’s law, this dynamics is very fast
[8–12]: capillary energy suddenly becomes available when the
drop touches the solid, and this energy is concentrated into a
singular point of contact. It has remained unclear whether or
not the wetting conditions can influence such rapid inertial
flows [13–15].

The initial stages of drop spreading are strongly reminiscent
of the coalescence of two spherical drops of liquid, which
very rapidly merge after contact is established [16–21]. For
low-viscosity liquids such as water, it is well known that
the contact area between the drops grows as r ∼ t1/2 during
coalescence. This can be explained by the balance of the
inertial pressure inside the drop, ∼ρ(dr/dt)2, and the capillary
pressure, ∼γR/r2. Here ρ is the density, γ is the surface
tension, and R is the drop radius. Interestingly, an identical
scaling law was observed experimentally for water drops
spreading on a completely wetting surface [8]; apparently,
the presence of a three-phase contact line does not affect the
pressure balance during the initial phase of spreading. A rather
different picture emerged, however, for drops spreading on
partially wetting surfaces [9–11]. The dynamics was found
to depend strongly on surface wettability, r ∼ tα , with a
nonuniversal exponent α that varies with the equilibrium
contact angle [9]. This raises a number of intriguing questions:
How can the contact line and the surface chemistry affect the
“coalescence” of a drop with a surface? Are the initial stages
of spreading truly nonuniversal, or is there a hidden regime
at smaller times? How is contact established on a molecular
scale?

In this Rapid Communication we reveal the initial spreading
dynamics of low-viscosity drops using two complemen-
tary methods: molecular dynamics simulations of Lennard-
Jones nanodrops and high-speed imaging of experiments on
millimeter-sized water drops (Fig. 1). We access previously

unexplored length and time scales and provide a detailed
picture on how the initial contact between the liquid drop
and the solid is established. While simulations and exper-
iments describe different dynamical regimes, both methods
unambiguously point toward a universal spreading regime
independent of wettability, consistent with the inertia-capillary
balance r ∼ t1/2. This contradicts the scenario proposed in [9]:
At very early times after contact, the spreading exponent is
independent of wettability for contact angles ranging from
complete wetting to very hydrophobic.

Molecular dynamics simulations. The use of molecular
dynamics simulations (MD) allows for studying the initial
contact between a liquid drop and a solid substrate down to
the molecular scale. To reveal the fundamental mechanism of
contact and subsequent spreading, we use a generic Lennard-
Jones liquid. The advantage of the molecular approach is that,
unlike continuum modeling, no assumptions on the moving
contact line singularity [3] are needed. In MD, the wetting
characteristics are directly controlled by the solid-liquid
interaction, which determines the equilibrium contact angle
θeq [22]. The challenge, however, is to achieve sufficiently
large drop sizes to recover a hydrodynamic regime. We
therefore study a quasi-two-dimensional geometry rather than
axisymmetric drops, in which the system size in the y direction
is only 15 molecular sizes [cf. Fig. 1(b)]. Indeed, contact
problems such as coalescence are known to be essentially
two-dimensional (2D) phenomena, and the same is expected
here [16,23].

We perform simulations on binary systems, in which two
types of particles exist: fluid particles that can move around in
either the gas phase or the liquid phase and solid particles that
are frozen on an fcc lattice and constitute the solid substrate
[24]. All particle interactions are defined by the Lennard-Jones
potential:

φij (r) = 4εij

[(
σij

r

)12

−
(

σij

r

)6]
. (1)

Here, εij is the interaction strength between particles i and
j , and σij is the characteristic size of the atoms. This size
is the same for all interactions, σij = σ = 0.34 nm. The
potential function is truncated at rc = 5σ (1.7 nm), where φij is
practically zero. The mass of the atoms was set at 20 amu, and
a time step of 1.75 fs was found to be sufficient to accurately
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(a) (b)

FIG. 1. (Color online) Initial stages of drop spreading on par-
tially wetting surfaces of varying wettability. (a) Molecular dy-
namics simulations of Lennard-Jones nanodrops (R = 30 nm) and
(b) experiments of water drops (R = 0.5 mm). The top panels show
side views of the liquid drop just after it has made contact with the
partially wetting substrate. The bottom panels are bottom views at
times (a) t = 10,35,400 ps and (b) t = 4,8,44 μs. The contact radius
r(t) can be measured in time.

model these systems. The interaction strengths between the
fluid atoms are εll = 1.2kBT , with kB being the Boltzmann
constant and T being the temperature. The simulations are
done in the NV T ensemble, where the temperature is held at
300 K using a thermostat, which is below the critical point for
a Lennard-Jones fluid with the interaction strengths used. The
fluid particles (amount Nl = 304,192) are initially positioned
on an fcc lattice (shaped with a cubic outline) far from the
substrate (Ns = 78 300), but are free to move around and
relax toward an equilibrium drop shape. Periodic boundary
conditions are present in the lateral directions. The dimensions
of the quasi-2D system are 240, 5.1, and 120 nm in the x, y,
and z directions, respectively (Fig. 1). The depth of the system
is short enough to suppress the Rayleigh-Plateau instability
and leads to an infinitely long cylindrical-cap-shaped drop.

The interaction strength between the solid and fluid
defines the contact angle [22]. We considered four differ-
ent wettabilities (thus four different values of εsl): εsl =
(0.3,0.4,0.8,1.2)kBT , giving θeq = (115◦,100◦,60◦,0◦) ±
10◦. The liquid density was measured to be ρ = 664 kg/m3,
and the surface tension γ was measured in a separate, planar
system at γ = 0.017 J/m2. The viscosity of the liquid was
measured in another separate system (Poiseuille geometry) to
be η = 3.64 × 10−4 kg/(m s).

The following procedure was used to bring the drop into
contact with the substrate. First, the liquid is allowed to
equilibrate far away (32 nm) from the substrate. During this
stage, the drop will assume its cylindrical shape (R = 30 nm),
and the liquid equilibrates with the vapor phase. Next, a body
force is briefly applied on the fluid atoms until the drop moves
toward the substrate. Just before the drop comes into contact
with the substrate, the center-of-mass velocity of the drop is
subtracted from the atom velocities such that the drop now
“hovers” above the substrate. Due to the close proximity
of the substrate (around 1 nm) the thermal fluctuations of
the interface lead to first contact between the drop and the

(a) (b)
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FIG. 2. (Color online) Molecular dynamics results. (a)–(d) “Bot-
tom views” showing the molecules within 0.5 nm of the substrate
just prior to and after initial contact (t = −70, −25, −5, and 35 ps,
respectively). (a) A small number of molecules from the vapor phase
are close to the substrate. (b), (c) Some fluctuating patches of higher
density form. (d) A region of high liquid density nucleates at the
substrate, from which one can measure r(t). (e) Radius of wetted
area as a function of time for varying substrate wettabilities θeq. Once
the contact is established, we observe a power law with the exponent
1/2 for all values of θeq. Results are displayed in SI units on the right
and top axes and in dimensionless form on the left and bottom axes.
The contact radius r is rescaled with the initial drop radius R, and
time is rescaled with the inertial time scale τρ = √

ρR3/γ .

substrate, after which the drop starts to spread. Using this
method, the approach velocity of the drop toward the substrate
is zero and is not a parameter in this problem.

What happens during the initial contact? In these early
stages one cannot yet speak about a continuous liquid phase
in contact with the solid. Instead, one first encounters the
discrete, molecular nature of the fluid. Figures 2(a)–2(d)
show snapshots of the molecules that are within 0.5 nm of
the substrate, represented as white dots. First, a number of
vapor molecules are randomly distributed over the surface
[Fig. 2(a)]. As time progresses, more molecules come into
contact and form fluctuating “patches” of high liquid density
at the substrate [Figs. 2(b) and 2(c)]. The boundaries of these
patches is extracted by computing the number density field
of atoms near the surface and taking the isodensity contour
half way between the liquid and vapor density. Eventually, the
patch becomes sufficiently large to span the entire depth of
the quasi-2D simulation domain, from which we define the
time of contact [Fig. 2(d)]. The exact definition of t = 0 does
not influence our main conclusions below. From that moment,
we track the boundaries of this wetting patch, which are the
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moving contact lines. The contact lines become sharper and are
well defined during the spreading, as can be seen in Fig. 1(a).
Note that while the average vapor density close to the surface
is slightly larger than in the bulk, the surface coverage is very
low and does not represent a precursor film.

The key result of our MD simulations is that, once the liquid
drop has established contact with the surface, the spreading
follows a single power law. Figure 2(e) shows the contact
radius r versus time on surfaces with varying wettability. For
all contact angles θeq we observe a scaling consistent with r ∼
t1/2 (best-fit exponent: 0.48). It turns out that the contact angle
of the substrate θeq does have an influence on the spreading, but
only through the prefactor: the exponent is always very close
to 1/2. The prefactor increases as the contact angle decreases,
such that drops spread faster on the more hydrophilic surfaces.

Despite the very small length and time scales in these
simulations, the spreading appears to be consistent with
the hydrodynamic picture of inertia-dominated coalescence
[16,18]. The left and bottom axes in Fig. 2(e) represent
the data in dimensionless units, where lengths are scaled with
the initial drop radius R and time is scaled with the inertial scale
τρ =

√
ρR3/γ . In these units, the data span a range similar to

previous experiments on millimeter-sized water drops [8,9].
Experiments. To verify whether the spreading behavior

observed in MD is also found experimentally, we carried out
experiments in a previously unexplored regime. The required
spatial and temporal resolution is achieved by high-speed
recording of drop spreading from below, using transparent
substrates and recording rates up to 600 000 frames/s. Typical
images are shown in Fig. 1(b). The high-speed camera (Photron
SA 1.1) is connected to a microscope (Zeiss Axiovert 25),
which in combination with a 10× microscope objective (Zeiss
A-plan, 10×) and reflective illumination gives a maximum
resolving power of 2 μm/pixel. To capture a large period of
the spreading process, the frame rates used are in the range of
10 000–600 000 frames/s. Biance et al. [8] and Bird et al. [9]
have shown that data for different drop sizes collapse by inertial
rescaling. As here we focus on the influence of wettability, we
consider only one drop radius, R = 0.5 ± 0.01 mm.

To investigate the effect of wettability on the spreading,
we performed experiments with water drops on three different
substrates with different equilibrium contact angles θeq: clean
glass (almost perfectly wetting, θeq ≈ 0◦), coated glass (θr =
55◦, θa = 75◦, θeq = 65◦), and Teflon-coated glass (θr = 110◦,
θa = 120◦, θeq = 115◦). In order to avoid any condensation
effects prior to spreading, the surrounding air was saturated
with nitrogen gas. A thin needle was fixed at height D = 1 ±
0.02 mm above the substrate, thereby setting the initial radius
R of the spreading drop (height D = 2R). With a syringe
pump set at a constant volume rate of 1μl/min a pendant drop
was grown at the needle tip until it touched the substrate. This
generated approach velocities <2 × 10−5 m/s, so that the outer
gas dynamics had a negligible influence on the contact process.
The radius of contact r(t) was determined from images as in
Fig. 1(b), using a custom-made edge-detection algorithm in
Matlab that finds the maximum image intensity slope in every
frame.

Our experiments confirm a single power law during the
initial stages of contact. The measurements of the contact
radius r(t) are shown in Fig. 3 on linear axes. One observes
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FIG. 3. (Color online) Experimental measurements of contact
radius r plotted as function of time t for different substrate
wettabilities. Results for three different equilibrium contact angles
are plotted: clean glass (θe ≈ 0◦; diamonds), coated glass (θe = 65◦;
triangles), and Teflon-coated glass (θe = 115◦; circles). The curves
represent averaged data of repeated measurements (five or more for
each θeq) per substrate for drops with radius R = 0.5 mm, showing
the reproducibility of the experiments.

that the data fall onto three different curves, corresponding
to the three values of θeq. The curves separate about 0.1 ms
after contact, showing a dependence on wettability at later
times. However, the early-time dynamics are independent of
wettability. This is revealed in Fig. 4, which shows the same
data on a log-log scale. We find that our data for different θeq

perfectly collapse at early times (t/τρ < 0.04) and display
an exponent close to 1/2 (best fit: 0.55). We include the
data by Bird et al. [9] (crosses) for completeness and find
perfect agreement with our data at t/τρ > 0.1, which is the
range of accurate resolution in Ref. [9]. The upper and right
axes represent SI units, while for the lower and left axes we
employ the inertial scaling. Thus, the key point is that our
measurements reveal a regime where wettability has no effect
on the spreading at early times, not even in the prefactor.

Discussion. We have shown that early-stage spreading
of low-viscosity drops on a partially wetting substrate is
independent of wettability. The wetted area is found to grow as
r ∼ t1/2 for all considered wettabilities: we find no influence
on the spreading exponent by the presence of a contact line.
This suggests that the mechanism of capillary wave generation,
invoked to explain θeq-dependent spreading exponents [9],
cannot be the dominant factor at very early times. Still, such
capillary waves could be relevant for explaining the later
stages of spreading in Fig. 4, where a departure from the
1/2 scaling is observed. However, this departure first arises
when r/R � 0.2, in which case self-similarity of the bridge
connecting the liquid drop and the substrate is lost and scaling
cannot be assumed a priori. It therefore remains a challenge to
explain the moment when the effect of θeq becomes apparent
in the experiments. There is, however, a subtle difference
between the MD simulations and the experiments regarding
the prefactor of the spreading law. For the experiments we
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FIG. 4. (Color online) Experimental results. Contact radius r

measured as a function of time (top and right axes) for three different
equilibrium contact angles: clean glass (θe ≈ 0◦; diamonds), coated
glass (θe = 65◦; triangles), and Teflon-coated glass (θe = 115◦;
circles). The data shown are an average of at least five measurements.
The error bars denote the statistical error, which is larger than the
measurement accuracy. On the left and bottom axes the data are
normalized by the drop radius R and inertial time τρ = √

ρR3/γ ,
respectively. A new regime is observed at earlier times, where
the spreading is independent of the equilibrium contact angle. The
colored crosses are data from Bird et al. [9] [corresponding to θeq =
3◦, black crosses; 43◦, red (light gray) crosses; and 117◦, blue (dark
gray) crosses]. The arrow indicates the smallest times that were
accurately resolved in the study by Bird et al.

observe a perfect collapse of the data on a single curve at
early times. In contrast, the MD curves do not collapse,
but the prefactor increases with decreasing θeq. We can
point out at least two possible origins for this difference.
First, the time and length scales of the two systems differ
by orders of magnitude. In addition the simulations and
experiments are not dynamically similar. While the rescaled
results of Fig. 2 and 4 are very close, the Reynolds numbers
defined as Re = ρr(dr/dt)/η are very different: it is order
unity in MD, and order 100 in experiments. This suggests
that the MD could be influenced by viscous effects, and
it would be interesting to further investigate spreading for
highly viscous liquids [12,21]. Another key difference is
the importance of thermal fluctuations at molecular scales.
These are known to have a dramatic effect on the dynamics
of drop pinch-off [25,26], and it would be interesting to
further explore their influence on spreading in the molecular
simulations.

Finally, although wettability does not affect the initial rapid
inertial flow in drop spreading, other cases are known to be
strongly influenced by surface properties [13,15,27]. From a
more general perspective, the combination of such inertial
flows with a three-phase contact line therefore remains a
challenge.
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